
biomedicines

Review

Macrophage Identification In Situ

Krisztina Nikovics * and Anne-Laure Favier

����������
�������

Citation: Nikovics, K.; Favier, A.-L.

Macrophage Identification In Situ.

Biomedicines 2021, 9, 1393. https://

doi.org/10.3390/biomedicines9101393

Academic Editors: Alexander N.

Orekhov, Alexei Gratchev and

Evgeny E. Bezsonov

Received: 1 September 2021

Accepted: 29 September 2021

Published: 4 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research
Institute, 91223 Brétigny-sur-Orge, France; anne-laure.favier@intradef.gouv.fr
* Correspondence: krisztina.nikovics@def.gouv.fr

Abstract: Understanding the processes of inflammation and tissue regeneration after injury is of
great importance. For a long time, macrophages have been known to play a central role during
different stages of inflammation and tissue regeneration. However, the molecular and cellular
mechanisms by which they exert their effects are as yet mostly unknown. While in vitro macrophages
have been characterized, recent progress in macrophage biology studies revealed that macrophages
in vivo exhibited distinctive features. Actually, the precise characterization of the macrophages
in vivo is essential to develop new healing treatments and can be approached via in situ analyses.
Nowadays, the characterization of macrophages in situ has improved significantly using antigen
surface markers and cytokine secretion identification resulting in specific patterns. This review aims
for a comprehensive overview of different tools used for in situ macrophage identification, reporter
genes, immunolabeling and in situ hybridization, discussing their advantages and limitations.

Keywords: macrophages; phenotype; in situ hybridization; cytokines; immunolabeling

1. Introduction

In the late of 19th century, Elie Metcnikoff described macrophages for the first time
and hypothesized that these mononucleated phagocytic cells might play an important role
in the immune response [1]. Later, it was discovered that macrophages have indispensable
function during innate and adaptive immunity. Tissue injury promotes a series of well-
coordinated events, which contribute to the efficient healing of damaged tissue. Reduction
in inflammation and improvement in tissue regeneration is very important. Macrophages
perform an essential function in both processes [2]. In the absence of macrophages, poor
tissue healing, imperfect angiogenesis and fibrosis appears [3], resulting in an inhomoge-
neous population of cells detectable in every tissue of the body depending on the stimulus
and the environment in which they are located [4–9]. The polarization of macrophages is
determined by many biological signals (growth factors, fatty acids, prostaglandins, and
pathogen-derived molecules) in addition to cytokines located in the micro-environment.
Macrophages have critical biological roles from inflammation through to resolution and
repair. They express and produce various molecules [10] which have different roles during
different processes. The view on the characterization of macrophage polarization is rapidly
changing [2,11,12]. In the beginning, in vitro culture was used for macrophage phenotype
characterizations because, in this situation, the extracellular environment can be easily
controlled. In the 1990s, it was discovered that lipopolysaccharide (LPS), interferon (IFN)-
gamma and cytokine IL-4 can induce the expression of different genes in macrophages. Two
major groups were distinguished during polarization. Macrophages activated by LPS were
named as “classically activated macrophages” and the IL-4 stimulated macrophages were
named as “alternatively activated macrophages” [11,13,14]. One hundred years ago, Otto F.
Warburg discovered that activation of macrophages modified their glucose metabolism
and increased lactate production [15,16]. Aside from glucose metabolism, amino acid
metabolism can also be altered in the classically activated macrophages [17]. LPS/IFN–
gamma stimulation induces arginine conversion to nitric oxide (NO). This molecule has
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a cytotoxic and bacteriostatic effect [18]. However, the IL-4 inhibits NO production in
the alternatively activated macrophages [19]. In addition to these metabolic pathways,
alteration of the tricarboxylic acid cycle was also observed during alternative macrophage
activation. High levels of succinate triggers intense inflammation in the classically ac-
tivated macrophages [17]. Mills and colleagues (2000) proposed a new classification
of the macrophages (M1 and M2), and the scientific community decided to name the
classically activated (pro-inflammatory) macrophages M1 and the alternatively activated
(anti-inflammatory) macrophages M2 [20]. In vitro results showed evidence of new M2
macrophage sub-types (M2a, M2b, M2c with different functions and expressing different
molecules (Figure 1)) [21,22].

The M1/M2 classification is not perfect because particular macrophages do not fit
into any of the sub-types. These are the nontypical macrophages. Some produce T cell
receptor (TCR) or CD169 protein and they do not promote phagocytosis but are involved
in immune regulations [23] (Figure 1).

In 1988, the growth arrest-specific gene 6 was discovered [24]. This protein binds to the
TAM (Tyro3, Axl and Mer) receptor family and plays an important role in the development
of different cancers [25]. Qian and Pollard (2010) have suggested that the distribution
of M1 and M2 macrophages is more complex, as tumor-associated macrophages (TAM
macrophages) showed a different pattern compared to M1/M2 criteria [26]. Finally, TAM
macrophages were classified as a new sub-type, the M2d macrophages [27]. Later it turned
out that the TAM macrophage phenotype is even more complex, finally splitting into
M1 and M2 TAM macrophages. M1 TAM macrophages are involved in anti-tumorous
activity while the M2 TAM macrophages induce the tumor progression and metastasis
formation [28–31] (Figure 1).

In that way, the in vivo landscape is more intricate compared to the in vitro situa-
tion [32–37]. The in vivo macrophages are generally called M1-like and M2-like or resolving
macrophages [3]. Due to purification cell process, various immune cells are absent from
in vitro environment studies, resulting in a lack of cytokine expression which is usually
involved in macrophage polarization in vivo. In this context, the characterization of in vivo
macrophages is still incomplete. Thus, many laboratories are interested in the identification
and characterization of M1-like, M2-like and tissue-resident macrophages. An increasing
number of articles have pointed out that contrary to the original theory, in vivo macrophage
phenotypes offered a more complex pattern of cellular markers and cytokine expression
panel [3,38] (Figure 1). Various publications suggested that in vivo M2-like macrophages
exhibited mixed pro- and anti-inflammatory functions [9,21,35,39–42].

Similarly, the precise function by which tissue-resident macrophages contribute to
tissue regeneration is currently not fully understood, but they also play an important
role in the process of wound healing (Figure 1) [3,43–45]. They contribute to maintaining
homeostasis by constantly monitoring the internal and external signals within the body.
After injury, the distinct secreted signals help to restore homeostasis. In the adult mouse,
the tissue-resident macrophage populations originate equally from embryonic precursors
and from bone marrow monocytes [46]. Orecchioni and colleagues (2019) have suggested,
however, that in mice a majority of tissue macrophages are not monocyte-derived and
mature tissue macrophages derived from embryonic precursors. This point explains
why certain marker proteins used to characterize macrophages in rodent cells are not
appropriate for human macrophage identification and vice versa [34].
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 Figure 1. Macrophage polarization sub-types. Different cytokine expressions and functions of the macrophage populations
in vitro and in vivo. Tissue Resident Macrophage (TRM), Tumor Associated Macrophage (TAM).
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The in vitro and in vivo macrophages produce a wide range of secretory molecules
(proteinases, chemokines, pro- and anti-inflammatory cytokines, growth factors and
metabolites derived from oxygen, nitrogen, arachidonates) [11]. Specific macrophage
phenotypes express different cytokines (Figure 1). In vitro M1 macrophages express pro-
inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-1 beta (IL-1β),
interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-15 (IL-15), interleukin-18 (IL-18),
interleukin 23 (IL-23) and interleukin 28 (IL-28). The M2a phenotypes produce anti-
inflammatory cytokines, such as interleukin-10 (IL-10), interleukin-1 beta-receptor antago-
nist (IL-1RA) and transforming growth factor beta (TGF-β). Surprisingly, the M2b pheno-
types express pro-inflammatory cytokines (TNF, IL-1β and IL-6) and anti-inflammatory
cytokines (IL-10). The M2c phenotypes produce exclusively anti-inflammatory cytokines
IL-10 and TGF-β. Finally, the M2d subtype expresses also both pro-inflammatory (TNF
and low level of IL-12), anti-inflammatory (IL-10 and TGF-β) and proangiogenic cytokines
(vascular endothelial growth factor (VEGF)). Cytokine expression pattern of the in vivo
macrophages have not yet been fully discovered (Figure 1) [3–6,8,9,33,42,47].

Polarization is a complex process. When un-activated macrophages (M0) in vitro are
stimulated by LPS, they can undergo phenotypical and functional changes and transform
into M1 macrophages [5,12,21,36]. Analysis of human macrophages showed that activation
by IL-4/IL-13 induce the switch to the M2 phenotype of the macrophages. However, some
other processes may be involved because mouse wounds do not contain these cytokines [48].
Moreover, under an environmental change, M2 macrophages may reversibly revert to
the original M1 polarization [49,50]. Plasticity is an essential function of macrophages
and plays an important role in the development of various diseases and cancer [7,33,51].
In vivo, monocyte and tissue-resident macrophages are also capable of polarizing to the
M1-like macrophage phenotype and, after different environmental conditions, to the M2-
like macrophage. In addition, stimulation of human M1-like macrophages with an IL-13
cytokine results in the transformation of such M2-like macrophages that gained phagocytic
activity [7,52,53]. M2-like macrophages can easily revert to M1-like macrophages. These
cells lose their endocytic but not their phagocytic activity [54]. In the tumor environment,
large amounts of leucocytes are obtainable, most of which are TAM macrophages [36].
These cells play an essential role in the relationship between inflammation and cancer. In
the initiation stage of the cancer, M1 TAM are located in the tumor environment and during
tumor progression, they switch into M2 TAM macrophages. Anti-tumor molecules can
cause M2 TAM to revert to M1 TAM macrophages (Figure 2) [26,55–57].

In order to characterize macrophages, investigating the pattern of cytokine expression
together with cell surface markers is essential. Diverse techniques are available, some of
which focus on gene expression analysis, such as Northern blot, qPCR, microarray, flow
cytometry and next-generation deep sequencing methods [58]. The limitation of these
techniques is that a signal results from a mixture of diverse cells [59].

To determine the in vivo macrophage phenotypes in situ, it is crucial to identify
the spatial resolution of the cytokine and cell surface markers expressing cells in the
morphologically well-conserved tissue. To carry out this analysis, three methods are
available: (i) expression of a reporter gene; (ii) classical immunolabeling techniques using
antibodies against specific surface protein markers and cytokines; (iii) in situ hybridization
(ISH) methods.

Macrophages can play both protective and pathogenic roles in different diseases. The
polarization of these cells is not fixed and the outcome depends on the signals they receive
in a given place and time. Therefore, investigation of the in vivo macrophage phenotypes
in situ is fundamental to improve our understanding of tissue regeneration. This review
provides an overview of in situ tools used for macrophage characterization.
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Figure 2. In vivo macrophage plasticity. Tissue Resident Macrophage (TRM), Tumor Associated Macrophage (TAM). 
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2. Tools for Labeling Macrophages In Situ

During tissue regeneration, distribution of the M1-like and M2-like macrophages is
important [60,61] to better understand the involvement of macrophages in the biological
process. We then focused on tools for labeling macrophages, and several in situ approaches
in macrophage biology will also be discussed (Table 1).

Table 1. Advantages and disadvantages of the different in situ tools.

Tools Advantages Disadvantages

Reporter gene
-Protein expression changes can be

monitored during development,
inflammation or tissue regeneration

-Animal facilities and transgenic
animals required

-Reporter protein may alter the
endogen protein localization

-Expression of the recombinant
protein can differ from the
endogenous protein (level,

localization . . . )

Immunolabeling -Easy to use
-Long signal stability

-Antibody dependent (specificity,
sensitivity, animal model . . . )

In situ hybridization

-High specificity
-Detection of various genes sub-type

-Viral genome can be detected
-miRNA can be detected

-Fastidious
-Complex (probe design)

-Rnase free equipment needed
-Molecular biology expertise required

2.1. Reporter Genes

Fluorescence molecules are genetically encoded proteins. For in vivo or in vitro ex-
pression analysis, a fusion between a target protein and a fluorophore was used [62]. In
1962, the wild-type green fluorescent protein (GFP) has generated as a marker for gene
expression and localization from the jellyfish Aequorea victoria [63]; soon after, two GFP
mutants with brighter fluorescence, S65T and EGFP (F64L/S65T) were discovered. EGFP
became one of the most widely used reporter molecules [64]. The huge advantage of EGFP
compared to other reporter molecules was that this protein could be detected directly in
living cells, and no specific treatment was needed for protein analysis [65]. The original
GFP emitted green light. Subsequently, colorful variants of the GFP also appeared (BFP
(blue); CFP (cyan); YFP (yellow)), producing fluorescence in different colors [66,67]. The
next types were the red fluorescent proteins, such as DsRed from Discosoma and HcRed
from Heteractis crispa [68,69], but they suffered several problems because of their toxic-
ity and they tend to form tetramers. After unceasing progression, other orange and red
fluorescent proteins were developed with better spectral properties, such as tdTomato
and mCherry, respectively [64,70]. In the early 2000s, other fluorescent reporter molecules
became available and eventually the fluorescence emission profile covered the entire visible
light spectrum [64,71,72]. In living cells, fluorescent proteins are the most common fluores-
cent molecules. However, their big size is a disadvantage that can affect the properties of
the target protein [62].

Determining localization and topology of the macrophage markers within the cell is
essential to characterize macrophages. In order to answer this question, various reporter
gene fusions with specific macrophage marker promoters or macrophage marker proteins
were engineered. One approach to studying macrophage differentiation in vivo was the use
of transgenic mice expressing GFP under the control of the human Cluster of Differentiation
(CD) CD68 promoter intron1 [73]. This method is extremely useful for directly monitoring
the migration of monocytes from the bone marrow to the tissue and for visualizing their
transformation into macrophages and differentiation during inflammation/regeneration.
This tool could be a powerful resource in macrophage biology to study the process of
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inflammation and healing. However, it requires animal facilities and agreement to work
with transgenic animals for the analysis and expression of the CD68 promoter-intron1/GFP
transgene, and it showed some differences to the endogen macrophage marker [73,74].

Another helpful approach for in situ analysis of macrophages may be the use of
bacteria containing the fluorescence reporter gene [75]. The use of such bacteria can
provide important information on the details of the bacteria–macrophage interactions [6].
Fluorescence markers containing bacteria can contain promoter-reporter genes or bacterial
gene-reporter gene fusion constructs. The second type of bacteria can provide not only
information on the protein localization but also about the bacterial replication status in
situ [76].

Tissue-specific macrophages form a heterogeneous population. De Schepper and col-
leagues (2018) have demonstrated the difference between self-maintaining and monocyte-
originated macrophages [77]. A special group of tissue macrophages is microglial cells of
the central nervous system (CNS) [78]. These cells have recently become a focus of inter-
est, as they have an important function during CNS neuroinflammation and disease [79].
Different mouse reporter lines were used, and most of them bear the fractalkine receptor
gene Cx3cr1 [80]. However, this gene is expressed not only in microglia but also in other
immune cells [79]. Nowadays, a new generation of microglial mouse reporter lines has
been generated in which the reporter protein is mostly restricted to microglial cells [81–83].
These transgenic animals provide essential information about neuroinflammation.

Tumor microenvironment demonstrated immune cell penetrations. TAM macrophage
played an important role in all steps of tumor development [84]. TAM macrophages could
be promising target cells for cancer therapy. However, more information on these cells,
and therefore in situ characterization of TAM macrophages, is fundamental [85]. Several
laboratories are using fluorescence proteins in tumor research areas to detect the interaction
between TAM macrophages and cancer cells [71,86,87].

2.2. Immunolabeling

In situ visualization of macrophages remains one of the most challenging tasks, and
immunolabeling is widely used to this effect. One of the most common pan-markers
to label monocytes/macrophages is the CD68 protein [45,49]. CD68 is a well-known
glycoprotein, intensively expressed by macrophages. However, CD68 can also be detected
in other mononuclear phagocyte cells. Moreover, a weak expression can also be seen in
other non-hematopoietic cells (mesenchymal stem cells, fibroblast, endothelial and tumor
cells) [88].

The mouse is frequently used as an animal model in clinical research, but unfortu-
nately, in many ways, mice differ from humans [78]. Indeed, rodent and human in vitro
macrophages can produce different protein over-stimulations, which may potentially indi-
cate diverse functions [11]. The second macrophage pan marker, successfully used in situ
in human cells, is the CD11b protein [45].

The polarization of macrophages is a complex process that is highly dependent on the
tissue environment [7]. Using this approach, various studies aimed at finding key markers
to distinguish between M1-like and M2-like macrophages [7].

It is widely accepted that the phenotypic M1-like macrophage markers are co-stimulatory
molecules, such as CD80 and CD86 in mice [49]. Some differences need to be mentioned
between human and rodent macrophage marker gene expression. Mouse macrophage
produces F4/80 protein (also known as Epidermal Growth Factor-like module-containing
mucin-like hormone receptor-like 1) [89]. Baud and colleagues (1995) cloned the human
homolog of the F4/80 gene, the sequence homology between two genes was 68% [90].
Surprisingly, human macrophages did not produce this protein [91]. Other proteins (Ym1,
Fizz1 and arginase-1) can also be detected in mouse M2 macrophages but are lacking in
human M2 macrophages. [45,92]. Little information is currently available on macrophages
in mammals other than rodents and humans. Consequently, it is essential to study another
animal model with closer similarity to humans. The progression of diseases in pigs is
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similar to that in humans at metabolic and infectious levels, which makes mini-pigs an
ideal model for macrophage characterization [93–95]. In the mini-pig model, under in
situ conditions, CD80 protein is not able to accurately distinguish between M1-like and
M2-like cells, since M2-like cells also produce CD80 protein [60]. Moreover, intensity of
CD80 protein expression in cells depends on both the quality and the quantity of the
stimulus [54]. In addition, both CD80 and CD86 expression can also be detected in other
cells, such as dendritic cells (DCs), B cells and T cells [96,97] while CD86 can be detected in
human M2a-like macrophages [7].

Markers such as CD163 and CD206 generally recognize M2-like macrophages. CD206
protein is a commonly accepted M2-like macrophage marker in rodent and human cells [7].
However, this protein is also expressed at low levels in satellite cells [45]. Another limit is
that, depending on the anti-CD206 antibody used, different results can be obtained [98].
The CD163 is considered as an M2-like macrophage marker in human [7] and murine
cells [99], but also in the human dendritic cells [100]. In situ detection of human and mouse
M2 macrophages is possible by the double staining immunolabeling technique using
mannose receptor C type 1 (MRC1/CD206) or CD163 combined with CD68 antibodies
together.

Up to now, it is assumed that the M1-like and M2-like macrophages have a monocyte
origin [34]. Ginhoux and Guilliams (2016) reported that, in mice, the tissue-resident
macrophages are of embryonic origin and persist in the tissue after cell division [101]. The
role of tissue-resident macrophages in inflammation and tissue regeneration is not yet
fully understood. The only exception is the microglia, which are the specialized tissue-
resident macrophages of the central nervous system (CNS). This cell type has recently
been intensively studied because of their essential function during inflammation, infection
and response to injury [79]. Microglia cells produce proteins that can be detected in the
peripheral myeloid cells (CD68, CD45, CD11b, F4/80, Cx3cr1 and CSF1R) [102]. The aim
of various studies was to find a specific microglia marker not produced in peripheral
myeloid cells. Traditionally, Iba-1 was the microglia pan marker; however, this protein
was also expressed in other myeloid cells [103,104]. Later, Bennett and colleagues (2016)
showed that both mouse and human microglia cells generate Tmem119 protein for which
no expression in peripheral myeloid cells was detected [105]. Yet, another group has shown
that the expression of this protein was not restricted to microglia cells [106]. Butovsky et al.
(2014) showed that antibodies produced against P2ry12 and FCRLS proteins could make a
difference between microglia and infiltrating myeloid cells [107].

In the past, tissue-resident macrophages were identified by morphological analysis or
histological staining [108]; the development of various antibodies enabled the detection
of macrophages. In mouse animal models, one particularly useful antibody was the anti-
F4/80 antibody. F4/80 protein is a cell surface receptor selectively expressed on murine
macrophages. The F4/80 protein is a useful positive control in murine macrophage biology
because it is a well-resistant protein during the fixation process [46,89]. However, the very
heterogeneous expression level of the F4/80 protein in the different tissues could be a
disadvantage [109]. In situ conditions make it difficult to distinguish between M2-like and
tissue-resident macrophages once they co-exist in a common environment, as there is no
good marker gene to make a difference. Gut tissue-resident macrophages produce CD169
proteins [43,77]. However, this protein can also be detected in TAM and in nontypical
macrophages [23,110].

TAM macrophages contribute to the initiation and progression of tumor develop-
ment [27]. It is usually thought that TAM macrophages originate from blood mono-
cytes [111], but in certain brain and lung (murine model animal) cancers, the tumors
originated from tissue-resident macrophages [28]. M1-like TAM macrophages express
CD68, CD80, CD86 and CD169 [110,112] and the M2-like class of TAM macrophages show
strong CD204, CD206 and CD163 expression [112–114]. In addition, a new marker for these
cells was recently found, the disulfide-isomerase A3 (PDIA3) receptor [115].
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Immunolabeling is an excellent method for protein detection in situ. It has to be
mentioned that the expression patterns differed depending on the antibody used [98].
Moreover, appropriate protocols need to be developed to obtain a positive signal. Careful
signal analysis has to be performed as nonspecific labeling can result from hydrophobic
interactions of proteins, ionic and electrostatic interactions, avidin and biotin, Fc receptors
or autofluorescence [61,116]. In addition, specificity of the antibody can be limited, as the
peptides recognized by antibodies are small (6–10 amino acids) and this antigen can be
found in other proteins [117].

2.3. In Situ Hybridization

In situ hybridization (ISH) was invented simultaneously by Gall and Pardue (1969)
and by John and colleagues in 1969 [118,119]. The name “in situ” is derived from the
Latin phrase for “in position”, and hybridization means hybrid formation between dif-
ferent molecules. The various ISH techniques in macrophage biology are summarized in
Table 2. The idea of this technique is that RNA and DNA molecules can form a hydrogen
bond hybrid based on the complementarity of RNA or DNA sequences. In this approach,
differently labeled RNA or DNA probes make a hybrid molecule with the mRNA of inter-
est. ISH allows a very powerful analysis of de novo gene expression because it is highly
specific and shows the mRNA localization in the tissue environment. The disadvantages
of this technique are the complex probe design and the fastidious steps, which require
some optimization for each probe and tissue [120]. An additional challenge is the con-
servation of the RNA because RNase enzymes are present everywhere,: on glassware,
in reagents, on clothes and hands [121]. In the beginning, radioactive probes were used
because radioisotope-labeled probes are more sensitive than non-radioactive probes. This
hybridization can be detected by autoradiography. After hybridization with the radioactive
probe, the sections are coated with an emulsion containing silver ions. The energy liberated
from radioactive molecules can transform the silver ions to metallic silver, and this reaction
results in image formation [122]. This technique was used to demonstrate that infection
induces lysozyme expression in macrophages [123] and that VEGF induces the macrophage
recruitment [124]. This method was also utilized for hepatitis A viral RNA detection in
macrophages [125]. Unfortunately, a long exposure requirement and harmful effect on
health drastically reduced this practice [126].

Table 2. Sensitivity, advantages and disadvantages of the different in situ hybridization approaches. ((+) low, (++) medium,
(+++) strong sensitivity).

Tools Sensitivity Advantages Disadvantages

Radioactive probe +++ -Best sensitivity -Long exposure required
-Harmful

CISH ++ -Stable signal -Cumbersome double labeling

FISH + -Multiple labels -Not stable

HCR ++
-Multiple labels

-Increased sensitivity
compared to FISH

-Not stable
-Probe design strategy

RNAscope® Assay ++ -Multiple labels
-Rapid method

-Not stable
-High financial cost

The next method replacing the radioprobe–ISH method was the Chromogenic In
Situ Hybridization (CISH). The digoxigenin-labeled probe is commonly used for CISH in
macrophage biology [60,61,98,127,128]. The CISH method exhibits several improvements
compared to the radioactive probes, such as better detection, shorter manipulation, good
repeatability, easier visualization and being less harmful to health [120]. In the 1980s the
Fluorescence In Situ Hybridization (FISH) method appeared [129], which was recently
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used for microglial signature gene analysis of the mouse brain during development and
neuroinflammation [130,131].

Both techniques are based on the same principle, probe hybridization to the mRNA of
interest, then detection by an appropriate system [132]. The main differences between the
two methods are: (i) in the CISH, the detection is carried out by an enzymatic reaction, the
signal intensity does not decrease over time but, unfortunately, only a single expression
can be tested in one step. To test two different mRNA productions, substantial time
is required, which makes the technique complicated. Enzymatic detection generates a
colored precipitate at the site of hybridization. Two enzymes, alkaline phosphatase (AP)
and horseradish peroxidase (HRP), are generally used in this method. Although these
enzymes can directly be attached to the nucleic acid molecule, the enzyme-coupled probes
have very little incorporation property. Therefore, an indirect method is usually used
during hybridization, which makes this method lengthy and cumbersome [121]. (ii) In
the FISH method, several fluorescent molecules can be used for detection, then multiple
mRNA expressions can be analyzed in the same sample, but the signal intensity decreases
over time [133] and only highly abundant mRNA can be localized. In this technique,
fluorophores can be linked directly to the nucleic acid probe, and after hybridization this
fluorescence is directly detectable (the method called “direct labeling”). In a second method
(called the “indirect method”), the non-fluorescent molecule is linked to the probe, and this
molecule can be visualized by the fluorescence molecule [134].

Characterizing in situ macrophage sub-types is not an easy task because there is no
specific marker for one sub-type; therefore, characterization is based on their pattern of
both cytokines and cell surface proteins (Figure 1). Two difficulties have to be noted: i, the
FISH approach is not a sensitive tool, thus requiring a strong enough cytokine expression
level to be detected. ii, cytokines are secreted proteins, making it complicated to link the
signal with the macrophage source of expression by immunolabeling [60]. Recently, a
new revolutionary in situ hybridization, the Hybridization Chain Reaction (HCR), has
emerged [135]. HCR is an isothermal enzyme-independent nucleotide polymerization
method. The idea of this method results in the use of two hairpin oligonucleotides linked
with fluorophore. When the complementary initiator nucleotide hybridizes with mRNA,
the initiator activates the hairpin molecules, and they assemble into a well-defined structure
providing a source of fluorescence. The main advantage of this method is that it is very
sensitive and therefore suitable for the detection of the low abundant mRNAs [136–140].
This new approach was used for identification of macrophage sub-types by analysis
of cytokine expression. This technique allowed the in situ visualization of M2d-like
macrophages in the mini-pig model [60].

Another powerful technique that allows the localization of RNA to specific cells is
the RNAscope®Multiplex Fluorescent Assay V2 (Advanced Cell Diagnostics, Newark, CA,
USA). This technique uses paired double-Z oligonucleotide RNA probes for hybridization.
These oligonucleotide probes contain several linker sequences. The amplifiers and the
color label probes are sequentially added to the linker sequence. It is highly sensitive,
and multiple labeling can be performed on the same tissue section. This technique was
used as a prognostic indicator in human kidney cancer. In certain cancers, the von Hippel
Lindau tumor suppressors are inactivated. Therefore, the HIF-1α produced by M2 TAM
macrophages triggers the production of proteins that are required for tumor progression.
Detection of this protein by in situ hybridization can then provide important information
about tumor development [141]. This method is, however, very costly, and therefore less
commonly used than other ISH techniques.

2.4. Imaging Mass Spectrometry

In recent decades, a great new technique has emerged for in situ imaging, the Imaging
Mass Spectrometry [142,143]. With this technique, it is possible to detect hundreds of
proteins, peptides or lipids simultaneously in different tissue sections. At the moment,
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this approach is still less widely used for macrophage characterization [144,145], but it is
undoubtedly becoming routine and an essential tool in the coming years.

3. Conclusions

During wound healing, macrophages have an essential role. Inflammation and tissue
regeneration is complex and can induce well-coordinated gene expression changes in
macrophages. For proper tissue healing, the constant interplay between external and
internal signals is essential, including cytokine regulation, selective adhesion or import and
export of transcription factors to the chromatin. Macrophages localized in the injured area
have distinct phenotypes with different functions and they act at diverse times during the
reparation. There are several questions that remain to be answered in order to comprehend
the repair process, such as what are the precise phenotypes of the in vivo macrophages? To
achieve breakthroughs in in vivo macrophage characterization, the development of new
tools is essential, as in situ characterization of the macrophages is indispensable to uncover
the spatial actors involved in inflammation and tissue regeneration mechanisms. These
tools will also provide opportunities to explore macrophage phenotypes in vivo. Indeed,
the application of distinct ISH approaches can bring new insights into the polarization of
macrophages in situ to investigate tissue inflammation and regeneration.
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