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Maintaining astronaut health throughout long-duration spaceflight is essential to the feasibility of a
manned mission to Mars. The ground-based Mars500 experiment investigated long-duration health by
isolating six astronauts for 520 days, the longest controlled human confinement study conducted to date.
After 520 days, astronauts had uniform strength and lean body mass losses, and increased fasting plasma
glucose, calprotectin, and neutrophil levels characteristic of intestinal inflammation but previous analy-
ses revealed no common significant changes in gut microbiota. This study reanalysed data from early
(days 7–45) and late (days 420–520) faecal samples and identified 408 exact sequence variants (ESVs),
including 213 shared by all astronauts. Thirty-two ESVs were significantly differentially abundant over
time, including depletion of keystone resistant starch degrading, anti-inflammatory and insulin
sensitivity-associated species, such as Faecalibacterium prausnitzii, Ruminococcus bromii, Blautia luti,
Anaerostipes hadrus, Roseburia faecis, and Lactobacillus rogosae, and enrichment of yet-to-be-cultured bac-
teria. Additionally, the extraordinary experimental confinement allowed observation of microbiota
potentially shared between astronauts and their habitat. Forty-nine species were shared, representing
49% and 12% of the human and environmental microbiome diversity, respectively. These findings reveal
the microbiota which significantly altered in relative abundance throughout confinement, including spe-
cies known to influence inflammation and host glucose homeostasis consistent with astronaut symp-
toms. Identification of microbiome alterations after 520 days of isolation represents a missing piece
connecting Mars500 astronaut physiological studies. Knowledge of the impact of long-term confinement
upon the human microbiome helps to improve our understanding of how humans interact with their
habitats and is a valuable step forward towards enabling long-duration spaceflight.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The International Space Exploration Coordination Group, which
now comprises 20 national space agencies, recently published the
third edition of the Global Exploration Roadmap [1] outlining a
strategy to expand human presence in the solar system and setting
the surface of Mars as a collaborative target for 2030. Safeguarding
astronaut health is a critical factor in meeting this ambitious tar-
get. The Canadian Space Agency currently considers the major
human health risk categories associated to space flight as: muscu-
loskeletal (reduced muscle strength, aerobic capacity and bone fra-
gility), sensorimotor (visual impairment), metabolic (nutritional
status and sickness), behavioural health and performance (stress,
fatigue, cognitive deterioration and wellbeing), radiation (ultravio-
let and ionising), autonomous medical care (medical access), and
physiological adaptation to variable gravity and environmental
stressors (including human-associated microbial communities)
[2]. These challenges are magnified in long-duration space flight,
such as during a two–three year mission to Mars, where no resup-
ply of air, water, food or medical supplies is possible, radiation and
microgravity exposure will be for longer than has yet been tested,
and abortion of a mission due to crew illness will not be possible
[3,4].

While the human gastrointestinal track (GIT) microbiome is still
being explored, it is considered essential for long-term
maintenance of many aspects of human health, including healthy
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nutritional, immune, metabolic and psychophysiological function
[5–10]. Long-duration habitat confinement, such as that faced by
astronauts during spaceflight, could interrupt the dialog between
environmental microbial ecosystems and the human microbiome
[4]. Previous research has established that confined habitats sub-
ject to strict cleaning procedures on Earth, such as intensive care
units and surgical theatres, as well as those in space, can produce
a unique surface environment dominated by human GIT micro-
biome [11–14]. The influence of confinement upon the microbiome
has been studied recently in four astronauts over 60 days by Chen
et al [15] using bioregenerative life support systems (confined and
self-sufficient ecosystems). Although no common microbiome
composition was observed over time they did report a potential
non-significant trend of depletion of Faecalibacterium prausnitzii
as well as large individual differences between individuals (ex-
pected in microbiome studies with very low participant numbers).
Whether confinement can influence the GIT microbiome of long-
term inhabitants is an important priority for future space missions
[16] and was directly addressed in the longest-running human
confined habitat experiment conducted to date, the Mars500
experiment [17].

The Mars500 experiment isolated six astronauts within an ana-
logue Mars-surface habitat. After 520 days, the six astronauts
emerged as largely healthy, but the long-term confinement had sig-
nificantly altered some of their physiology. Research conducted by
Strollo et al. [18] measured significant decreases in total body mass
(�9.3%), BMI (�5.4%) and lean (non-fat)mass (�11.8%) byday417of
isolation.When considered alongside significant increases in fasting
plasma glucose from a healthy median of 4.65 mmol/L at the begin-
ning of the experiment to prediabetic levels of 6.02 mmol/L (im-
paired fasting glucose) [19], these findings are indicative of
potential disruption in glucose metabolism and insulin sensitivity
in astronauts after extensive confinement. This aligned with signif-
icant losses of up to 22% of quadriceps/hamstring strength in astro-
nauts, observed by Gaffney et al. [20]. In parallel, Roda et al. [21]
observed that the loss of body mass was accompanied by a signifi-
cant increase in the faecal protein calprotectin, the intestinal inflam-
mation biomarker making up 60% of neutrophils (the cells which
characterise intestinal inflammation [22]); from calprotectin nega-
tive in astronauts at the beginning of the experiment, towards vary-
ing degrees of positive by day 475. Further supporting this general
trend towards an onset of intestinal inflammation, Yi et al. [23]
directly observed a significant increase in proinflammatory cytoki-
nes and neutrophils in the Mars500 astronauts after the 520 days
of isolation, symptomswhich are commonly observed in astronauts
during space flight [24]. While Strollo et al. [18] hypothesised that
the observed symptoms accompanied by an increase in calprotectin
in later faecal samples could be indicative of common metabolic
alterations associated with intestinal inflammation, they dis-
counted any microbiome interactions due to prior research con-
ducted by Turroni et al. [17], which did not identify significant
microbiome changes over time and found only 14OTUs (operational
taxonomic units, representing putative microbiome species) were
shared between the six astronauts. Here, the potential for common
microbiome change in the Mars500 astronauts over time is reas-
sessed using improved 16S rRNA gene amplicon bioinformatics
technology [12] and a common data normalisation strategy for all
six astronauts.
2. Materials and methods

2.1. Sample collection and microbiome sequencing

The Mars500 experiment was a ground-based human isolation
study conducted over 520 days which aimed to simulate a manned
2224
mission to Mars [17,20,25]. The study participants were all male
and their ages ranged from 29 to 40. Faecal samples used for anal-
ysis here were taken on the days 7, 14, 21, 30 and 45 (early) and
days 420, 450, 490, 504, 520 of the Mars500 experiment (Supple-
mentary file 1). Sampling, DNA extraction, amplification and
sequencing approaches were not conducted in this study but are
reported in [17]. Briefly, the authors report that total DNA was iso-
lated from faeces using a modified bead-beating and column
extraction with QIAamp DNA Stool miniKit. Amplification used
341F (50-CCTACGGGNGGCWGCAG-30) and 805R (50-GAC
TACHVGGGTATCTAATCC-30) primers targeting the V3-V4 hyper-
variable region and amplicons were sequenced using an Illumina
MiSeq platform (2 � 300 bp paired-end). Raw sequences available
in NCBI SRA BioProject PRJNA358005 or from https://genelab.na-
sa.gov/.

Mars500 habitat environmental samples used for analysis were
taken from surfaces using swabs on the days 14, 44, 436, 467, 496
to correspond to faecal microbiome sampling and were from the
utility, medical or habitat modules (Supplementary file 1). Sam-
pling, DNA extraction, amplification and sequencing approaches
were not conducted in this study but are reported in [25]. Briefly,
the authors report that total DNA was isolated from surfaces using
a 552C regular ethylene oxide sterilized swab moistened with PCR
grade H2O. Total DNA was extracted using a FastDNA SPIN Kit.
Amplification used 515f (50-GTGYCAGCMGCCGCGGTAA-30) and
926r (50-CCGYCAATTYMTTTRAGTTT-30) primers targeting the V4
hypervariable region and amplicons were sequenced using an Illu-
mina MiSeq platform (2 � 300 bp paired-end). Raw sequences
were deposited in the European Nucleotide Archive accession
number: PRJEB21072.

2.2. Data processing

Amplicon sequence reads were processed and annotated using
Anchor [12,26–28]. The amplicon terminology of exact sequence
variants (ESV) are used in place of operational taxonomic unit as
no 97% similarity clustering is used [29–32]. Sequences were
aligned and dereplicated using Mothur [33] and an ESV count
threshold of 18 for the astronaut faecal microbiome dataset and
30 for the Mars500 habitat dataset. Annotation at family, genera
or species-level used BLASTn criteria of BLASTn criteria of >99%
identity and coverage to the NCBI curated bacterial and Archaea
RefSeq and NCBI nr/nt databases (January 2020 versions). All anno-
tation calls are putative despite >99% similarity, as databases are
subject to change as discoveries are made and phylogenies revised.
Reporting of 100% similar sequence matches to unique species is
more accurate than reporting such hits at higher taxon levels
[12]; however, all annotation should be considered as putative
and interpreted with care. Differentially abundant ESVs annotated
from the NCBI nr/nt database were manually assessed for quality.
Annotation improvement is possible as databases improve/expand
using the sequences provided with each ESV in Supplementary file
1. When the highest identity/coverage is shared amongst multiple
different putative annotation, all annotation is retained and
reported. Amplicons with low-counts (<30 or <18) are binned to
high-count sequences in a second BLASTn, using a lower threshold
of >98% identity/coverage.

2.3. Statistical analysis

The normalisation strategy conducted by Turroni et al. [17] was
distinct for each astronaut to allow observation of individual
microbiome change in steady states [34] over time. While this
described some unique elements of each astronaut, the strategy
made observation of common OTUs challenging. Here, while the
limited biological replication of 6n (astronauts) could not be
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altered, the variation introduced from single replicate stool sam-
pling [35–37] could be reduced by pooling libraries from the first
five samples and from the final five samples to improve represen-
tation of early (7–45 days) and late (420–520 days) microbiome
states of the each astronaut. Samples selected to represent early
and late periods of confinement were defined as the first and last
set of five samples taken from all six astronauts and the libraries
were pooled in silico per astronaut and period. These timepoints
also represent the samples available for all six astronauts which
best aligned with the Mars500 physiology studies measuring astro-
naut body mass [18], strength [20], faecal protein calprotectin [21]
and immune responses [23]. Differential abundance analysis was
performed using DESeq2 [38,39], which performs well with 16S
rRNA gene amplicon data and uneven library sizes [40]. A false dis-
covery rate (FDR; Benjamini-Hochberg procedure) < 0.1 was
applied [41]. Sparsity and count thresholds were applied whereby
an ESV count in a single sample is <90% of the count in all samples
and ESV counts must be >0 in at least 3 samples from the same
group (early or late) [12]. Constrained ordination analysis was per-
formed using canonical analysis of principal coordinates (CAP;
Fig. 2) with the 1-dimensional constraint (early vs late) repre-
sented on the x-axis and the first axis of non-constrained ordina-
tion (multidimensional scaling) on the y-axis. This analysis was
performed with the Vegan library [42] on R via the capscale
function.
2.4. Data and code availability

ANCHOR code is available at https://github.com/gonzalezem/
ANCHOR. ESV tables including relative abundance, annotation,
count distribution, blast statistics, alternative database hits, and
sequences are provided in Supplementary file 1.
3. Results

3.1. Mars500 astronaut gastrointestinal track microbiome community
overview

A total of 408 exact sequence variants (ESVs) were assembled
and captured 71.78% of the total 4,837,317 amplicons sequenced,
including 213 ESVs present in all six astronauts in the early (7–
45 days) and late (420–520 days) samples alone (Supplementary
file 1). Amplicon lengths ranged between 439 and 466 nt. All ESVs
were annotated as >99% similar sequence identity: 162 ESVs as
putative species (including 14 which were ambiguous sequences
to multiple species), 47 ESVs at genera-level, 34 at family-level,
while 165 were poorly classified or unknown (<99% similarity to
any well-characterised taxa) (Fig. 1). ESVs which could be anno-
tated at species-level had an average identity of 99.92% (135 ESVs
had 100% sequence similarity) and captured 67% of counts, those
annotated at genera-level averaged 99.83% identity and captured
7% of counts, whereas those annotated at family-level averaged
99.92% identity and captured 11% of counts. ESVs identified from
the phylum Firmicutes were the most prevalent, making up 64%
of counts, while 7% were from Bacteroidetes, 6% from Actinobacte-
ria, 6% from Verrucomicrobia, 2% from Proteobacteria and 15%
were from unknown organisms.

The ESVs which could be confidently identified as putative spe-
cies with the highest relative abundance across all astronauts in
the phylum Firmicutes were all Clostridia, including Agathobac-
ter_rectalis_1 with 10.1% of total counts, Gemmiger_formicilis_1
with 3.5%, Faecalibacterium_prausnitzii_3 with 3.3%,
Fusicatenibacter_saccharivorans_1 with 2.5% and Blautia_ wex-
lerae_1 with 2.1% (Supplementary file 1). In Verrucomicrobia, two
distinct ESVs had high relative abundance, Akkermansia_
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muciniphilia_1 with 3.5% of total counts and Akkermansia_-
muciniphilia_2 with 2.3% (both having 100% similarity to distinct
strain groups, ie. JCM30893 and BSH01), whereas Bacteroides_-
dorei_1 had the highest relative abundance in the phylum Bac-
teroidetes with 1.2% of total counts. The ESVs with the highest
relative abundance from the phyla Proteobacteria and Actinobacte-
ria were both ambiguous, with the amplified sequence identical
between multiple species (ESVs labelled as _MS), Enterobac-
terales_MS_1 (sequence common to Brenneria alni, Escherichia coli,
Escherichia fergusonii, Shigella flexneri or Shigella sonnei) and Bifi-
dobacterium_MS_2 (sequence common to Bifidobacterium adoles-
centis, Bifidobacterium faecale or Bifidobacterium stercoris).

3.2. Significant microbiome changes identified across astronauts over
time

To determine whether there were common microbiome
changes over time, a simplified experimental design was used to
compare the first five samples (7–45 days) and the last five sam-
ples (420–520 days) taken from all six astronauts (Fig. 2). When
comparing early with late GIT microbiome samples taken from
all six astronauts, alpha-diversity (Shannon and inverse Simpson)
indices were not significantly different in estimated diversity
between groups (t-tests p > 0.05). Canonical analysis of principal
coordinates suggests samples separated by early and late groups
(Fig. 2) and multivariate analysis identified significant variance
between the groups (PERMANOVA, p < 0.001). To identify which
ESVs were significantly altered in relative abundance over time,
differential abundance analysis was performed. Thirty-one ESVs
were significantly different between timepoints, including 16 sig-
nificantly enriched and 15 significantly depleted in late samples
compared to early samples.

3.2.1. ESVs higher in relative abundance in late astronaut samples
The 16 ESVs in significantly higher relative abundance in the

astronauts after 420–520 days of confinement were all poorly
characterised with the exception of Streptococcus_thermophilus_1
(Streptococcus salivarius subsp. thermophilus). Five ESVs have been
putatively placed at genera or family levels (Fig. 2): Kineothrix_1,
Lachnospiraceae_10, Ruminococcus_3, Ruminococcaceae_1 and
Christensenellaceae_1. The remaining ten differentially abundant
ESV are classified here as unknown (<99% similarity to previously
identified taxa), although all have previously been observed as
unknown bacteria at >99% sequence similarity.

Kineothrix_1 and Lachnospiraceae_10 were both most similar
to the Kineothrix alysoides strain KNHs209, with 97.50% and
98.41% similar sequence identity, respectively. The ESV Kineo-
thrix_1 did share 100% similarity to a genome assembled from
work sequencing difficult to culture (yet-to-be-cultured) micro-
biome species from the human GIT (uncultured Clostridium sp. iso-
late 2789STDY5608883) [43]. Ruminococcus_3 is commonly
observed at 100% sequence similarity (as an unknown bacteria)
in human GIT microbiome studies (for example NCBI:AM275462
[44]) and has previously been classified as Ruminococcus sp. strain
95 (unpublished, but most similar to Ruminococcus bromii YE282
genome [45]) although the most similar well-characterised species
was the type strain Ruminococcus bromii ATCC 27255 (97.97% sim-
ilar). Ruminococcaceae_1 and Christensenellaceae_1, although also
commonly observed as unknown bacteria in human faecal samples
at 100% sequence similarity, were both highly dissimilar to any
known bacterial species (<94% 16S rRNA sequence similarity).

The ten unknown sequences identified as significantly differen-
tially abundant and enriched in astronauts after long-term confine-
ment included the three ESVs, Unknown_254, Unknown_268 and
Unknown_354, sharing 96–97% similarity to the known species,
Anaerocolumna cellulosilytica, Monoglobus pectinilyticus and Intes-
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Fig. 1. Experimental design and overall microbiome composition of the Mars500 astronauts. A) Sample timepoints with long-term confinement symptoms reported in Strollo
et al. [18], Gaffney et al. [20], Roda et al. [21] and Yi et al. [23]. B) Flower diagram of all 408 ESVs coloured by phyla. The size of the distal node (i.e. lowest taxonomic level for
an ESV) is proportional to the total raw abundance. C) the distribution of counts across taxonomy levels, and D) the number of ESVs annotated at each taxonomy level.
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tinimonas butyriciproducens, respectively. The seven remaining
unknown ESVs had <90% sequence similarity to any known species
but have all been previously observed as unknown bacteria (at
>99% sequence similarity) in GIT samples of humans as well as
other animals [46–52]. Two of these ESVs, Unknown_309 (the
2226
highest in relative abundance) and Unknown_49, shared 100%
sequence similarity with genomes recently assembled by Almeida
et al. [53] in breakthrough research targeting yet-to-be-uncultured
species in humans with de novowhole genome shotgun techniques
(uncultured Clostridium sp. isolates UMGS1238 and UMGS1543)



Fig. 2. Early and late microbiome of Mars500 astronauts. A) Comparison of alpha diversity indices (Shannon and Inverse Simpson), B) Canonical analysis of principal
coordinates (CAP; MDS = multidimensional scaling) of normalised (rlog) ESV abundance of astronaut samples, and C) Differentially abundant ESVs between the early and late
samples (n = 6 astronauts). Fold change (FC log2) in relative abundance of significantly different (DESeq2 [38]) ESVs between early and late samples. +/� INF (demarcated by
the dashed red line) indicates ‘infinite’ fold change, where an ESV had detectable counts in samples from only one condition. The complete ESV table including relative
abundance, annotation, count distribution, blast statistics, alternative database hits, and sequences is provided in Supplementary file 1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 3). The Unknown_309 sequence has also recently been
observed (100% sequence similarity) and classified by Hynönen
et al. [54] as the ‘‘Ct85 cluster” of uncultured GIT bacteria in mam-
mals (AP10s.319, LR595742.1 Ct85 type-f), alongside other ESVs
present in astronauts but which did not significantly vary over
time: Unknown_40 (AP07s.345 Ct85 type-d), Unknown_104
(AP07s.302 Ct85 untyped) and Unknown_38 (AP07s.190 Ct85
type-b).

3.2.2. ESVs lower in relative abundance in late astronaut samples
After 420–520 days in isolation, 15 ESVs were significantly

lower in relative abundance in astronauts. These were better char-
acterised than those enriched over time, including ten ESVs which
could be annotated at species level (Fig. 2). These putative species
included four distinct Faecalibacterium prausnitzii ESVs (labelled
2227
here as Faecalibacterium_prausnitzii_1, 3, 4 and 5), Ruminococ-
cus_bromii_2, Blautia_luti_2, Anaerostipes_hadrus_1, Roseburia_
faecis_1 and Lactobacillus_rogosae_1, as well as the ambiguous
ESV Clostridium_MS_1, which shared 100% sequence similarity to
both Clostridium disporicum and Clostridium saudiense. Additionally,
two EVSs were poorly characterised at genera level, Roseburia_1
and Lachnospira_1, and three were unknown sequences,
Unknown_181, Unknown_220 and Unknown_83.

Six F. prausnitzii ESVs in total were identified in astronauts, with
4/6 significantly changing in relative abundance, reducing over time
in all four cases. All of the ESVs corresponded to known strain groups
[55–57] with 100% similarity (Fig. 3); depleted ESVs were
Faecalibacterium_prausnitzii_1 (identical to the type strain F. praus-
nitzii ATCC27768 in phylogroup I/subgroup-A), Faecalibacterium_p
rausnitzii_3 (identical to F. prausnitzii CNCM 4546; 4573; 4644;



Fig. 3. Phylogenetic tree of differentially abundant ESVs and Faecalibacterium prausnitzii ESV characterisation by alignment. A) Phylogenetic tree of differentially abundant
ESVs and their most similar well-characterised species (if >90% similarity) from the curated 16S rRNA gene NCBI RefSeq database. Genomes from uncultured candidate
bacterial species assembled within Almeida et al. [53] were compared to unknown ESVs. Jukes–Cantor model with neighbour-joining with 10,000 replications and branch
support is shown. The scale bar represents 1 substitution in 100 bp. B) Distinct Faecalibacterium prausnitzii ESVs were aligned against sequences from representative strains
with genome assemblies. Phylogroup assignment derives from Benevides et al. [55] and Fitzgerald et al. [57].
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M21/2 in phylogroup I/subgroup-A), Faecalibacterium_prausnitzii_
4 (identical to F. prausnitzii CNCM 4544; 4542 in phylogroup IIa/
subgroup-C) and Faecalibacterium_prausnitzii_5 (identical to F.
prausnitziiAPC942/32 inphylogroup IIb/outgroup). The two F. praus-
nitzii ESVs which didn’t significantly vary between confinement
timewere Faecalibacterium_prausnitzii_2 (identical to F. prausnitzii
CNCM 4543; 4574; A2-165 PacBio phylogroup IIb/subgroup-B) and
Faecalibacterium_prausnitzii_6 (identical to F. prausnitzii CNCM
4575 phylogroup IIb/outgroup).
3.3. A direct comparison between the Mars500 astronaut and habitat
microbiome communities

To assess the degree to which the astronauts’ microbiomes was
associated with their habitat, the surface microbiome of the
Mars500 modules, reported by Schwendner et al. [25], was directly
compared after reanalysis. A total of 1494 ESVs were assembled
from 135 habitat samples, capturing 88.02% of the total
23,417,169 amplicons sequenced (Fig. 4). Amplicon lengths
(>0.1% of counts) ranging between 403 and 426 nt. Seven hundred
and ninety ESVs could be annotated as putative species (including
341 which were ambiguous sequences to multiple species), 167
ESVs at genera-level, 21 at family-level, while 305 were poorly
classified or unknown (<99% similarity to any well-characterised
taxa). ESVs which could be annotated at species-level had an aver-
age identity of 99.95% (790 ESVs had 100% sequence similarity)
and captured 88.39% of counts, those annotated at genera-level
averaged 99.85% identity and captured 3.20% of counts, whereas
those annotated at family-level averaged 99.88% identity and cap-
tured 0.40% of counts.

The V3-V4 16S rRNA gene primer pair used to assess the astro-
naut GIT microbiome, 341F and 805R, was distinct to the V4 16S
rRNA gene primer pair used to assess the Mars500 habitat micro-
biome, 515F and 926R [17,25]. To directly compare the astronaut
and habitat microbiome datasets, ESVs annotated at species level
from each experiment were aligned directly. Alignment of each
library revealed 79/162 astronaut ESVs had an identical overlapping
V4 hypervariable sequence region (252–253 nts) with one or more
of 98/790 habitat ESVs (12.4% of total species), 42 ofwhichwere sin-
gle astronaut-habitat ESV pairs unique to a single species. When
gene sequences from genome assemblies were used as scaffolds
for astronaut-habitat (gut-environment) ESVpairs, a total of 49 Scaf-
folded Amplicons (ScAmps) aligned as 100% identical to reference
genomes (Fig. 5). Astronaut-habitat ScAmps allowed for improved
resolution of distinct 16S rRNA gene sequences and taxonomic
annotation. Examples where two distinct taxa could be distin-
guished using ScAmps but could not from a single primer pair
included distinct Anaerostipes hadrus, Bacteroides uniformis, Bac-
teroides caccae and Eggerthella lenta strain groups. The increased
length and hypervariable region coverage of ScAmps, between 557
and 590 nt, resolved ESV annotation ambiguity in 8 cases, identify-
ing two distinct Veillonella parvula strain groups (NCTC11810 and
UTDB1-3) in the astronaut microbiome, Bifidobacterium longum
subsp. longum, Bacteroides thetaiotaomicron, Streptococcus ther-
mophilus and Lactococcus lactis in the habitat microbiome, and Bifi-
dobacterium pseudocatenulatum and Bifidobacterium adolescentis in
both.
4. Discussion

4.1. Mars500 astronaut gastrointestinal track microbiome community
overview

Recent metagenomic studies indicate that the majority of gas-
trointestinal track (GIT) microbiome members are still unknown
2229
or uncharacterised species [53]. It is therefore not surprising that
over half of the ESVs identified across the astronauts were unchar-
acterised (Fig. 1). This complexity is further complicated as sub-
stantial proportions of the human microbiome are often highly
unique to individuals. The highly distinct microbiome composi-
tions of each individual astronaut were well described by the ini-
tial Mars500 GIT microbiome research conducted by Turroni
et al. [17] and make general patterns of microbiome change chal-
lenging to observe. The original analysis did, however, report sim-
ilar phyla present across astronauts, including: Firmicutes,
Bacteroidetes, Actinobacteria, Verrucomicrobia (although present
in all astronauts, bacteria from within this group were originally
not detected in two astronauts) and Proteobacteria. Instead of
using a distinct normalisation strategy for each astronaut to
observe change in steady states [17,34], here, libraries were pooled
from the first five samples and the last five samples to improve
representation of early (7–45 days) and late (420–520 days) micro-
biome states (reducing technical noise common to single replicate
stool sampling [35–37]) before all astronauts were compared
directly to make statistical analysis of the common change over
time more straightforward.

4.2. Enriched taxa in astronauts after long-term confinement

The presence of Streptococcus thermophilus (Streptococcus sali-
varius subspecies thermophilus) (Fig. 2) within the Mars500 habitat
is not unexpected as the species is commonly used in the dairy
industry and is added to yogurts as live culture to market as
bestowing health benefits upon consumption (as a probiotic). Sub-
sequent assessment of astronaut dietary reports during the exper-
iment revealed that the Italian company Granarolo provided
lyophilised ‘Yomo’ yogurts to the Mars500 project, which do
indeed contain live Streptococcus thermophilus when sold commer-
cially [58]. Interestingly, S. thermophilus is known to be particularly
resilient to the freeze-drying process [59], so would likely have
been present for consumption as live culture in the habitat. The
observed significant increase in relative abundance between early
and late confinement times is also coherent as the Italian astronaut
reported that the team only ate the lyophilised yogurt in the final
8 months of the experiment (during the simulated ‘‘return jour-
ney”, reported in a July 2014 interview with astronaut Diego
Urbina for the Italian Space Agency’s Outpost 42: Space food in
training for Mars). Research suggests that culturing can sometimes
capture as low as <1% of a microbial community [60]; however,
culture-dependent approaches could have been attempted to con-
firm viability here. Although bacterial viability was not established,
these findings do suggest the introduction of these species to the
astronauts has been successfully tracked through to their respec-
tive microbiomes.

Three ESVs enriched in astronauts after isolation were identi-
fied as unknown but shared 97% sequence similarity to well-
characterised bacteria A. cellulosilytica, M. pectinilyticus and I.
butyriciproducens. A. cellulosilytica and M. pectinilyticus are plant
cell wall degrading bacteria with carbohydrate active enzymes
(CAZy) suites allowing degradation of cellulose and hemicellulose
[61], and pectin [62], respectively, alongside corresponding fer-
mentation of xylose, arabinose and galacturonic acid. I. butyricipro-
ducens is a butyrate producing species [63] previously identified as
increasing in relative abundance alongside a decrease in other
common butyrate producers (such a Faecalibacterium prausnitzii)
in patients with chronic pain [26]. While changes in bacteria sim-
ilar toM. pectinilyticus and A. cellulosilytica could be associated with
dietary modifications involving fruit or vegetables, alterations to
the butyrate producing community could have important implica-
tions for GIT homeostasis when considered in the context of
increased muscle loss and intestinal inflammation markers over



Fig. 4. Overall microbiome composition of the Mars500 habitat. A) Mars500 habitat with the habitation, utility and medical modules highlighted (for further details see [25]).
B) Flower diagram of all 1494 Mars500 habitat environment ESVs coloured by phyla (and Plantae). The size of the distal node (i.e. lowest taxonomic level for an ESV) is
proportional to the total raw abundance. C) The distribution of counts across taxonomy levels, and D) the number of ESVs annotated at each taxonomy level.
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astronaut confinement. Seven ESVs were dissimilar to any well-
characterised species. In complex soil or rhizosphere (plant-soil
interface) samples where the majority of microbial species are
often yet-to-be-characterised [64,65], difficult to culture groups
of bacteria such as the TM7 (group 1) bacteria have previously
been observed as differentially abundant [28]. In humans, unchar-
2230
acterised species often share the most sequence similarity to the
TM7 (group 3) bacteria, which are typified by recalcitrance to stan-
dard culturing techniques [66] currently thought to stem from
their epibiont lifestyle (living on the surface of other microbes)
[67]. However, the ubiquitous presence of unknown or poorly
characterised microbes in human GIT samples is often not
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reported, hindering their study. The scale of uncharacterised
human microbiome members was recently well-captured by
Almeida et al. [53] using de novo whole genome shotgun metage-
nomics to assemble 1952 uncultured candidate bacterial species
genomes from 11,850 human GIT microbiome samples, some of
which shared 100% sequence identity with ESVs observed here
(Fig. 3). While reporting unknown or poorly characterised organ-
isms can be challenging, these ESVs are significantly associated
with long-term isolation in astronauts. Although little is known
as to the role that these microbes might play in health, they do also
seem to be consistently present in humans and are here implicated
as dynamic members of the human microbiome meriting further
study as potentially having novel biological importance.
4.3. Depleted taxa in astronauts after long-term confinement

Although the microbiome species enriched after long-term con-
finement were largely uncharacterised organisms, the majority of
the significantly depleted species were well known. F. prausnitzii
is one of the best characterised inhabitants of a healthy human
GIT and is a butyrate producer with well-documented anti-
inflammatory properties whose reduction in relative abundance
is consistently associated with intestinal inflammation [68,69]
and an increase in calprotectin [70,71]. F. prausnitzii also almost
always negatively associates with type 2 diabetes (4/5 controlled
studies) [72], implicating a putative role in insulin resistance. The
significant reduction in F. prausnitzii in astronauts after long-term
confinement (Figs. 2 and 3) is therefore consistent with the intesti-
nal inflammation, increased faecal calprotectin levels, moderate
insulin resistance and lean body mass loss reported by Roda
et al. [21], Yi et al. [23], Strollo et al. [18] and Gaffney et al. [20]
in Mars500 astronauts over the 520 days of confinement. Interest-
ingly, F. prausnitzii phylogroup II is considered to be the less sensi-
tive marker of intestinal inflammation when depleted [57,73]. This
aligns to the pattern of depletion in only four putative strain-types
Fig. 5. Astronaut gut-habitat environment connection using sequences from reference g
ESVs and sequences from reference genomes, B) ScAmps shared between Mars500 ast
reference genomes.
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observed here, as the two out of six F. prausnitzii ESVs which were
not significantly depleted over time shared 100% similarity to
members of phylogroup IIb [55–57]. Turroni et al. [17] reported a
decreasing trend in OTUs associated to F. prausnitzii over time
when first assessing the Mars500 astronaut microbiomes, but were
limited in capability to statistically compare OTUs across astro-
nauts owing to tailoring normalisation to each astronaut as well
as because low taxonomic resolution would conflate the distinct
patterns of relative abundance in these F. prausnitzii ESVs.

The five other putative species identified as significantly
depleted in relative abundance after long-term confinement,
Ruminococcus bromii, Blautia luti, Anaerostipes hadrus, Roseburia fae-
cis, and Lactobacillus rogosae (Fig. 2), were each consistent with this
association with intestinal inflammation and disruption of glucose
metabolism. The Ruminococcus bromii ESV was only 99.10% similar
to the type strain, Ruminococcus bromii strain ATCC 27255, but was
100% similar to the strain L2-36 (NCBI:GCA_002834165.1) (Fig. 3)
which is considered a ‘keystone’ degrader of resistant starch in
the human GIT [74,75]. Robinson et al. [76,77] first reported a
direct relationship between dietary resistant starch and insulin
sensitivity improvement but could not explain the association
through investigation of host metabolism alone. Although a study
in germ-free mice has suggested the impact of resistant starch on
insulin resistance could be independent of intestinal bacteria
[78], members of the GIT microbiome have largely been considered
to underlie the relationship [79–81]. R. bromii has been more
directly associated to insulin resistance through increased relative
abundance, alongside F. prausnitzii, in patients with metabolic syn-
drome after faecal matter transplant from healthy donors which
improved insulin sensitivity [82]. Similarly, Benitez-paez et al.
[83] recently reported decreases in the relative abundance of B. luti
(reclassified from Ruminococcus luti) associated with insulin resis-
tance of obese children, alongside significant increases in proin-
flammatory cytokines similar to those observed by Yi et al. [23]
in Mars500 astronauts after 520 days isolation. Benitez-paez
enomes. A) Illustration of scaffolded amplicons (ScAmps) construction from paired
ronauts and their habitat; gut and environment ESVs aligned as 100% identical to
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et al. [83] also demonstrated B. luti had anti-inflammatory activity
using in vitro cell cultures and speculated that a reduction of B. luti
within the GIT may contribute to insulin resistance through
increase intestinal inflammation. Both A. hadrus and R. faecis are
butyrate producers with the former associated to insulin metabo-
lism, significantly increasing in relative abundance (3-fold) in
patients responding to FMT treatment with improved insulin sen-
sitivity and decreased proinflammatory markers [84], and the lat-
ter whose reduction has been associated to increased
inflammation alongside F. prausnitzii [85]. The L. rogosae ESV shares
100% sequence identity to the type-strain L. rogosae strain ATCC
27753. Although less well-studied and potentially misplaced taxo-
nomically [86], L. rogosae was found to be significantly reduced in
relative abundance in patients with systemic inflammatory
response syndrome (alongside R. faecis and Faecalibacteria sp.)
[87] and in MRSA positive patients with increased serum inflam-
matory markers (alongside F. prausnitzii) [88] when compared to
healthy controls in both cases.

Despite the highly unique nature of each astronaut’s micro-
biome, these findings indicate common changes in specific micro-
biome species over the 520 days of isolation which are consistent
with the reported common significant increases in proinflamma-
tory markers and losses in strength and lean body mass. While
the potential involvement of these observed microbiome species
is discussed (alongside appropriate evidence), no causal relation-
ship between their relative abundance and astronaut health is
established in this work.

4.4. Commonalities between the Mars500 astronaut and habitat
microbiome communities

Enrichment of in-built environments with human-associated
bacteria is thought to occur rapidly [89] and surface microbiome
research conducted in hospital environments (intensive care units
and operating theatres), clean rooms and the international space
station (ISS) revealed that the selective pressure of confinement
and cleaning procedures can promote acquisition of broad resis-
tance mechanisms in a microbial community adapted to human
habitation [11,90]. Other studies into the environmental micro-
biome of MIR [91] and the ISS [14,92–94] have also revealed
enrichment of human-associated microbes, in particular within
compartments with the highest human inhabitancy (such as the
crew quarters [12]). This phenomenon was also reported in the
Mars500 confinement experiment, where the environmental
microbiome was explored in samples taken from the habitation,
utility and medical modules throughout the course of the 520-
day experiment. Schwendner et al. [25] reported that the only bac-
teria detected in all three Mars500 modules were some of the most
common human microbiome species: Staphylococcus aureus, Sta-
phylococcus epidermidis, Staphylococcus haemolyticus and Staphylo-
coccus hominis. The potential for opportunistic pathogen selection
is of particular concern for long-duration space travel where astro-
naut health is at risk and medical facilities are limited.

Comparisons of 16S rRNA gene OTUs (97% clustered) have pre-
viously been performed comparing faecal matter and local water
samples to investigate environmental contamination in Kenya
[95] using SourceTracker [96]. Improved 16S rRNA gene bioinfor-
matics approaches (ANCHOR [12], UPARSE [97], DADA2 [98] or
QIIME2 [99]) are able to discern amplicon sequences with more
confidence in complex metagenomic samples (Fig. 4), allowing
for sequences to be compared directly between experiments
(Fig. 5). Different primer pairs can have variable 16s rRNA gene
amplification rates for different bacteria, potentially confounding
direct quantitative integration of amplicon counts across two pri-
mer pairs; however, the Mars500 experiment, specifically the high
quality datasets shared by Turroni et al. [17] and Schwendner et al.
2233
[25], provided a one-off opportunity for qualitative comparison of
the microbiota commonality between a closed system environ-
ment and the gut of its entire inhabiting population over 520 days
as both of these primer pairs have over 95% coverage of known
bacterial species [100]. Direct sequence comparison indicated that
49% and 12% of species were shared between the Mars500 astro-
naut GIT and environmental habitat microbiomes, respectively,
suggesting extensive interactions between the communities.

5. Conclusions

Significant changes in the relative abundance of astronaut
microbiome species occurred over the 520 days of isolation. Some
enrichment of known bacteria corresponded to changes in the
crew’s diet, although significant enrichment of unknown species
highlights the ongoing challenge faced in understanding how com-
plex microbiome interactions influence human health. Depletion of
major anti-inflammatory gastrointestinal tract bacteria over time
is consistent with symptoms associated with the intestinal inflam-
mation and insulin resistance measured during the Mars500
experiment and sometimes observed in astronauts during long-
duration space flight. Sequence comparison of the astronauts’ fae-
cal microbiome to the Mars500 environmental microbiome
revealed direct large-scale associations between the gut and envi-
ronmental microbiomes, an observation made possible due to the
extreme experimental confinement. Identification of significant
species-level microbiome alterations which align with astronaut
symptoms connects the Russian, European, Chinese and now Cana-
dian Space Agency Mars500 studies. This initial evidence of a
potentially deleterious impact of long-term confinement upon
microbiome health is an important step forward in the current
drive to enable long-duration spaceflight.
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