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Abstract

Groundwater treatment sludge is a Fe/Mn-bearing waste that is mass produced in ground-

water treatment plant. In this study, sludge was converted to a magnetic adsorbent (MA) by

adding ascorbate. The sludge was weakly magnetised in the amorphous form with Fe and

Mn contents of 28.8% and 8.1%, respectively. After hydrothermal treatment, Fe/Mn oxides

in the sludge was recrystallised to siderite and rhodochrosite, with jacobsite as the interme-

diate in the presence of ascorbate. With an increment in ascorbate dosage, the obtained

magnetic adsorbent had a significant increase in chromate adsorption but a decrease in

magnetisation. When the Mascorbate/MFe molar ratio was 10, the produced MA-10 was a

dumbbell-shaped nanorod with a length of 2–5 μm and a diameter of 0.5–1 μm. This MA-10

showed 183.2 mg/g of chromate adsorption capacity and 2.81 emu/g of magnetisation. The

mechanism of chromate adsorption was surface coprecipitation of the generated Cr3+ and

Fe3+/Mn4+ from redox reaction between chromate and siderite/rhodochrosite on MA-10,

separately. This study demonstrated an efficient recycling route of waste sludge from

groundwater treatment to produce MA for treating chromate-bearing wastewater.

1. Introduction

Chromate-containing wastewater, which needs to be effectively treated before discharging due

to the high physiological toxicity of chromate to plants and animals, is widely produced in

smelting and tannery factories [1, 2]. To prevent pollution, the Chinese government has

reduced the maximum discharging concentration of chromate to 0.1 mg/L [2]. Many strate-

gies, such as chemical precipitation [3], ultrafiltration [4] and ion exchange and adsorption

[2], have also been applied to remove chromate from wastewater. Among these strategies,

adsorption is considered as an economic and feasible method in treating chromate-containing

wastewater. Industrial wastes, such as iron sludge from groundwater treatment [5], fly ash

from coal combustion [6] and red mud from alumina refining [7], have been used as low-cost
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adsorbents for direct adsorption of chromate. However, after adsorption, separation of indus-

trial wastes commonly consists of complicated centrifugation and tedious coagulation, which

become problematic in wastewater treatment. When the magnetic species was incorporated

into the industrial wastes, it conferred magnetic response on the wastes, so that the wastes can

be easily separately from water in a magnetic field [8, 9]. Thus, these wastes could be converted

to magnetic adsorbent, which favors the wastes’ separation and reduces the size of clarifier

accordingly [10].

Groundwater treatment sludge is the precipitate of backwash wastewater in groundwater

treatment plant. In a previous research, approximately 1 t of sludge was produced when treat-

ing 5000 t of groundwater [11]. The produced sludge comprised ferrihydrite, hematite and

impurities such as Si/Al oxides [9, 12]. The ferrihydrite in the sludge was 16.6–33.7 wt.% [13,

14], and it had a special structure wherein each iron atom was covalent with six oxygen/

hydroxyl clusters [15]. Thus, hydrogen groups were abundantly available on ferrihydrite sur-

face for chromate coordination [11, 16]. In addition, the ferrihydrite in the sludge could be

hydrothermally transformed to maghemite and magnetite [12, 13] for the converted sludge to

have good magnetic response and to be easily collected by a magnet after use. During ferrihy-

drite conversion, the hydroxyl groups on ferrihydrite surface exhibited coordinated unsatura-

tion via dihydroxylation [17]; thus, small ferrihydrites aggregated to generate aggregated

maghemite and/or hematite [18]. The covalent hydrogen groups per iron atom decreased after

hydrothermal treatment [16]. The adsorption capacity of chromate on the converted sludge

lowered in comparison with that of the raw sludge. On this basis, adsorption capacity needs to

be improved with a feasible approach.

In this study, sludge was in situ conversed to magnetic adsorbents (MAs). Unlike the con-

ventional adsorbent with abundant surface hydroxyl groups for chromate coordination [3],

the produced MAs were rich in siderite and rhodochrosite. The produced MAs exhibited high

chromate adsorption via a combined effect of a redox reaction between chromate and the two

carbonate minerals and a surface precipitation reaction of the generated Cr3+ and Fe3+/Mn4+

cations.

2. Materials and methods

2.1 Ethics statement

We got full permission from Northeast Normal University school of environment, conduct

research on this topic in 137 laboratory and the geographic coordinates is 125.43˚ E, 43.83˚ N.

2.2 Groundwater treatment sludge pretreatment

Groundwater treatment sludge was discharged from Kulunyin potable water plant located at

Inner Mongolia, China. The sludge was sampled and then vacuum-dried at 55˚C for 36 h

before characterisation by X-ray fluorescence spectroscopy (S4-Explorer, Bruker, XRF, Ger-

many). The major composition of sludge was Fe (28.8%), Mn (8.1%), Si (8.1%), Al (2.3%), Ca

(2.1%) and Mg (0.5%).

2.3 Synthesis of magnetic adsorbent

Hydrothermal treatment of the sludge was conducted as follows. Ascorbate at the Mascorbate/

MFe molar ratio (short for molar ratio) of 1 was mixed with 0.7 g sludge in 30 mL 0.35 M

NaOH solution. After stirring at 120 rpm for 10 min, the mixture solution was dumped in 50

mL Telfon vessel, heated at 160 oC for 5 h and then water-cooled down to below 25˚C. The

brownish particles were generated in the vessel, collected and washed three times with

PLOS ONE Chromate adsorption

PLOS ONE | https://doi.org/10.1371/journal.pone.0234136 June 10, 2020 2 / 17

Funding: This work was partially funded by the

National Natural Science Foundation of China

(Grant Nos. 51578118, 51678273, 51878134, and

51878133), the Fundamental Research Funds for

the Central Universities (Grant No.

2412017QD021).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0234136


deionised water, followed by vacuum-drying at 55 oC for 36 h. The obtained magnetic product

was denoted as MA-1. The reference experiment was also conducted by varying the molar

ratio from 1 to 10, and the corresponding product was named as MA-10.

2.4 Adsorption experiments

MA-1 and MA-10 were used for chromate adsorption as follows. The stock solution contain-

ing 10 mg/L chromate was adjusted to pH 4 with 1.5 M HCl. In the adsorption experiment,

MA-1 and 20 mL stock solution was mixed in a series of 50 mL conical flask, sealed and shaken

at 120 rpm. At the given time, a flask was sampled and magnetically treated to separate MA-1.

The chromate in the residual solution was determined using inductive coupled plasma–optical

secretion spectrometry (Avio-200, ICP-OES, USA, PerkinElmer). In parallel, the adsorption

kinetics of MA-10 for chromate was also investigated following the adsorption procedures of

MA-1. Batch experiments of chromate adsorption on MA-1 and MA-10 were performed at a

chromate concentration of 0–1000 mg/L and an equilibration time of 24 h. Each experiment

was performed in triple, and average data were reported.

2.5 Characterisation of the sludge and adsorbents

The sludge and the two MAs before and after chromate adsorption were characterised by

SEM, XRD, XRF, XPS and Mössbauer spectroscopy. The related method was described in the

supplementary files.

3. Results and discussion

3.1 Transformation of ferrihydrite in the sludge

The composition of sludge, MA-1 and MA-10 was determined by X-ray fluorescence spectros-

copy (S4-Explorer, Bruker, XRF, Germany). After hydrothermal treatment, the product MA-1,

prepared at Mascorbate/MFe molar ratio (short for molar ratio) of 1, showed a high Fe/Mn con-

tent (34.2% and 9.6%, separately) and a low Si/Al content (4.5% and 1.1, separately) (Fig 1), in

comparison with the raw sludge, due to the dissolution of Si/Al oxides (e.g. kaolinite) under

alkaline condition (Fig 5A) with the release of Si(OH)4
- (Fig 5B) and Al(OH)4 to the solution

[19]. However, when the molar ratio was increased to 10, the Fe and Mn in product MA-10,

were 25.4 and 7.1 wt.% (Fig 1), apparently lower than those in the raw sludge and MA-1,

which were assigned to the reductive dissolution of Fe/Mn at neutral condition (Fig 5A and

5B). But the Si and Al in MA-10 were 10.8 and 3.9 wt.%, higher than those in the raw sludge

and MA-1, demonstrating that the release of Si/Al to solution was retarded with the solution

pH decreasing from 12.1 to 7 (Fig 5A).

The crystal phase of ferrihydrite in the sludge was characterised by XRD and Mössbauer

(Figs 2 and 3). The sludge exhibited the typical peaks of hematite (JCPDS 33–0664) and Si/Al

oxides, e.g. quartz, dmisteinbergite and kaolinite. Ferrihydrite in the sludge was weakly crystal-

lised and recorded in Mössbauer spectra (Fig 3). The relative area of ferrihydrite in the Fe

oxides of sludge were 67.9% (Table 1), indicating the abundance of ferrihydrite in the sludge.

At the same time, zeta potential test was conducted on the original iron mud and hydro-

thermal reaction products. The results showed that the zeta potential of the original iron mud

changes from 7.5 mV to −18.5 mV (MA-1) and −39.6 mV (MA-10), thereby proving that the

surface of hydrothermal reaction product has negative charge. In an aqueous system, the sur-

face of ferrihydrite is covered with -FeOH groups [20].

For MA-1, the peaks of the hematite at 33.1o and 35.6o intensified, and two new peaks

belonging to jacobsite (JCPDS 10–0319) at 2θ = 29.8o and 35.1o appeared (Fig 2). The relative
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area of the ferrihydrite decreased by 11.2% (Fig 3 and Table 1), suggesting that ferrihydrite was

transformed into hematite and jacobsite. In comparison with MA-1, MA-10 showed that the

intensity of the jacobsite peaks decreased. Hence, the jacobsite was reduced with the increase

in molar ratio from 1 to 10. However, new peaks were observed in MA-10 curve (Fig 2): two

peaks belonged to siderite (JCPDS 29–0696) at 2θ = 24.8˚ and 32˚, whereas the other two

peaks corresponded to rhodochrosite (JCPDS 44–1472) at 2θ = 31.4˚ and 37.5˚. The relative

percentage of the siderite increased by 31.6% after hydrothermal treatment. By contrast, the

relative area of the ferrihydrite decreased from 56.7% to 34.6% (Fig 3 and Table 1). The results

indicated the conversion of jacobsite and ferrihydrite into siderite by overdosed ascorbate.

To investigate the formation of rhodochrosite, the conversion of Mn oxides was also exam-

ined by XPS in the hydrothermal treatment of sludge. As shown in Fig 4, the sludge showed a

peak at binding energy of 642 eV, which was related to Mn4+ in MnO2 [21, 22]. By adding

ascorbate, a new peak at binding energy of 640.5 eV belonged to Mn2+ in Mn-O bond [22] was

observed in MA-1 and MA-10. On this basis, MnO2 in the sludge was reduced by adding

ascorbate to generate Mn2+-containing oxides, e.g. jacobsite and rhodochrosite.

Fe/Mn oxides in the sludge included hematite, ferrihydrite and MnO2. Among these oxides,

ferrihydrite was weakly crystallised and easily transformed to well-crystallised hematite via

dehydration between two adjacent surface Fe-O-H groups of ferrihydrite in the alkali hydro-

thermal conditions [18, 23]. However, the transformation was impeded by adding ascorbate.

The introduced ascorbate spontaneously reacted with Fe/Mn oxides to generate free radicles

in the presence of dissolved oxygen [24]. Meanwhile, Fe/Mn oxides on the sludge surface was

reduced by adding ascorbate with generation of Fe2+ and Mn2+ (Fig 5(B)). When the generated

Fe2+ was coordinated to Mn oxides, it was reoxidised and then involved in the formation of

Fig 1. Relative percentage of Fe, Mn, Si and Al in the sludge, MA-1 and MA-10.

https://doi.org/10.1371/journal.pone.0234136.g001
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MnFe2O4 [25]. After ascorbate was exhausted, the oxidation of residual Fe2+ continued to gen-

erate Fe3+. In turn, the generated Fe3+ was coprecipitated with reduced Mn2+ under alkaline

condition, resulting in MnFe2O4 formation [26]. In addition, Fe3+ was residual and spontane-

ously hydrolysed to Fe oxyhydroxide. In turn, the Fe oxyhydroxide covered the formed

MnFe2O4 and blocked the oxidisation of Mn2+. In the reaction between ascorbate and Fe/Mn

oxides, ascorbate was initially oxidised to L-diketogulonate and further to L-threonate, oxalate.

Finally, it decomposed to CO2 and H2O [27]. As a result, CO3
2− in the solution accumulated

with the increase in molar ratio from 1 to 10 (Fig 5(A)).

When the molar ratio was 10, the ascorbate was overdosed to exhaust the dissolved oxygen

completely. Then, Fe/Mn oxides were reduced with the generation of Fe2+/Mn2+ (Fig 5(B)).

These oxides were reacted with carbonate to form siderite and rhodochrosite, separately. In

addition, the peaks of dmisteinbergite and kaolinite were not observed after hydrothermal

treatment. Meanwhile, the peaks of quartz at 2θ = 20.8˚ intensified for both MAs (Fig 2). Thus,

quartz was recrystallised from Si-containing minerals, such as dmisteinbergite and kaolinite.

3.2. Magnetisation

Jacobsite is typically a magnetic species [26]. In this study, the formation of jacobsite in MAs

was demonstrated by significant changes in magnetisation. These changes was examined with

a magnetometer. As shown in Fig 6, the sludge demonstrated weak magnetism; after hydro-

thermal treatment, the magnetism significantly increased due to the conversion of Fe/Mn

Fig 2. XRD analysis of the sludge, MA-1 and MA-10.

https://doi.org/10.1371/journal.pone.0234136.g002
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oxides to jacobsite. However, with the molar ratio increasing from 1 to 10, the saturation mag-

netisation decreased from 6.7 emu/g of MA-1 to 2.8 emu/g of MA-10. This result was consis-

tent with the abundance of jacobsite in MAs, as shown in Fig 2.

3.3. Morphology changes

The sludge demonstrated amorphous aggregates (Fig 7(A)) with uniform distribution of Fe

and Mn and dotted distribution of Si. After hydrothermal treatment, the amorphous aggerates

of MA-1 grew in size (Fig 7(B)). Si in MA-1 distributed steadily, following theory of dissolu-

tion and recrystallisation of Si-containing compounds in the sludge [9]. In comparison with

MA-1, MA-10 was a dumbbell-shaped nanorod with a length of 2–5 μm and a diameter of

Fig 3. Mössbauer curves of the sludge, MA-1 and MA-10.

https://doi.org/10.1371/journal.pone.0234136.g003

Table 1. Mössbauer parameters of the sludge, MA-1 and MA-10.

Sample Component Isomer shift (mm/s) Quadruple split (mm/s) Hyperfine field (KOe) Relative absorption area (%)

Sludge Ferrihydrite 0.26 0.72 67.9

Fe3+ 0.28 0.23 509.9 32.1

MA-1 Ferrihydrite 0.23 0.78 56.7

Fe3+ 0.26 0.23 513.3 43.3

MA-10 Ferrihydrite 0.3 0.86 34.6

Siderite 1.18 1.86 31.6

Fe3+ 0.32 0.22 507.9 33.8

https://doi.org/10.1371/journal.pone.0234136.t001
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0.5–1 μm (Fig 7(C) and 7(D)), thereby corresponding to the formation of siderite and rhodo-

chrosite. Moreover, element C was not observed in the sludge and MA-1 but observed in MA-

10 due to the formation of carbonate minerals, e.g. siderite and rhodochrosite.

3.4. Chromate adsorption

As a toxic species in smelting and tannery wastewater, chromate was targeted for adsorption

by MA-1 and MA-10 in this study (Fig 8). The adsorption data of chromate on MA-1 and

Fig 4. XPS curves of the sludge, MA-1 and MA-10.

https://doi.org/10.1371/journal.pone.0234136.g004

Fig 5. (A) pH value of the solution before and after hydrothermal treatment and the carbonate concentration after

hydrothermal reaction and (B) Fe, Mn, Al and Si concentration in the supernatant after hydrothermal reaction.

https://doi.org/10.1371/journal.pone.0234136.g005
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MA-10 were fitted with pseudo-first-order and pseudo-second order models, separately. Such

parameters are summarised in Table 2. Pseudo-second-order model provided a good descrip-

tion of chromate adsorption on MAs, that is, chemisorption between chromate and MAs was

predominant. Moreover, MA-10 showed higher equilibrium adsorption capacity (qe) than

MA-1, demonstrating that MA-10 was more effective in chromate adsorption than MA-1.

The adsorption isotherm of chromate on MA-1 and MA-10 were further investigated. The

equilibrium data were fitted with both Langmuir and Freundlich models (Fig 9 and Table 2).

Compared with the Freundlich model, the Langmuir model fitted well to the adsorption of

chromate on MA-1 and MA-10, suggesting that MA-1 and MA-10 had an energetically homo-

geneous surface for chromate adsorption [28]. The maximum adsorption capacity (qm) of

MA-10 was 183.2 mg/g, which was lower than 222.2 mg/g on magnetic graphene oxide [29],

but was higher than 51.8 mg/g on jacobsite/chitosan nanocomposites [30], 153.9 mg/g on

magnetic chitosan particles [31], and 169.5 mg/g on polypyrrole/Fe3O4 nanocomposite [32]

(Table 3). Magnetic graphene oxide was an expensive man-made carbon material, which

should increase the cost of wastewater treatment. On the contrary, MA-10, synthesized using

the waste sludge as raw material, which was a low-cost effective adsorbent for chromate

adsorption.

3.5. Adsorption mechanism of chromate by MA-10

XPS and Mössbauer experiments were performed to investigate the adsorption mechanism of

chromate on MA-1 and MA-10. As shown in Fig 9(A), a peak at binding energy of 579.2 eV

was observed in MA-1 after adsorption. This peak was attributed to Cr(VI) in chromate [43],

indicating that chromate predominated on MA-1 surface. No peak of Cr (III) was observed.

Fig 6. Magnetisation of the sludge, MA-1 and MA-10.

https://doi.org/10.1371/journal.pone.0234136.g006

PLOS ONE Chromate adsorption

PLOS ONE | https://doi.org/10.1371/journal.pone.0234136 June 10, 2020 8 / 17

https://doi.org/10.1371/journal.pone.0234136.g006
https://doi.org/10.1371/journal.pone.0234136


Therefore, no redox reaction occurred in adsorption. Compared with MA-1, MA-10 showed

two peaks at 579.2 and 576.8 eV in XPS spectra (Fig 10(A)). These peaks were affiliated to

chromate and Cr3+ of Cr-O bond [36]. Hence, chromate and Cr3+ were adsorbed on MA-10.

After adsorption, only one peak at binding energy of 642 eV affiliated to Mn4+ was observed

(Fig 10(B)), indicating that Mn2+ in rhodochrosite was involved in the reduction of chromate.

Mössbauer spectra showed that the relative area decreased by 26.2% for siderite but increased

by 25.7% for ferrihydrite in MA-10 (Fig 10(C) and Table 4). Therefore, Fe2+ in siderite was oxi-

dised by chromate and further hydrolysed in the form of ferrihydrite.

Chromate, which could oxidise Fe2+/Mn2+-containing compounds, was predominant in

the form of HCrO4
- in acidic solution [36]. When MA-1 was introduced to the acidic solution,

its surface functional groups�Me-O-H (Me represented Fe, Mn and Si) reacted with chro-

mate via surface coordination with the release of one molecule of H2O (Eq 1), resulting in

chromate adsorption. Jacobsite was a Mn2+-containing compound in MA-1 covered with fer-

rihydrite. Thus, the oxidation of jacobsite by chromate was inhibited. This result agreed well

with the no observation of Cr3+ on MA-1 surface after adsorption [44]. However, siderite and

rhodochrosite were rich in MA-10. They reacted with chromate via redox reaction with gener-

ation of Fe3+/Mn4+ and Cr3+ on MA-10 (Eqs 2 & 3), followed by surface coprecipitation in the

form of mixed Fe/Mn-Cr hydroxide (Eqs 4 & 5) [45]. This process predominated the chromate

adsorption on MA-10. In addition, similar to MA-1, the newly formed Fe/Mn hydroxide had

Fig 7. SEM pictures of (A) the sludge, (B) MA-1 and (C and D) MA-10.

https://doi.org/10.1371/journal.pone.0234136.g007
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abundant hydroxyl groups for chromate coordination (Eq 1). Therefore, a combined effect of

redox reaction and surface coordination occurred in chromate adsorption on MA-10. This

effect significantly improved the adsorption capacity of MA-10 compared with MA-1.

�S� O� HþHCrO�
4
! �S� CrO�

4
þH2O; ð1Þ

3FeCO3 þHCrO�
4
þ 10Hþ ! 3Fe3þ þ Cr3þ þ 4H2Oþ 3HCO�

3
; ð2Þ

Fig 8. Adsorption kinetics of chromate adsorption by MA-1 and MA-10.

https://doi.org/10.1371/journal.pone.0234136.g008

Table 2. Parameters for chromate adsorption on MA-1 and MA-10.

Adsorption models Parameters MA-1 MA-10

Pseudo-first-order model R2 0.964 0.878

k1 (L/h) 0.352 0.261

qe(mg/g) 2.82 16.85

Pseudo-second-order model R2 0.99 0.988

k2 (10−3 g/mg�h) 0.212 0.028

qe (mg/g) 3.09 18.65

Langmuir model R2 0.997 0.996

qm(mg/g) 21.1 183.2

KL(L/mg) 0.005 0.029

Freundlich model R2 0.971 0.96

1/n 0.65 0.43

KF((mg/g)(L/mg)1/n) 0.269 13.06

https://doi.org/10.1371/journal.pone.0234136.t002
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3MnCO3 þ 2HCrO�
4
þ 17Hþ ! 3Mn4þ þ 2Cr3þ þ 8H2Oþ 3HCO�

3
; ð3Þ

Cr3þ þ 3Fe3þ þ 12H2O! CrFe3ðOHÞ12
þ 12Hþ; ð4Þ

2Cr3þ þ 3Mn4þ þ 18H2O! Cr2Mn3ðOHÞ18
þ 18Hþ; ð5Þ

Fig 9. Adsorption isotherm of chromate on MA-1 and MA-10.

https://doi.org/10.1371/journal.pone.0234136.g009

Table 3. Adsorption capacity of chromate on MA-10 in comparison with the other Fe-containing adsorbent.

Synthesised adsorbent Raw material pH qm (mg/g) Reference

MA-10 Groundwater treatment sludge 4 183.2 This work

Polypyrrole/Fe3O4 nanocomposite Chemical reagent 2 169.5 [33]

Magnetic chitosan particles Chemical reagent 4 153.9 [34]

Polypyrrole modified montmorillonite Natural montmorillonite clay 2 119.3 [35]

Nb2O5 nanorods modified diatomite Diatomite 4 115 [36]

Magnetic cotton stalk biochar Iron sludge and cotton stalk biochar 1.1 67.4 [5]

Jacobsite/chitosan nanocomposites Chemical reagent 2 51.8 [37]

Chitosan modified fly ash Fly ash 5 33.3 [6]

Surface modified jacobsite Chemical reagent 2 31.6 [38]

Cetyltrimethylammonium bromide modified red mud Red mud 2 22.2 [39]

Polypyrrole modified biochar Red mud 5.3 20.8 [40]

Lanthanum modified red mud Red mud 9 17.4 [41]

Hexadecyltrimethylammonium bromide modified nanozeolite A Commercial zeolite A 3 14.2 [42]

https://doi.org/10.1371/journal.pone.0234136.t003
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3.6. Nontoxicity of MA-10

MA-10 showed superior adsorption capacity of Cr, and thus it released Fe, Mn, Al and Si in

the adsorption process was also determined in accordance the method of Kaur et al. [46]. MA-

10 was stable at neutral and alkaline solutions, in which the released Fe, Mn, Al and Si was

lower than 0.02 mg/L after leaching for 48 h (Fig 11). But, at acidic solution, the released Fe/

Mn were 0.18 and 0.04 mg/L (Fig 11), separately, due to the dissolution of Fe/Mn-bearing

compounds (e.g. siderite and rhodochrosite) in MA-10. However, the released Fe/Mn

Fig 10. High resolution (A) Cr 2p and (B) Mn 2p XPS curves of MAs before and after chromate adsorption and (C)

Mössbauer curves of MAs after adsorption.

https://doi.org/10.1371/journal.pone.0234136.g010

Table 4. Mössbauer parameters of MA-1 and MA-10 after chromate adsorption.

Sample Component Isomer shift (mm/s) Quadruple split (mm/s) Hyperfine field (KOe) Relative absorption area (%)

MA-1 after adsorption Ferrihydrite 0.23 0.78 53.9

Fe3+ 0.26 0.23 513.3 46.1

MA-10 after adsorption Ferrihydrite 0.23 0.79 60.3

Siderite 1.11 1.87 5.4

Fe3+ 0.26 0.22 511.5 34.3

https://doi.org/10.1371/journal.pone.0234136.t004
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concentrations were also meet the discharge standard for smelting wastewater of China [47].

In addition, the concentrations of heavy metals, e.g. Zn, Cu and Pb, were below the detectable

limit due to the absence of them in the MA-10 and raw sludge.

The sludge mainly consists of two Fe-bearing minerals, ferrihydrite, and hematite. Ferrihy-

drite is weakly crystallized and can be easily converted into magnetic species, such as maghe-

mite, with hematite as the final product [48, 49]. The conversion commonly initiated in the

absence of reducing reagent, such as ascorbic acid. In our previous study, the impurity Si/Al

oxides (quartz and boehmite) were dissolved to Si(OH)4
− and Al(OH)4 after hydrothermal

treatment with 6 M NaOH, and then approximately 24.6% ferrihydrite in the Al/Fe-rich sludge

was converted to maghemite [10]. The formation of maghemite conferred good magnetic

response on the hydrothermal product. Such magnetic product used many surface hydroxyl

groups, such as ºFe-OH, ºMn-OH, ºAl-OH, and ºSi-OH, and had negatively charged surface

[13, 48, 49], with high affinity for adsorbing heavy metals (e.g., Cu, Zn, and Ni) [13, 31, 50]

and cationic organics (e.g. methylene blue [12], tetracycline, and oxytetracycline [32, 48]). In

this study, MA-1 prepared at molar ratio of 1 exhibited similar surface functional groups to

these products. However, its adsorption for HCrO4
− was unsatisfactory because HCrO4

− was

an anion and repelled by the negatively charged MA-1 surface.

The introduction of ascorbic acid in the hydrothermal system served as strong reducer and

reacted with Fe/Mn-bearing minerals in the sludge with the generation of magnetic jacobsite

MnFe2O4. Such Fe/Mn-bearing minerals included ferrihydrite, well crystallized hematite, and

Mn oxides. Only redox reaction between ascorbic acid and Fe oxides occurred to generate Fe2

+ [30]. when the Mn oxides were absent. Then, the Fe2+ was reoxidized by residual dissolved

oxygen in the hydrothermal system [12], to regenerate Fe3+ and was involved in the formation

of magnetic species in two processes. The first process was the coprecipitation of Fe2+ and Fe3+

in the form of magnetite [30], and the second process was the hydrolysis of Fe3+ to Fe oxyhydr-

oxide and recrystallized in the form of maghemite [12]. Given that several solid wastes, such as

red mud [30] and fly ash [51], were rich in Fe/Mn oxides, they can be directly converted to

magnetic adsorbents via the hydrothermal method with ascorbic acid.

Such adsorbents were efficient in the removal of cationic heavy metals but unsuitable in the

adsorption of anion HCrO4
−. However, the reduction reaction of Fe/Mn-bearing minerals in

Fe/Mn-rich waste continued with the addition of adequate ascorbic acid to generate Fe2+/Mn2

+ in the involvement of siderite/rhodochrosite. This reaction provided a strategy to generate

siderite/rhodochrosite on magnetic adsorbent surface. The results showed that the product

MA-10,prepared at the molar ratio of 10 showed a high removal capacity of HCrO4
− [52].

The benefit of recycling groundwater treatment sludge to prepare magnetic adsorbent was

twofold. First, the sludge is a typical solid waste and easily converted into a magnetic adsorbent

via a one-step hydrothermal method. No exogenous Fe, Si, and Al were added to the hydro-

thermal process, indicating that the conversion of sludge into the magnetic adsorbent was

green and feasible. Second, the obtained magnetic adsorbent, especially MA-10, exhibited a

desirable chromate adsorption capacity [53]. It could also adsorb various wastewater contami-

nants, including Mn [54] and F [55]. These advantages demonstrated that the prepared mag-

netic adsorbent has potential application in environment pollution control. Future studies

should be performed to reduce the cost of magnetic adsorbent synthesis and test the effective-

ness of magnetic adsorbent in wastewater treatment.

4. Conclusion

Groundwater treatment sludge is composed of Fe/Mn oxides and impurity Si/Al oxides, such

as dmisteinbergite and kaolinite. It was converted to magnetic adsorbent via a facile
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hydrothermal method using ascorbic acid as reducing reagent. Fe and Mn were 28.8 and 8.1

wt.% in the sludge and were involved in the formation of jacobsite, providing the synthesized

adsorbent with magnetic property. Such adsorbent was generated in four steps, namely, (1) the

oxidation of ascorbic acid by dissolved oxygen to generate carbonate in the solution; (2) the

reductive dissolution of Fe/Mn oxides by ascorbic acid to generate Fe2+ and Mn2+; (3) the

reoxidization of Fe2+ by Mn oxides in the formation of MnFe2O4; (4) the carbonate accumu-

lated in the solution and reacted with residual Fe2+ and Mn2+ to form siderite and rhodochro-

site, respectively. The optimal synthesized adsorbent was MA-10 when the molar ratio of

ascorbic acid to Fe was 10. It exhibited a good chromate adsorption capacity of 183.2 mg/g,

which was higher than MA-1 generated at the molar ratio of 1. The adsorption kinetic of chro-

mate on MA-10 belonged to the pseudo-second-order, and the simulated equilibrium data

showed a Langmuir sorption isotherm. Combining the absorption results, the groundwater

treatment sludge might be viewed as a satisfactory raw source to prepare magnetic adsorbents

with high performance in chromate-bearing wastewater treatment.
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Fig 11. The release of Fe, Mn Al and Si from MA-10.
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