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A B S T R A C T

Stress experienced early in life (ES), in the form of childhood maltreatment, maternal neglect or trauma, en-
hances the risk for cognitive decline in later life. Several epidemiological studies have now shown that en-
vironmental and adult life style factors influence AD incidence or age-of-onset and early-life environmental
conditions have attracted attention in this respect. There is now emerging interest in understanding whether ES
impacts the risk to develop age-related neurodegenerative disorders, and their severity, such as in Alzheimer's
disease (AD), which is characterized by cognitive decline and extensive (hippocampal) neuropathology. While
this might be relevant for the identification of individuals at risk and preventive strategies, this topic and its
possible underlying mechanisms have been poorly studied to date. In this review, we discuss the role of ES in
modulating AD risk and progression, primarily from a preclinical perspective. We focus on the possible in-
volvement of stress-related, neuro-inflammatory and metabolic factors in mediating ES-induced effects on later
neuropathology and the associated impairments in neuroplasticity. The available studies suggest that the age of
onset and progression of AD-related neuropathology and cognitive decline can be affected by ES, and may
aggravate the progression of AD neuropathology. These relevant changes in AD pathology after ES exposure in
animal models call for future clinical studies to elucidate whether stress exposure during the early-life period in
humans modulates later vulnerability for AD.

1. Introduction

Alzheimer's disease is the most prevalent neurodegenerative disease
among elderly and a major burden to society (Prince et al., 2013; Wimo
et al., 2013). AD patients are characterized by progressive cognitive
decline, that starts with mild cognitive impairments (MCI) and develops
over time in full blown dementia. The brains of AD patients are char-
acterized by the abundant presence of amyloid plaques, that are located
extracellularly and contain various β-amyloid (Aβ) peptides, and by
neurofibrillary tangles that are made up of hyper-phosphorylated tau
inside of neurons (Querfurth and LaFerla, 2010; Scheltens et al., 2016).
Neurodegeneration in the hippocampus, as the results of these neuro-
pathological changes, is one of the key features of AD and in concert to
the hippocampus other brain regions involved in the medial temporal
lobe memory circuit are affected too (Weiner et al., 2015).

A small percentage of the demented population suffers from familial
AD, in which the disease results from genetic mutations and/or specific
gene variants. For the majority of patients with sporadic, late-onset AD,
however, no genetic or heritable causes have been identified. These

patients have been reported to show a high degree of heterogeneity in
the progress of clinical symptoms, hippocampal plasticity and neuro-
pathological characteristics (Komarova and Thalhauser, 2011; Mufson
et al., 2015; Weiner et al., 2015). It is suggested that the etiology of
sporadic AD relates to an interaction of specific genetic risk variants
with various environmental and lifestyle factors, potentially leading to
a dysregulated epigenome (Andrieu et al., 2015; Gatz et al., 2006;
Haaksma et al., 2017; Maloney and Lahiri, 2016).

One of these environmental factors is stress. The frequency of life-
time distress has repeatedly been associated with accelerated cognitive
decline, enhanced incidence of MCI and increased risk for late-onset AD
(Aggarwal et al., 2014; Johansson et al., 2014; Sindi et al., 2016; Wilson
et al., 2006, 2003; 2007). Particularly stress occurring during the sen-
sitive period of early-life may additionally aggravate the later vulner-
ability to AD (Lahiri and Maloney, 2012, 2010). Individuals with a
history of early-life stress (ES) have been shown to age less “successful”
(Kok et al., 2017) and have an increased probability to develop diseases
in old age (Dong et al., 2004; Ferraro et al., 2016; Schafer and Ferraro,
2012). Interestingly, the occurrence of parental death between the age
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of 0 and 18 years has been associated with a higher risk for AD (Norton
et al., 2011; Ravona-Springer et al., 2012). Also, childhood neglect and
traumatic events have been associated with an augmented risk to de-
velop early MCI with age (Wang et al., 2016a) and childhood stress
have been associated with dementia and AD in Australian aboriginals
(Radford et al., 2017). On the other hand, early-life adversity was not
associated with aging-related cognitive decline in Caucasians, and may
even be protective against cognitive decline in an aging African
American population (Barnes et al., 2012). Importantly, these retro-
spective studies may contain bias as the variation in the later-life
questionnaires on (self-reported) childhood maltreatment in elderly can
be a potential confounder in these study designs (Ayalon, 2015; Jivraj
et al., 2017). Whereas prospective longitudinal studies in humans
would be an important addition, they are difficult from a logistic point
of view, given the long interval between the early-life period and the
age at which clinical AD symptoms appear.

Animal studies, however, provide a great opportunity to gain fur-
ther insight into the ES-mediated modulation of aging-related cognitive
decline and AD development. Notably, various specific AD character-
istics are modeled in mice, i.e. by transgenic (over) expression of mu-
tant genetic variants that underlie familial AD (Box 1). These transgenic
models develop transgene driven AD-related neuropathological features
such as amyloid plaques, and portray at least some of the associated
cognitive deficits. This provides a useful approach to study whether and
how risk factors, like ES, can modulate later neuropathological hall-
marks, cognitive decline and related impairments in neuroplasticity.

Here, we discuss whether stress in early-life acts as a vulnerability
factor for AD. We summarize the available pre-clinical literature and
focus on the biological substrates that might mediate such vulner-
ability. Finally, we highlight the outstanding questions that can help
bring the field forward.

2. Early-life experiences affect AD neuropathological hallmarks
and cognition

In recent years, the vulnerability to develop AD after ES was in-
vestigated with the use of different ES rodent models (Box 2). These
studies demonstrate that both positive and adverse early-life experi-
ences can modulate disease severity and AD pathology (Cañete et al.,

2015; Hoeijmakers et al., 2017; Hui et al., 2017; Lesuis et al., 2016,
2017; Martisova et al., 2012, 2013; Sierksma et al., 2012, 2013; Solas
et al., 2010, 2013).

Interestingly, ES triggered Aβ formation in non-transgenic rats; MS
from P2 to P21 induced an elevated ratio of the amyloid precursor
protein (APP)-derived fragments C99 and C83, and an increased ex-
pression of Aβ40 and Aβ42 peptides in the hippocampus of adult
(Martisova et al., 2012, 2013; Solas et al., 2010, 2013) and aged rats
(Solas et al., 2010). While it is interesting to learn that ES enhances
amyloidogenic processing in the brain of wild type rodents, these rats
do not develop the pathological oligomeric or fibril forms of Aβ. ES
experiments performed in transgenic AD models that do express these
pathological Aβ species help to uncover if ES advances or accelerates
these specific features of AD pathology with age.

Perinatal stress was shown to affect the later development of amy-
loid neuropathology in transgenic AD models in an age- and thus in-
trinsically pathological stage-dependent manner. In fact, both prenatal
maternal-restraint stress (PS) from embryonic day (E)1 to E7 as well as
chronic ES from postnatal day (P)2-P9 reduced Aβ in the hippocampus
of 4-month-old APPswe/PS1dE9 mice, a relatively early pathological
stage. Specifically, Aβ plaque load in the hippocampus of female, but
not male, APPswe/PS1dE9 mice was decreased after PS, while no ef-
fects were found on intracellular Aβ immunoreactivity, nor on hippo-
campal soluble Aβ40 and Aβ42 peptide levels (Sierksma et al., 2012,
2013). Chronic ES from P2 to P9 also reduced intraneuronal Aβ levels
in the dentate gyrus of male APPswe/PS1dE9 mice (Hoeijmakers et al.,
2017). On the other hand, 4-month-old bigenic (BiAT) mice, which
express both amyloid and tau mutant genes, exposed to the same
chronic ES design showed an elevation of Aβ peptide levels (Lesuis
et al., 2016). Interestingly, at a later pathological stage in 9- and 10-
month-old APPswe/PS1dE9 mice, hippocampal plaque load was ag-
gravated after exposure to chronic ES from P2-P9 or after 3 weeks of MS
(Hoeijmakers et al., 2017; Hui et al., 2017), while cortical plaque load
was affected by MS at this age as well (Hui et al., 2017). This shows that
although in some models Aβ is initially reduced in young adulthood,
the pathology is exacerbated by ES exposure at later ages.

In contrast to the modulation of Aβ peptides, tau pathology received
very little attention in ES studies so far. Interestingly, tau protein in the
hippocampus undergoes specific isoform switches and phosphorylation

Box 1
Modeling AD-related neuropathology in mice.

AD is characterized by the accumulation of Aβ and tau neuropathology, that is comprised of β-amyloid peptides and hyperphosphorylated
tau (Buerger et al., 2006; Hardy, 2002). Aβ peptides are generated from the amyloid precursor protein (APP) that is cleaved by β- and γ-
secretases. They accumulate firstly in cells, but ultimately end-up in fibrillar amyloid plaques in the extracellular space. The neuro-
pathological progression of Aβ involves the presence of different Aβ species (i.e. soluble/insoluble Aβ peptides, Aβ oligomers, in-
traneuronal/cell-associated Aβ or Aβ plaques). Next to this, tau pathology develops by an increased phosphorylation of the protein tau. Tau
hyperphosphorylation destabilizes neuronal microtubules, ultimately leading to the formation of neurofibrillary tangles. Similar to the rate-
determining factors for amyloidogenic processing, expression of total tau protein and (the activity of) kinases mediate tau phosphorylation
and pathological progression.

Aβ and tau pathology can be modeled in mice by transgenic (over)expression of human genetic mutations that drive the neuropathology
in familial AD. Many different transgenic lines have been developed over the last decade, overexpressing (a combination of) genes carrying
familial AD mutations (Götz et al., 2004). As examples, the Tg2576 and APPswe transgenic lines both overexpress the Swedish familial APP
mutations KM670/671NL (Borchelt et al., 1997; Hsiao et al., 1996). The inclusion of mutated presenilin 1 (PSEN1 or PS1), one of the
proteins of the γ-secretase complex, accelerates Aβ onset and progression in the APPswe/PS1dE9 and APPswe/PS1M146L models. The
APPswe/PS1dE9 model for instance develops the first Aβ plaques around 4 months of age and cognitive deficits occur between 4 and 6
months (Edwards et al., 2014; Jankowsky et al., 2004).

Similar to Aβ models, the microtubule associated protein tau (MAPT) gene is overexpressed to generate tau neuropathological char-
acteristics in mice. The JNPL3 transgenic model overexpresses MAPTP301L to drive an age-related increase in hyperphosphorylated tau
with the first tangles around 6 months of age (Lewis et al., 2000). Lastly, several models express APP as well as MAPT variants. An example
is the so-called bigenic (BiAT) mice expressing APP.V717I and MAPTP301L, and 3xTgAD mice that harbor three mutant genes (APPswe,
PS1M146L and MAPTP301L variants). These 3xTgAD mice firstly display cognitive impairments at 3 months, Aβ plaque pathology by 6 and
tau pathology by 10 months of age (Oddo et al., 2003).
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changes during the early-life period, which have been suggested to
contribute to neuronal development and function (Sennvik et al., 2007;
Boekhoorn et al., 2006). Although interference of such processes by
stress in early-life can potentially have detrimental impact, based on the
only study available on this topic to date, ES does not seem to impact
phosphorylated tau in 4-month-old BiAT mice (Lesuis et al., 2016). At 4
months of age, BiAT mice do however not normally develop tau pa-
thology, possibly preventing detection of any ES modulation in this
study and highlighting the need for future investigation on the topic.

Interestingly, ES exposure also seemed to affect the cognitive per-
formance of APPswe/PS1dE9 mice. The reduced Aβ plaque load in PS-
exposed APPswe/PS1dE9 mice at 4 months and the MS-induced in-
creased Aβ plaque load in the same transgenic mice at 9 months were
associated with, respectively, improved and impaired performance in
hippocampus-dependent cognitive tasks (Hui et al., 2017; Sierksma
et al., 2013). Such ES-induced cognitive modulation was not detected in
4-month-old BiAT mice as both control and ES-exposed BiAT mice were
unimpaired at this age (Lesuis et al., 2016).

In contrast to ES, and in support of the important role for the
(quality of the) early-life environment, a ‘positive’ early-life experience
attenuated Aβ pathology and cognitive decline. For instance, early
handling (EH) from P2 to P9, which was associated with improved care
by the mother, reduced Aβ levels in 4-month-old BiAT mice and in 11-
month-old APPswe/PS1dE9 mice (Lesuis et al., 2016, 2017). This re-
duction in amyloid levels in APPswe/PS1dE9 mice after EH was further
accompanied by an improved cognitive performance at 11 months of
age (Lesuis et al., 2017). In addition, prolonged EH exposure from P1-
P21 prevented spatial learning impairments at a pre-pathological stage,
in 4-month-old male and female 3xTgAD mice (Cañete et al., 2015).

These initial studies strongly suggest that perinatal experiences can
shape the later progression of Aβ neuropathology and cognitive per-
formance. In general, it appears as if stress experienced in early-life
reduces Aβ pathological hallmarks at an early pathological stage, while
it ultimately aggravates Aβ pathology at more advanced pathological
stages. These alterations are associated with parallel changes in cog-
nition. So far, these conclusions are based on only a few studies, which
focus on Aβ rather than on tau neuropathology. This highlights the
need to extend our knowledge of the consequences of ES at different
pathological stages. Moreover, with the exception of the EH study in
APPswe/PS1dE9 mice (Lesuis et al., 2017), these studies addressed
cognition only in transgenic mice and not in age-matched wild type
mice exposed to the early-life paradigm (Cañete et al., 2015; Hui et al.,
2017; Sierksma et al., 2013). The inclusion of these control groups
would be relevant in order to assess whether AD pathology accelerates

or aggravates the onset of cognitive impairments relative to unstressed
transgenic as well as stressed wild type groups. It is also important to
understand which mechanisms are involved and which pathways might
mediate such late consequences. This is addressed in the following
sections.

3. Stress in early-life modulates regulators of Aβ and tau
neuropathological progression

So far, most of the aforementioned ES studies have not fully ad-
dressed the possible mechanisms mediating the later neuropathological
changes. It is interesting to speculate whether mechanisms involved in
the effects of adult stress on AD neuropathology might also be im-
portant to consider in the context of early-life experiences. In fact, the
impact of adult stress exposure on Aβ and tau hallmarks has been more
extensively studied in various AD models (Machado et al., 2014;
Marcello et al., 2015).

Overall, there are several pathways in which stress exposure can
regulate Aβ progression. These include; 1) driving Aβ synthesis via the
modulation of APP expression and the APP-cleaving secretases, or 2) by
modulating clearance of Aβ, for instance by changes in transportation
to the periphery or by altering the rate of phagocytosis by immune cells
(Chesser et al., 2013; Deane et al., 2009; Martin et al., 2013; Ries and
Sastre, 2016). The propagation of tau neuropathology on the other
hand, is similarly modulated by tau expression, tau mutations, and
activity of specific kinases and phosphatases. These factors are driving
tau neuropathology and also ‘prion-like’ tau propagation is of relevance
in this respect (Sanders et al., 2014). Alternatively, tau can be cleared
through degradation pathways, halting the progression of pathology.
We will here discuss the existing literature on these proposed regulators
of AD neuropathology following (early-life) stress exposure.

3.1. Stress-related factors modulate AD neuropathology

Stress-related factors are certainly important to consider as possible
modulators of AD pathology. Not only were stress hormone levels
shown to be dysregulated in AD patients (Arsenault-Lapierre et al.,
2010; Csernansky et al., 2006), but stress was also associated with an
acceleration of the course and duration of MCI and with AD progression
in general (Johansson et al., 2014; Sindi et al., 2016; Wilson et al.,
2007). This effect is mostly thought to be mediated by stress-related
hormones and neuropeptides, such as glucocorticoids (cortisol in
human and corticosterone in rodents) and corticotropin releasing hor-
mone/factor (CRH; CRF). Interestingly, ES exposure has been described

Box 2
Rodent models of early-life stress.

In rodents, the early-life environment can be modulated during the prenatal period by manipulation of the pregnant females, and during the
postnatal period via manipulation of the mother's interaction with her offspring. This can lead to immediate and later-life consequences for
the offspring's brain structure and function. Several extensive reviews summarize and describe the different prenatal and postnatal ES
models (Lucassen et al., 2013; Schmidt et al., 2010). We here highlight some relevant models in detail.

Prenatal maternal-restraint stress (PS) generally consists of restraining the pregnant mouse or rat for 1–3 times a day during a number of
consecutive days, which can take place during different gestational phases. As an example, Sierksma et al. restrained mothers from em-
bryonic day (E)1 to E7 for 3 daily 45-min periods (Sierksma et al., 2012, 2013).

Postnatal stress models in both rats and mice include for example maternal separation (MS), maternal deprivation (MD), or chronic ES/
limiting bedding and nesting material (LBN). MS consists of a daily separation of mother and her pups for several hours, for up to 3 weeks
(Hui et al., 2017; Martisova et al., 2012, 2013; Solas et al., 2010, 2013). MD consists of one prolonged (up to 24 h) period of separation,
typically on postnatal day (P)3 or P4 (Oitzl et al., 2000). The chronic ES model or LBN model requires the mother and her offspring to be
placed in an impoverished environment from P2-9 (Hoeijmakers et al., 2017; Lesuis et al., 2016; Walker et al., 2017).

Early-life handling (EH) is, in contrast to the other models, a positive manipulation, consisting of brief (± 15min) separation of the
mother and pups on a daily basis, which enhances maternal care upon reunion (Korosi and Baram, 2010; Meaney et al., 1988). Such an EH
model can be employed from P2 to P9 with the usual 15-min daily separation (Lesuis et al., 2016, 2017), or for instance from P1 to P21 for
only 8min per day (Cañete et al., 2015).
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to alter later hypothalamic pituitary adrenal (HPA) axis functioning,
leading to an increased responsiveness to stressors and overexposing
body and brain to elevated levels of glucocorticoids (reviewed in Frodl
and O'Keane, 2013; Heim and Nemeroff, 2001). Such changes in HPA
axis functioning could be considered a plausible mediator of ac-
celerated AD pathology (Herbert and Lucassen, 2016).

3.1.1. Glucocorticoids
Various clinical studies have implicated elevated glucocorticoid le-

vels in the cognitive decline that followed (cumulative life-time) stress
experiences in elderly and AD patients (Arsenault-Lapierre et al., 2010;
Comijs et al., 2010; Csernansky et al., 2006; Lupien et al., 1999; Popp
et al., 2015). This supports an important role for glucocorticoids as
possible mediators of AD vulnerability after exposure to stress and in-
deed several mechanistic, pre-clinical studies implicated glucocorti-
coids in the pathological processing of enhancing tau and amyloid le-
vels after (adult) stress exposure (Baglietto-Vargas et al., 2015; Catania
et al., 2009; Green et al., 2006; Joshi et al., 2012, 2013; Sotiropoulos
et al., 2008, 2011).

As an example, glucocorticoid exposure and chronic stress in wild
type rats enhanced phosphorylation of tau protein in the hippocampus
and prefrontal cortex, likely through the elevated expression of kinases,
and these alterations were associated with cognitive deficits in the rats
(Sotiropoulos et al., 2011). Tau knockout mice further showed resi-
lience for (part of) the stress-induced hippocampal abnormalities and
cognitive deficits (Lopes et al., 2016), indicating a mechanism through
which stress-induced tau alterations can enhance neuropathological
hallmarks as well as vulnerability for cognitive deficits.

With respect to Aβ pathology, the expression of APP and the APP
cleaving enzyme β-secretase 1 (BACE1) was increased by exposure to
corticosterone or to the glucocorticoid receptor (GR) agonist dex-
amethasone, both in neuronal cell cultures as well as in 3xTgAD mice.
These changes increased expression of APP-derived fragments (C99,
C83), and notably, they further steered APP processing towards the
amyloidogenic pathway, ultimately increasing Aβ levels (Green et al.,
2006). A similar amyloidogenic potential of glucocorticoids was found
after adult stress exposure, which also increased expression of BACE1
and APP-derived fragments in the hippocampus and frontal cortex of
non-transgenic rats (Catania et al., 2009).

In addition, blocking the GR with the antagonist mifepristone at-
tenuated both Aβ and tau pathology in 12-month-old 3xTgAD mice,
after 3 weeks of treatment, while restoring cognitive performance in
various behavioral tasks (Baglietto-Vargas et al., 2013). In contrast to
the glucocorticoid-mediated elevation of Aβ, the neuropathological
reduction after mifepristone treatment was not mediated by BACE1
activity, but through a still unknown APP protease that steered APP
processing to the non-amyloidogenic pathway (Baglietto-Vargas et al.,
2013).

Interestingly, ES modulated amyloidogenic pathways in non-trans-
genic rats via the same mediators as reported for adult stress and glu-
cocorticoid exposure. BACE1 expression was elevated in MS-exposed,
adult non-transgenic rats and accompanied by an increased C99/C83
ratio (Martisova et al., 2012, 2013; Solas et al., 2010, 2013). This ele-
vated BACE1 expression was further associated with reduced DNA
methylation of the BACE1 promotor (Martisova et al., 2012). On an
additional note, the methylation levels of for example APP might also
be instrumental in the processing of amyloid after ES, in a similar
manner as discussed for BACE1 (Lahiri et al., 2009). It still remains to
be determined when this epigenetic mark arises, but GR activity might
possibly contribute to the induced BACE1 expression and DNA hypo-
methylation when considering that MS-exposed rats exhibit heightened
corticosterone levels in adulthood (Aisa et al., 2007; Martisova et al.,
2013). On the other hand, BACE1 DNA hypomethylation can also be a
programmed epigenetic mark that arises directly after ES exposure and
lasts into adulthood, and it will be interesting to study whether this or
an ES-mediated rise in glucocorticoid levels and subsequent GR

activation in adulthood affected methylation and the eventual BACE1
expression pattern. Chronic ES exposure did not induce an increase in
basal corticosterone in adult mice (Naninck et al., 2015, 2017) and,
thus, not all ES models induce elevated basal or stress-induced corti-
costerone levels. Whether glucocorticoid levels in chronic ES-exposed
mice affect BACE1 expression, APP or other factors in the amyloid
processing pathway to mediate the increased Aβ pathology in APPswe/
PS1dE9 mice remains thus to be determined.

3.1.2. Corticotropin releasing factor/hormone
Next to glucocorticoids, clinical data have also pointed to abnormal

CRF signaling in AD patients (De Souza et al., 1987; Hatzinger et al.,
1995; May et al., 1987; Raadsheer et al., 1995). CRF levels were re-
ported to be reduced in the cerebrospinal fluid and cortical tissue of
(sporadic) AD patients (De Souza et al., 1987; May et al., 1987) and AD
patients also responded less to stimulation of the HPA axis with exo-
genous CRF (Hatzinger et al., 1995). Next to this, CRF mRNA expression
was elevated in postmortem tissue of the hypothalamic paraventricular
nucleus of AD patients (Raadsheer et al., 1995). On the functional level
however, CRF expression was reported to exert a neuroprotective re-
sponse to Aβ toxicity (Pedersen et al., 2001) and to favor non-amyloi-
dogenic APP cleavage (Lezoualc'h et al., 2000), which would both be
beneficial in a context of Aβ accumulation.

In contrast to these observations, multiple studies have indicated
that stress exposure aggravated Aβ neuropathology in close association
with elevations in CRF. Enhanced CRF signaling in 3xTgAD mice sub-
jected to chronic adult stress was associated with enhanced Aβ neuro-
pathological progression (Baglietto-Vargas et al., 2015). Kang and col-
leagues have further shown that exogenous administration of CRF, but
not corticosterone, mimiced the acute stress-induced increase in Aβ40
and Aβ42 (Kang et al., 2007), and central CRF administration similarly
enhanced these peptide levels (Dong and Csernansky, 2009). Such an
Aβ-enhancing potential of CRF can be mediated through γ-secretase
activity, showing a mechanistic link between (stress-induced) CRF and
Aβ (Park et al., 2015). In addition, the modulating role of CRF in stress-
induced Aβ was confirmed by a deficiency in CRF signaling, either via a
CRF receptor 1 (CRFR1) knockout line or antagonist treatment, re-
spectively, showing a blockage of the stress-induced aggravation in Aβ
pathology after post-traumatic stress-like exposure in APPswe/
PS1M146V mice (Justice et al., 2015), and after acute stress in Tg2576
mice (Kang et al., 2007), Next to this, several studies have also attrib-
uted the potential of stress to enhance tau pathology to CRF (Carroll
et al., 2011; Rissman et al., 2007). Tau phosphorylation was enhanced
in CRF overexpressing mice compared to wild type mice and treatment
with a CRFR1 antagonist restored the phosphorylation of tau to wild
type levels at some but not all epitopes (Campbell et al., 2015). Adult
stress exposure increased tau hyperphosphorylation through the ac-
tivity of specific kinases mediated by CRFR1 activation (Rissman et al.,
2007). Similar to adult stress, ES in rodents led to enhanced CRF sig-
naling in the hippocampus (Ivy et al., 2010) and frontal cortex (Wang
et al., 2011). This implicates that altered CRF signaling after ES ex-
posure may contribute to AD-related tau hyperphosphorylation and Aβ
aggravation, but further evidence is needed to test this hypothesis.

To summarize the role of (early-life) stress-related factors in the
later vulnerability to develop AD, both glucocorticoids and CRF have
been implicated in the progression of AD neuropathology. This supports
the possibility that the enhanced AD vulnerability after ES might be
mediated by the alterations in the stress system. Intervention studies
that modulate the consequences of ES on stress signaling should help to
clarify these cause-or-effect aspects and further elucidate this re-
lationship. In addition, it will be interesting to investigate if ES has the
potential to also (epigenetically) program expression of AD neuro-
pathological modulators, such as tau, APP, or BACE1 expression, pos-
sibly via GR activation.
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3.2. Regulation of the inflammatory response to amyloid neuropathology by
ES

Over the recent years, attention for the role of neuroinflammation in
AD etiology has strongly increased (Heneka et al., 2015; Mhatre et al.,
2015; Wyss-Coray and Rogers, 2012). Clearance of Aβ can be mediated
by microglia, the innate immune cells of the brain, and/or by in-
filtrating myeloid cells. The latter are still debated as to whether they
just assist, or rather overtake microglial functions in AD (Bates et al.,
2009; Fu et al., 2012; Hickman et al., 2008). The accumulation of Aβ in
the brain has been shown to elicit a chronic inflammatory response,
both in terms of microglial and complement activation (Rodríguez
et al., 2010; Veerhuis et al., 2003; Zhang et al., 2012), depending on the
pathological stage (Sudduth et al., 2013). The potential of neuroin-
flammatory modulation of AD progression was further illustrated by
studies that change the neuroinflammatory response using genetic tools
to, depending on the specific type of modulation, either aggravate
(Griciuc et al., 2013; Mass et al., 2017; Wang et al., 2015, Wang et al.,
2016b) or ameliorate Aβ neuropathology (Guo et al., 2015; Hjorth
et al., 2013; Lee et al., 2010).

Despite these relevant findings, a possible role for inflammation in
the interaction between (early) stress and AD has so far been addressed
only in a few studies. First, an adult stress-induced increase in plaque
pathology in Tg2576 mice was found to coincide with a reduction in
plaque-associated microglia (Carroll et al., 2011), indicating a reduced
microglial response to Aβ deposits. A comparable reduction in plaque-
associated Iba1 immunoreactivity, a marker for microglia, was ob-
served in chronic ES-exposed 10-month-old APPswe/PS1dE9 mice
(Hoeijmakers et al., 2017). However, an opposite phenotype was ob-
served at an earlier age in the 4-month-old APPswe/PS1dE9 mice, since
ES enhanced the expression of microglial CD68, a lysosomal protein
and phagocytic marker in 4-month-old APPswe/PS1dE9 mice
(Hoeijmakers et al., 2017).

One can speculate that the changes in neuropathology between 4
(reduced Aβ in ES group) and 10 months (increased Aβ in ES group) in
the ES-exposed mice were not due to differences in Aβ production, but
may rather result from a differential clearance mediated through mi-
croglia. An outstanding question in that respect is, whether the mi-
croglial response to inflammatory challenges like Aβ is intrinsically
(epigenetically) programmed by ES in the microglia, and then evoked
by Aβ exposure in adulthood. Other ES studies in rats have indeed
shown that the microglial response in adulthood was primed or sensi-
tized when stimulated by secondary inflammatory challenges, leading
to an enhance (pro-)inflammatory response from microglia (Diz-Chaves
et al., 2012; Szczesny et al., 2014). On the other hand, other cell types,
such as neurons and astrocytes, release factors that can regulate mi-
croglia and thereby modulate their inflammatory response. As an ex-
ample, fractalkine signaling between neurons and microglia was found
to be diminished in PS-exposed rats by the reduced expression of the
(neuron-derived) chemokine CX3CL1 and the microglial CX3CR1 re-
ceptor (Ślusarczyk et al., 2016), indicating that neurons might influence
the microglial phenotype after ES exposure.

Together, these data show that ES affects microglia and their neu-
roinflammatory responses, and that this in turn might modulate Aβ
neuropathological progression. It still needs to be elucidated if an al-
tered microglial phenotype after ES exposure might contribute to ag-
gravated Aβ pathology in APPswe/PS1dE9 mice via a change in Aβ
clearance. In addition, it will be important to further investigate if the
microglial phenotype in ES APPswe/PS1dE9 mice results from an in-
trinsic, primed, or sensitized microglial response to Aβ. Alternatively,
the Aβ accumulating in ES-exposed mice might have elicited impair-
ments in other cell types in the brain, which may then stimulate the
microglia to respond more or less strongly.

3.3. Metabolic factors can play a role in progression of AD neuropathology
after ES

Other factors that can modulate AD vulnerability after ES exposure
relate to the metabolic aspects of AD. Over the last years, the abnormal
metabolic profile of AD patients (Bedse et al., 2015; Dineley et al.,
2014) and the beneficial or aversive effects of nutrients on AD pro-
gression have received considerable attention (Luchsinger et al., 2007;
Ramesh et al., 2010; Solfrizzi et al., 2017). In fact, a recent study also
provided evidence that early-life nutritional deficiency during the Great
Chinese famine elevated the incidence of MCI in later life (Kang et al.,
2017) and it has been suggested that metabolic and nutritional factors
during early-life might indeed modulate the onset and progression of
cognitive decline and AD (Lahiri et al., 2007).

The topic of nutritional deficiency is of particular interest as im-
proving eating habits represent a non-invasive and relatively cheap tool
for intervention in order to prevent or delay AD. Adversities in early-
life, and stress in particular, have been well-described to affect meta-
bolism and the nutritional profile (reviewed in among others Lucassen
et al., 2013; Yam et al., 2015). Such metabolic changes after ES in-
cluded among others fat deposition and altered signaling of the fat-
derivative leptin (Yam et al., 2017a), reduced insulin signaling (Solas
et al., 2013), elevated cholesterol levels (Paternain et al., 2016) and
altered poly-unsaturated fatty acid plasma levels, including reduced
omega-3 fatty acids (Clarke et al., 2009). We next discuss two of these
important metabolic regulators, i.e. insulin signaling and fatty acid le-
vels, that might contribute to AD neuropathological progression after
exposure to ES.

3.3.1. Insulin resistance in AD
Hyperinsulinemia leads to a deficiency in insulin signaling, or in-

sulin resistance, that can ultimately develop into type II diabetes. Type
II diabetes is highly prevalent world-wide and a well-recognized risk
factor that potentiates AD progression (Baker et al., 2011; Biessels et al.,
2014; Steen et al., 2005). The involvement of insulin in AD progression
was further demonstrated by studies of APP overexpression models that
developed insulin resistance with age, and normalizing such abnormal
signaling ameliorated cognitive deficits and Aβ peptide levels (Pedersen
et al., 2006). But how could hyperinsulinemia promote AD progression?
One of the mechanisms via which hyperinsulinemia has been suggested
to promote Aβ accumulation is via the insulin-degrading enzyme (IDE)
that degrades not only insulin, but also Aβ. An impairment in IDE might
thus lead to both high insulin and Aβ levels, and because of the higher
affinity for insulin, IDE might degrade less or even no Aβ peptides
under conditions of high insulin (Qiu and Folstein, 2006). Moreover,
hyperinsulinemia has also been associated with AD vulnerability via
other pathways, as discussed in various excellent reviews (Craft, 2005;
Diehl et al., 2017; De la Monte, 2009).

Interestingly, both adult stress and ES have been shown to affect
insulin levels and insulin signaling. The suppression of insulin signaling
in 6-month-old APPswe/PS1dE9 mice was potentiated by exposure to
chronic unpredictable mild adult stress and therewith aggravated the
Aβ phenotype (Han et al., 2016). Amyloidogenic processing in PS-ex-
posed adult non-transgenic rats was similarly accompanied by de-
creased expression of various factors involved in insulin signaling
pathways (Solas et al., 2013). Together, these studies suggest that adult
stress and ES can induce amyloidogenic processing through altered
insulin signaling (Han et al., 2016; Solas et al., 2010). Furthermore,
chronic ES exposure increased insulin levels in P9 mice (Yam et al.,
2017b) as well as adult rats (Maniam et al., 2015), which is thus con-
sistent with the concept that ES increases the risk for hyperinsulinemia
and insulin resistance. Altogether, there is evidence for insulin-medi-
ated AD hallmarks after ES exposure, but additional investigation to
directly tackle the effect of ES-modulated insulin signaling in transgenic
AD models are needed to gain insight into this topic.
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3.3.2. Involvement of omega-3 and omega-6 fatty acid profiles in AD
vulnerability

Research on the essential omega-3 and omega-6 fatty acids have
implicated the omega-3 variant to be beneficial for brain functioning
(Fiala et al., 2017; Zárate et al., 2017). Omega-3 supplementation or
deficiency in adult rodents, indeed, altered progression of Aβ neuro-
pathology and cognitive decline in different APP mutant mouse models
(Calon et al., 2005; Green et al., 2007; Lim et al., 2005; Oksman et al.,
2006). This makes these poly-unsaturated fatty acid levels another in-
teresting factor with respect to AD vulnerability. Interestingly, ES re-
duced omega-3 fatty acids in the plasma of adult rats exposed to MS
during early-life (Clarke et al., 2009). In addition, when MS-exposed
rats were fed an omega-3 deficient diet throughout adulthood, these
rats showed a higher vulnerability for metabolic deficits when com-
pared to unstressed rats fed with this deficient diet (Bernardi et al.,
2013; Mathieu et al., 2008).

These studies thus suggest that the reduction in omega-3 fatty acids
after ES can make ES-exposed mice more vulnerable to (progression of)
AD neuropathology and cognitive decline. But how can fatty acids exert
such modulatory effects on the brain? Dietary enrichment with omega-
3 in adult unstressed mice showed that Aβ neuropathology was reduced
in the cortex of 18-month-old Tg2576 mice after± 3 months of dietary
supplementation (Lim et al., 2005). This reduction could not be at-
tributed to an altered expression of well-known drivers of the amyloi-
dogenic pathway, including APP, BACE1, and ApoE (Lim et al., 2005).
The beneficial effects of omega-3 fatty acids on Aβ accumulation
seemed actually to be modulated by reduced PS1 expression and this
was found to reduce γ-secretase activity, subsequent amyloidogenic
processing and eventually even tau hyperphosphorylation in the
3xTgAD mice (Green et al., 2007). It still remains to be investigated if
an ES-modulated omega-3 profile contributed to altered Aβ neuro-
pathological progression. Next to this, it is of interest to mention that
fatty acids can directly benefit other AD-related aspects, like neuro-
plasticity (Calon et al., 2004, 2005; Hashimoto et al., 2006), and in-
flammation (Hjorth et al., 2013), which might additionally contribute
to the ES phenotype.

3.4. Interplay of the neuropathological regulators that are affected by ES

As discussed in the previous sections, AD might progress after ES
exposure through the modulation of stress-related, neuroinflammatory
and metabolic factors. Additional studies on the direct consequences of
ES for each of these modulating pathways, at different time points in
transgenic models of AD, should help to elucidate the determining
factors. It must be noted in this respect that the different systems that
can affect AD neuropathology after ES exposure are strongly inter-
related and alterations in one system will likely elicit many changes in
another. This makes it unlikely that ES would affect solely one of these
systems while leaving others untouched (Hoeijmakers et al., 2015).

To further illustrate this subtle interplay between stress, neuroin-
flammation and metabolism, hyperinsulinemia was for instance found
to enhance central inflammation and Aβ42 levels in the cerebrospinal
fluid of healthy adults (Fishel et al., 2005). In addition, Tg2576 mice
developed Aβ pathology next to impaired insulin levels, that in turn can
drive a rise in fasting-induced corticosterone and hyperinsulinemia by
13 months of age (Pedersen and Flynn, 2004). This process could be
prevented by modulating glucose and lipid metabolism through a
dietary intervention, containing (among others) a peroxisome pro-
liferator-activated receptor-γ (PPARγ) agonist (Pedersen and Flynn,
2004), that acts not only as a metabolic but also as an inflammatory
mediator. Omega-3 fatty acids further modulated microglial phagocy-
tosis of Aβ (Hjorth et al., 2013), while neuroinflammation is again
regulated by stress mediators, like corticosterone (Espinosa-Oliva et al.,
2011; Frank et al., 2012; Tynan et al., 2010), that can in turn induce
insulin resistance (van Donkelaar et al., 2014).

These studies portray the interrelated characteristics of several

pathways related to ES as well as AD. The interactions of these different
factors at play have unfortunately not been studied in detail in AD yet,
but such studies might shed light on the primary modulating pathways
of ES in determining AD vulnerability. This interrelated character ob-
viously makes it also difficult to tease out whether ES determines AD
vulnerability through one common denominator or driving factor, or
whether a synergistic action of all these pathways is involved. This
awaits future studies.

4. AD vulnerability through ES-modulated neuroplasticity

Neuronal networks can be modified by selective pruning of sy-
napses, formation of new, or strengthening of existing ones (Chattarji
et al., 2015; Kim and Diamond, 2002; Martin et al., 2000). Next to this,
the hippocampus exhibits the (unique) capacity to generate new,
functional neurons, a process that was shown to be essential for hip-
pocampus-dependent cognitive functioning (Kempermann et al., 2015;
Leuner et al., 2006). Such neuronal plasticity forms are ultimately af-
fected by the neuropathological progression in AD, as supported by the
synapse loss, neuronal atrophy and selective cell death in the AD brain
(Coleman and Flood, 1987; De Leon et al., 1997; Scheff et al., 1990),
which is at least in part paralleled by pre-clinical research in rodent
models of AD (for reviews, see Götz and Ittner, 2008; Götz et al., 2012;
Jang and Chung, 2016; Marlatt and Lucassen, 2010; Pozueta et al.,
2013; Selkoe, 2002). This close relation between pathology and neu-
roplasticity deficits as well as (aberrant) regenerative responses in AD
(Kuhn et al., 2001, 2007) makes it relevant to discuss how ES affects
neuroplasticity in AD models.

Next to this, ES-exposed wild type rodents have been reported to
display reduced levels of hippocampal neurogenesis at an adult age
(Hulshof et al., 2011; Naninck et al., 2015; Oomen et al., 2010; Suri
et al., 2013), decreased in dendritic complexity (Huot et al., 2002; Ivy
et al., 2008), reduced spine density and synaptic protein expression
(Aisa et al., 2009; Wang et al., 2011), as well as impaired long-term
potentiation of synaptic connections (Brunson et al., 2005; Herpfer
et al., 2012; Ivy et al., 2008; Wang et al., 2011). Such impairments in
neuroplasticity are thought to underlie the cognitive deficits in ES-ex-
posed adults, and these neuroplasticity forms as well as cognition de-
cline with aging (Barnes et al., 1997; Foster, 2012; Lindner, 1997).
Considering this, we first discuss how ES intrinsically affects such
aging-related alterations in cognition and neuroplasticity in wild type
rodents, followed by the evidence for neuroplasticity alterations in AD
models after ES exposure.

4.1. ES modulation of neuroplasticity with aging

Interestingly, the regulators of the ES-mediated impairments in
neuroplasticity in adult offspring can be attributed to stress mediators,
neuroinflammatory alterations and metabolic changes (for reviews see
Hoeijmakers et al., 2015; Johnson and Kaffman, 2017; Korosi et al.,
2012), implicating that similar pathways might be involved in stress-
induced neuroplasticity changes in AD-related neuropathology. In ad-
dition, ES exposure in rodents was shown to induce several of the later-
life (neuronal) consequences already early-on, lasting into adulthood,
such as the ES-induced reduction in hippocampal volume in mice
(Hoeijmakers et al., 2017; Naninck et al., 2015), whereas other con-
sequences were actually age-dependent. As an example, chronic ES
exposure in mice increased cell proliferation at P9, but reduced new-
born cell survival in the adult hippocampus (Naninck et al., 2015).
Although the consequences of ES have been extensively studied in
adulthood, less attention has been given to how this phenotype is af-
fected with aging.

With aging, the majority of elderly typically show a decline in
cognition (Kirova et al., 2015; Langa and Levine, 2014) and cognitive
functioning in rodents similarly diminishes with age (Barnes et al.,
1997; Foster, 2012; Lindner, 1997). One can imagine that impairments
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in the neuroplasticity after ES exposure can trigger a steeper decline
with aging. Indeed, individuals with a history of childhood stress ex-
hibited cognitive deficits already in (young) adulthood (Chugani et al.,
2001; Kaplan et al., 2001; Mueller et al., 2010) and these deficits seem
to further progress in a stronger manner with aging (Radford et al.,
2017; Wang et al., 2016a).

In aged rodents, cognitive impairments were exacerbated in PS-ex-
posed rats (Vallee et al., 1999), and a similar phenotype was confirmed
in aged rats that underwent MS from P2-14 (Sousa et al., 2014) or from
P2-P21 (Solas et al., 2010). In comparison to age-matched control rats,
MD on P3 similarly led to a more cognitively impaired aged rats, but in
addition it also led to more good performers during the learning task
(Oitzl et al., 2000). This study thus indicated that ES did not impair all
rats, but rather that the individual variation within the group was en-
hanced with aging after stress exposure early in life.

Altogether, the majority of these studies point to an aggravated age-
related cognitive decline in ES-exposed rodents. Such impairments in
cognitive performance were accompanied by impaired long-term po-
tentiation in CA1-CA3 synapses of 16-month-old MS-exposed rats, when
compared to age-matched controls (Sousa et al., 2014). A study of 30-
to 32-month-old rats that were exposed to MD on P3 and classified as
cognitively impaired or unimpaired, based on Morris water maze
training in aging, revealed that 5-HT receptor 1 mRNA expression in the
hippocampus was more strongly increased in impaired MD rats com-
pared to the impaired control rats (Sibug et al., 2001). In addition,
activity-regulated cytoskeleton-associated protein (ARC) mRNA ex-
pression, but not brain-derived neurotrophic factor (BDNF), was
strongly reduced in aged rats with a history of MS, relative to unstressed
aged rats and adult groups (Solas et al., 2013).

Other parameters of neuronal plasticity have, to our knowledge, so
far not been studied in aged ES-exposed rodents and their age-matched
controls. Nevertheless, based on the evidence for impaired cognitive
performance of ES aged rats, it is to be expected that neuronal plasticity
parameters will be impaired too. Additional studies are needed to fur-
ther elucidate which factors are involved in the aggravated aging-re-
lated decline after ES.

4.2. ES might aggravate AD-related impairments in neuroplasticity

Next to a potential steeper decline with aging per se, it is plausible
that ES exacerbates various neuroplasticity hallmarks in AD transgenic
mouse lines. For example, dendritic complexity is altered by chronic ES
in different brain regions of BiAT mice, with reduced complexity in the
infralimbic frontal cortex and increased complexity in the prelimbic
frontal cortex and amygdala (Lesuis et al., 2016). The expression of
BDNF is reduced in the female, but not male hippocampus of PS-ex-
posed APPswe/PS1dE9 mice relative to control APPswe/PS1dE9
(Sierksma et al., 2012). Both these studies of BiAT and APPswe/PS1dE9
were performed in 4-month-old mice, an age when no cognitive deficits
are yet present. It will therefore be of particular interest to study the
alterations in neuroplasticity also at an age when cognitive functioning
of ES transgenic mice differs from control transgenic mice, such as for 9-
month-old ES APPswe/PS1dE9. Interestingly, these 9-month-old ES-
exposed APPswe/PS1dE9 mice showed an increased loss of cholinergic
neurons in their forebrain, in close association with memory deficits
(Hui et al., 2017). These 3 studies together indicate that neuroplasticity
appears to be reduced by ES in AD transgenic mouse models.

Unfortunately, all 3 studies failed to include wild type littermates
that are exposed to the same early-life paradigms. This hampers the
possibility to address whether the ES phenotype is different or ag-
gravated in mice with a transgenic background. Previous studies sub-
jecting wild type mice to the same stress paradigms showed that at least
prefrontal cortex dendritic arborization (Yang et al., 2015) and BDNF
expression (Dong et al., 2015; Zheng et al., 2016) were similarly af-
fected by chronic ES and PS. It is, therefore, at this point unclear if
neuroplasticity markers in these studies are differently or more strongly

affected when ES is applied in mutant APP mice when compared to wild
type mice.

Several studies on chronic stress at an adult age interestingly point
to a steeper decline in neuroplasticity hallmarks in AD transgenic
models than in non-stressed transgenic or stressed wild type mice
(Baglietto-Vargas et al., 2015; Grigoryan et al., 2014). Spine numbers in
the stratum radiatium and stratum lacunosum moleculare of the CA are
reduced by adult stress exposure in wild type mice, but more strongly so
in the 3xTgAD mice (Baglietto-Vargas et al., 2015). When compared to
wild type and control 3xTgAD mice, 6-month-old stress-exposed
3xTgAD mice additionally exhibited a stronger decrease in long-term
potentiation, as was recorded in the CA1 stratum radiatium (Grigoryan
et al., 2014). These studies suggest that adult stress can modulate
neuroplasticity factors that in turn may accelerate impairments, either
as a result of a faster progression of neuropathology, or by direct effects
of adult stress regulation and stress hormone exposure on neuronal
functioning.

To conclude, neuroplasticity seems to be impaired in ES-exposed AD
transgenic mice compared to non-stressed transgenic mice. Such im-
pairment appears in line with the stronger cognitive decline in ES-ex-
posed AD transgenic mice, however, it remains unclear whether this
impairment is similar for ES wild type and ES AD transgenic mice, or
whether the neuroplasticity impairments are stronger in the transgenic
models exposed to ES. To address this question, it is essential that future
studies include both ES-exposed transgenic mice as well as wild type
mice, and compare those to the unstressed transgenic and wild type
controls. In addition, other synaptic plasticity-related molecules than
those studied to date might be interesting future targets. As examples,
ES has been reported to impact neural cell adhesion molecules (NCAMs;
Aisa et al., 2009; Marco et al., 2013), polysialylated (PSA-)NCAM
(Castillo-Gómez et al., 2017; Tsoory et al., 2008) and nectin-3 levels
(Wang et al., 2013), which are also associated with AD-related neuro-
pathological impairments (Leshchyns'ka et al., 2015; Maurin et al.,
2013; Mikkonen et al., 1999). It will furthermore be of interest to in-
vestigate if the neuroplasticity impairments result from an altered
progression of the neuropathology in the transgenic lines, or if these
changes occur irrespective of neuropathology.

5. Development of AD through ES-mediated later-life risk factors

Next to ES-induced cognitive deficits in adulthood (Chugani et al.,
2001; Kaplan et al., 2001; Mueller et al., 2010), childhood stress has
been indicated to enhance the risk for other later-life adversities. The
risk to experience later-life trauma or other adult stressful events was
indeed enhanced in individuals with an ES history (Dich et al., 2015)
and also the risk to develop psychopathologies in adulthood was asso-
ciated with an ES history (McLaughlin et al., 2010). This feature brings
forward another interesting aspect through which ES can potentially
regulate AD vulnerability. Multiple recognized adult risk factors for AD
were shown to be determined by ES, and these include but are not
limited to a cumulative stress or allostatic (over)load (Barboza Solís
et al., 2015; Bellis et al., 2015; McLaughlin et al., 2010; Tomasdottir
et al., 2015), obesity (Barboza Solís et al., 2015; Ferraro et al., 2016)
and depression (Hovens et al., 2012; Miller and Cole, 2012; Turner and
Butler, 2003). ES might in this way be the first step to comorbidity as a
cumulative factor increasing vulnerability for AD.

Given these later-life risk factors and the reduced cognitive func-
tioning of ES-exposed individuals, it can be questioned whether also the
‘cognitive reserve’ of ES-exposed individuals is lower. Cognitive reserve
can be seen as someone's ability to cope with emerging damage in the
brain, until a certain threshold is reached and the loss of function be-
comes apparent (Stern, 2002). Also in AD patients, neuropathological
hallmarks have been accumulating in the brain for many decades before
the first clinical signs of AD arise as the manifestation of MCI (Jack
et al., 2010, 2013). This suggests that individuals with lower cognitive
abilities or less neuroplasticity capacities could be classified as having a
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lower cognitive reserve and might exhibit, irrespective of the neuro-
pathological build-up, an earlier onset of MCI and AD.

Several studies indeed showed that the onset of AD was earlier and
progressed stronger in individuals with lower intellectual and cognitive
abilities (Osone et al., 2014; Pietrzak et al., 2015; van Veluw et al.,
2012). In addition, the cognitive abilities at age 11 were associated with
the cognitive level of 79-year-old non-demented elderly (Gow et al.,
2008), indicating that childhood cognition may indeed be associated
with cognition during aging. However, the decline of these non-de-
mented elderly between age 79 and 83 was not associated with their
childhood abilities (Gow et al., 2008), suggesting that the decline in
aging was not related with childhood performance. Indeed, a large
(prospective) study of Danish men (Osler et al., 2017) and a Scottish
cohort (McGurn et al., 2008) associated lower cognitive abilities spe-
cifically with an increased risk for (vascular) dementia, and not AD,
although the number of AD patients in these studies was very low. On a
similar note, a higher social economic household was associated with
higher cognitive abilities that were retained during aging, but neither
higher nor lower social economic household were an indicator for AD
development (Wilson et al., 2005).

On an additional note, there is current interest in the potentially
transgenerational effects of ES. Several reports have provided evidence
for inheritable effects across generations for at least some of the ES
consequences, mediated by DNA methylation or other epigenetic me-
chanisms (Bohacek and Mansuy, 2015; Franklin et al., 2010; Gapp
et al., 2014; Roth et al., 2009). The hypothetical latent early life asso-
ciated regulation (LEARn) model furthermore proposes that later-life
disease, such as sporadic AD, develops faster in individuals who might
have inherited specific (epi)genetic trait and experienced an adverse,
environmental early-life event (Lahiri et al., 2009; Maloney and Lahiri.,
2016). Transgenerational effects of (early-life) stress might in such a
way lead to higher risk for dementia in a heritable fashion.

Overall, the discussed studies show that childhood cognition is in-
trinsically associated with specific forms of dementia, while cognitive

abilities in adulthood were specifically associated with a risk for AD. It
will be of interest to further explore how general cognitive abilities
throughout life determine AD risk and whether indeed a lower cogni-
tive reserve will lead to an earlier onset of MCI and AD.

6. Mediators of ES vulnerability for AD; a model

The ES phenotype is suggested to be determined by the interplay of
different systems (Hoeijmakers et al., 2015) and it is of interest that
these same systems are implicated in neuroplasticity regulation and in
the progression of AD neuropathology. We propose the following model
of ES-mediated vulnerability for AD (Fig. 1). We hypothesize that ES
modulates the inflammatory, stress and/or metabolic systems. The in-
terplay of these systems will lead to aggravated AD-related neuro-
pathology, which in turn can reduce hallmarks of neuroplasticity, such
as synaptic connectivity and hippocampal neurogenesis, to ultimately
diminished cognitive abilities. Alternatively, ES directly reduces neu-
roplasticity and its associated cognitive functions through in-
flammatory, stress and metabolic regulation as well, and may thereby
potentially lower the cognitive reserve of ES individuals. Finally, ES is
an important risk factor for the occurrence of later-life stress events and
such cumulative stress again would induce a cumulative risk for deficits
through the aforementioned pathways.

7. Conclusion

Childhood stress experiences are suggested to modify various as-
pects of healthy aging and the development of AD. The decades-long
interval between such early-life experiences and the onset of aging-re-
lated diseases like AD is problematic for (prospective) studies on the
association between ES exposure and AD vulnerability. A thorough
discussion of the pre-clinical research on this topic is therefore crucial
to improve our understanding of the topic. The studies on rodent
models support a modulatory effect of stress experienced in early-life in

Fig. 1. Proposed model of how exposure to early-life stress
could modify Alzheimer's disease vulnerability.
Early-life stress (ES) alters, either directly or through an
enhanced sensitivity to later-life stress effects, neuroin-
flammatory, stress and metabolic regulation. Several po-
tential candidate factors involved in such regulation have
this far been identified to alter AD-related amyloid and tau
pathological hallmarks and may therewith reduce neuro-
plasticity. These 3 systems can additionally impact neuro-
plasticity, irrespective of the development of AD neuro-
pathology. Ultimately, the reduced neuroplasticity during
this period may result in a lower cognitive reserve and fi-
nally in an earlier and possible more aggressive cognitive
decline. These closely interrelated events may altogether
determine AD vulnerability after exposure to stress in early-
life.
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the progression of AD. Preclinical research has, however, not fully ex-
plored which factors are involved in this relation, and more controlled
preclinical studies are thus essential to identify these factors, to unravel
their interactions and to verify the current findings (Box 3). Such
knowledge, supported by (prospective) clinical studies, will strongly
benefit the identification of populations at elevated risk for AD, which
can possibly allow to develop an early and targeted treatment during
the many decades between ES exposure and AD (clinical) onset.
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