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Abstract: The preparation of new and functional nanostructures has received more attention in
the scientific community in the past decade due to their wide application versatility. Among these
nanostructures, micelles appear to be one of the most interesting supramolecular organizations for
biomedical applications because of their ease of synthesis and reproducibility and their biocompati-
bility since they present an organization similar to the cell membrane. In this work, we developed
micellar nanocarrier systems from surfactant molecules derived from oleic acid and tetraethylene
glycol that were able to encapsulate and in vitro release the drug dexamethasone. In addition, the
designed micelle precursors were able to functionalize metallic NPs, such as gold NPs and iron
oxide NPs, resulting in monodispersed hybrid nanomaterials with high stability in aqueous media.
Therefore, a new triazole-derived micelle precursor was developed as a versatile encapsulation
system, opening the way for the preparation of new micellar nanocarrier platforms for drug de-
livery, magnetic resonance imaging, or computed tomography contrast agents for therapeutic and
diagnostic applications.

Keywords: micelles; drug encapsulation; metallic nanoparticle functionalization

1. Introduction

In recent decades, surfactants have been widely used in the development of new
functional nanostructures with potential applications in different research areas, such
as electronics, solar cells, batteries and biomedicine [1–3], among others. In fact, their
applications in the field of biomedicine currently represent great promise for targeted
delivery, improved bioavailability, and controlled drug release [4–10]. Surfactants are
organic molecules that are capable of organizing themselves, in aqueous media, into differ-
ent types of supramolecular structures such as micelles, monolayer vesicles (also known
as liposomes), bars, sheets and tubes [11]. The most illustrative example of this kind of
supramolecular organization is the cell membrane of living cells, a complex nanosystem
formed by units of phospholipids that organize as a bilayer structure. Among the different
types of supramolecular structures, micelles have attracted great attention as excellent
nanosystems for biomedical applications [12]. Micelles are spheroidal structures with a hy-
drophilic shell and a hydrophobic core with sizes between 10 and 200 nm that provide them
with high stability under physiological conditions and bioavailability. Thus, micelles could
be less phagocytosed by the mononuclear phagocyte system compared to those structures
with larger dimensions [13,14]. Moreover, micelles in this size range could be an interesting
nanoplatform for in vivo testing without risk of blood vessel blockage. Furthermore, the
presence of a hydrophobic inner part in their structure provides micelles with the ability to
encapsulate non-water-soluble molecules, acting as excellent nanosystems to carry drug
molecules or other payloads such as contrast agents, for instance.
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Therefore, taking all of these features into account, micelles could be used as drug
nanocarriers in passive targeting by the enhancement of permeability and retention effect [15],
or even in active targeting in the case of functionalized micelles with appropriate vectors at
their surface that direct drugs towards the specific cell, tissue or organ. For example, vectors
such as carbohydrates [16], folic acid [17], antibodies [18], proteins [19], peptides [20] and
aptamers [21] have been used for this purpose.

On the other hand, micelles could also be used as imaging agents by encapsulating
the corresponding contrast agents in their inner hydrophobic cores. In this sense, vari-
ous agents have been encapsulated for biomedical imaging techniques, such as metallic
nanoparticles [22,23]. These metal NPs are receiving interest due to enhancements in the res-
olution and sensitivity of the most common techniques available in routine clinical practice,
such as computed tomography (CT) and magnetic resonance imaging (MRI) [24,25].

In this work, we report the preparation of different micellar nanocarrier systems based
on a surfactant molecule derived from oleic acid and tetraethylene glycol for drug delivery,
using dexamethasone (Dexa) as a drug model, and for functionalization of metallic NPs
such as gold NPs and iron oxide NPs. These nanosystems are expected not to show any im-
portant sign of cytotoxicity due to the structural similarity of our designed micelles to other
reported nanocarriers that showed an absence of toxicity after their exposure to cultured
cells and also mice, as previously published elsewhere [26,27]. Moreover, the presence of
metallic NPs such as AuNPs and IONPs would not be a safety issue, as already reported in
an exhaustive toxicity screening of water-soluble NPs on cell cultures, zebrafish embryos
and mice [28]. Furthermore, these nanosystems could be used as potential therapeutic
and/or diagnostic agents for different biomedical applications. (Figure 1).

Figure 1. Formation of micellar nanocarrier systems by self-assembled supramolecular surfactants
followed by encapsulation of drugs or metallic NPs (MNPs). (M@Drug = micelles containing the
drug. M@MNP = micelles containing the MNPs).

2. Materials and Methods

All reagents and solvents were obtained from commercial suppliers (Merck (Darmstadt,
Germany) and Fisher Scientific (Waltham, MA, USA), including iron chloride (III),
sodium oleate, oleic acid 99%, 1-octadecene, tetraethylene glycol (TEG), triethylamine,
4-dimethylaminopyridine, diisopropyl carbodiimide (DIC), hydrochloric acid (HCl), and
sodium sulfate (Na2SO4). Solvents such as toluene, ethanol, acetone, hexane, chloroform,
dichloromethane and tetrahydrofuran were of anhydrous and high performance liquid
chromatography (HPLC) grade. Organic synthesis monitoring was performed by thin layer
chromatography (TLC) on a sheet of aluminum coated with silica gel 60 F254 purchased
from Merck (Darmstadt, Germany). The TLC results were revealed with a solution of
5% phosphomolybdic acid in EtOH. Silica gel 60 (0.04–0.063 mm) from Merck (Darmstadt,
Germany) was used for flash chromatography.

2.1. Characterization Methods

− Nuclear magnetic resonance (NMR) spectra were recorded on a BRUKER AMX-500
apparatus (Billerica, MA, USA). Deuterated chloroform, water, dimethylsulfoxide and
methanol were used and indicated in parentheses for each compound. The chemical
shift values (δ) were referred to tetramethylsilane used as an internal reference.
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− High resolution mass spectrometry (HRMS) was recorded on a Q Exactive Hybrid
Quadrupole-Orbitrap apparatus from ThermoFisher Scientific (Waltham, MA, USA).

− Transmission electron microscopy (TEM) images were obtained on an HR Fei Talos
200X microscope (Waltham, MA, USA) operated at an accelerating voltage of 100 kV.
TEM samples were prepared by dropping a solution of the corresponding nanosystem
onto a carbon-coated copper grid without staining. The mean sizes were calculated
on an average of 100 nanoparticles measured.

− The intensity distribution of the nanosystems was measured on a Zetasizer Nano
ZS90 from Malvern Panalytical (Malvern, UK). The dynamic light scattering (DLS)
measurements were performed on a cell type: ZEN0040 disposable cuvette, setting a
refractive index of 2.3 for iron oxide NPs, 0.2 for the AuNPs and 1.40 for the micelles
without metallic NPs. The measurement duration was set as automatic and 3 as the
number of measurements. As analysis model, the general purpose (normal resolution)
was chosen. The nanosystems were suspended in the corresponding solvent at a
concentration of 1 mg/L of micelles and/or metallic NP.

− HPLC was performed on a reversed phase column ZORBAX Eclipse XDB-C18, Narrow-
Bore 2.1 × 150 mm, 3.5 Micron from Agilent (Santa Clara, CA, USA). The elution was
carried out using water, 0.1% FA (A)-methanol, 0.1% FA (B) with the following elution
gradient: 20% B (0.5 min), linear gradient from 20 to 100% of B for 11.5 min, isocratic
gradient to 100% of B (1.5 min) and return to initial conditions (20% of B) for up to
15 min with constant flow of 0.3 mL/min and injection volume of 10 µL.

2.2. Encapsulation and Release of Dexamethasone

Dexa encapsulation was performed following this procedure: (i) Direct addition of the
solid drug to the previously prepared micelle water solution and stirring for 72 h at 50 ◦C.
During this time, the sample was covered with aluminum foil to prevent the degradation
of the photosensitive drug Dexa. (ii) Centrifugation at 2000 rpm for 15 min, obtaining a
precipitate, which represented the drug not included, and a solution containing the micelles
with the internalized drug, and (iii) lyophilization of the aqueous solution.

Micelles loaded with Dexa (named as M3@Dexa and M5@Dexa) (2 mg) were trans-
ferred to a dialysis bag containing 4 mL of milliQ water at pH 7.4. This bag was then
placed in a beaker with 300 mL of milliQ water at pH 7.4 and gently stirred for 52 h at
room temperature. The bag was fully immersed under the surface of the liquid. Aliquots
of about 2 mL were withdrawn from the 300 mL recipient at specified time periods. The
withdrawn aliquots were replaced with equal volumes of milliQ water. The aliquots were
then filtered using a 45 µm syringe filter and analyzed using HPLC.

2.3. Synthesis of Iron Oxide NPs

The synthesis of iron oxide NPs (IONPs) was prepared following a previously pub-
lished procedure with slight modifications [29]. Briefly, the iron precursor (iron oleate)
(3.6 mmol), oleic acid (1.8 mmol) and 20 g of 1-octadecene were heated to 320 ◦C for 1 h in
a three-necked round-bottom flask under a flow of argon. The mixture was then cooled
to room temperature. Finally, IONPs were washed with ethanol–acetone (1:1) to remove
subproducts, then centrifuged. The IONPs were suspended in toluene.

2.4. Synthesis of Au NPs

For the preparation of gold NPs, the method published by Swihart and colleagues
was used [30]. Briefly, a suspension of the precursor HAuCl4·3H2O in oleylamine (1 mL)
was added to oleylamine (5 mL) at 150 ◦C in a three-necked round-bottom flask under
argon atmosphere. The mixture was heated for 1.5 h. Next, the mixture was cooled down
to room temperature, and the NPs were washed with ethanol as precipitation agent and
centrifuged. Finally, the AuNPs were suspended in hexane.
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2.5. Functionalization of Metallic NPs

Metallic NP functionalization with the micelles was performed in a glass vial by
sonicating with a probe the ligand 3 (5 mg) and the corresponding solution of NP (250 µg
of Au or Fe) in 5 mL of water. The resulting mixture was filtered through a 0.2 µm pore size
syringe filter (membrane material: acrylic copolymer housing cellulose acetate/surfactant-
free membrane), and the filtered solution was dialyzed against water for 2 days using a
membrane (MWCO: 50 kDa).

3. Results and Discussion

The preparation of the micellar nanocarrier systems was carried out independently
from two different surfactants derived from oleic acid as the lipophilic tail and an amino-
ended tetraethylene glycol (TEG) spacer as the polar head [31]. Both surfactants were
prepared in a two-step synthetic route as shown in Figure 2. On the one hand, the triazole
derivative surfactant 3 was synthesized by amidation between oleic acid and propargy-
lamine followed by a Cu (I) catalyzed Huisgen reaction with the N3-TEG-NH2 spacer [32].
On the other hand, the amide derivative surfactant 5 was prepared by linking oleic acid
with the N3-TEG-NH2 spacer in a two-step reaction. First, the oleyl chloride, generated
in situ by treating oleic acid with SOCl2, was added directly to the spacer, yielding the
corresponding amide 4. Then, the azido group present in 4 was reduced to amine with
LAH, rendering the surfactant 5 in good yield.

Figure 2. Synthesis of surfactants 3 and 5 by a two-step synthetic route.

Both surfactants present an amino group at the polar head that could play important
roles. For instance, the micelles and also the micelle formations could be affected by the
pH conditions due to the change in the hydrophilic/lipophilic balance of the surfactant.
So, these amino groups could confer to the micelles advantages such as pH-responsive
properties [33] and versatility by allowing the incorporation of active targeting ligands on
their surfaces.

The only difference between surfactants 3 and 5 was the connector linking the hy-
drophobic tail and the polar head, a triazol and an amide group, respectively. However,
these connectors did not show significant differences in the resulting micelles, as our group
reported in a previous work [31]. Therefore, the surfactants 3 and 5 generated the mi-
celles M3 and M5, respectively, in water at a slightly acid pH (pH 6), at a concentration
much higher than their corresponding critical micellar concentration (CMC), 0.05 mM and
0.07 mM for M3 and M5, respectively (see supporting information).

3.1. Loading and Drug Release

In order to determine the usefulness of these micelles as drug nanocarrier platforms,
Dexa was chosen as a lipophilic model drug. Dexa is a well-known anti-inflammatory corti-
costeroid commonly used to treat different pathologies such as inflammation, arthritis and
allergic reactions, among others [34]. Additionally, it has recently shown its effectiveness in
the treatment against SARS-CoV-2 in adults and adolescents over 12 years of age with pneu-
monia that require oxygen [35]. Thus, we decided to carry out Dexa encapsulation in both
synthesized micelles M3 and M5. In order to confirm the inclusion of Dexa in the micelles,
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1H NMR spectra were recorded in different deuterated solvents as D2O, methanol-d4 and
dimethylsulfoxide-d6 (spectra shown in the supporting information), and the percentage
of internalization was determined by gravimetry. In both micelles, Dexa was encapsulated
with good percentages, 54.2% and 74.2% for M3 and M5, respectively. The difference in
cargo capacity among the micelles could be attributed to the different connectors included
in their structures. In the case of M3, the triazol connector conferred on the surfactant an
increase in hydrophobicity compared to the amide connector in M5. However, in M5, inter-
molecular hydrogen bonds were favored. This variation in the hydrophilic/hydrophobic
balance led to remarkable differences in the mean size of both micelles, with values of
98.5 and 190 nm for the M3 and M5, respectively, as determined by DLS, explaining their
different capacities of internalization. Moreover, the characteristic size and morphology of
the micellar nanocarrier systems containing Dexa were determined by TEM (Figure 3A,B).

Figure 3. Representative TEM images of: (A) M3@Dexa and (B) M5@Dexa. Scale bars correspond to
200 nm for low magnification TEM images and 20 nm for the insets.

To investigate the drug release of the nanocarrier systems, the Dexa-loaded micelles
M3@Dexa and M5@Dexa were incubated at 25 ◦C under physiological conditions in a
dialysis membrane with a molecular weight cut-off of 10 kDa. After certain time lapses,
a volume of the solution containing the released Dexa from the carriers was measured
by HPLC. The data points were collected until the graph reached a plateau. These data
from both nanocarriers showed a different behavior of the released Dexa. The release
profile of the drug from the micelles in the dialysis membrane presented an initial burst
release of 25% and 15% in the case of M3@Dexa and M5@Dexa, respectively. After 48 h,
the M3 micelles showed a higher release of Dexa than the M5 micelles, of 45% and 25%,
respectively. These results clearly indicated a stronger interaction of the nanocarrier M5
with Dexa than the M3, limiting the leakage of the drug from the inner part (Figure 4). The
presence of a triazol group in the M3 likely reduced the interactions of the lipidic tail with
the drug Dexa, thus generating a less stable system that facilitated the release of Dexa.

Figure 4. Drug release studies with M3@Dexa (blue circle) and M5@Dexa (orange triangle).
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Additionally, since the micelles displayed amino groups to the medium, the pH
effect on the hydrodynamic (HD) size was also studied by DLS. M3@Dexa was selected
for these studies, due to its smaller size than that of M5@Dexa, which made it more
interesting for future in vivo applications. At basic pH, we observed an increase in the HD
size to 885 ± 182 nm with a high polydispersity index (0.6) that indicated the presence
of polydisperse particles (Table 1). Interestingly, at acid pH, the micelles presented an
HD size of 43.1 ± 0.8 nm with a quite low PDI value of 0.38. This behavior might be
explained by the complete protonation of the amine functional groups at acid pH. The
amino groups could be completely charged, inducing an increase in the hydrophilia of the
micelles with the corresponding decrease in HD size. Contrarily, the amino groups at basic
pH were completely uncharged, reducing the polarity of the system and thus rendering
micellar aggregation.

Table 1. Hydrodynamic size of M3@Dexa at different pHs.

M3@Dexa Size (nm) Std. Dev. PDI

pH 10 884 182.3 0.6

pH 7 98.5 1.6 0.37

pH 3 43.1 0.8 0.38

3.2. Functionalization of Metallic NPs

To investigate the capacity of our micelles to encapsulate inorganic nanoparticles for
potential biomedical applications, M3 micelles with HD sizes smaller than 100 nm were
chosen for this purpose. The functionalization of the NPs was performed in a one-step
process, which meant that, as in the encapsulation of the Dexa drug, the formation of the
micelles before the addition of the NPs was not required. Thus, a solution of surfactant 3 in
water at a higher concentration than CMC was mixed with a suspension of metallic NPs
in hexane for the AuNPs and toluene for the IONPs, respectively. The mixture was then
sonicated with a sonication probe for 30 min, resulting in the transfer of the metallic NPs to
the aqueous medium. The functionalized NPs were purified by following two different
methods. First, the mixture was filtered through a 0.2 µm pore size syringe filter to remove
the large aggregates formed during the functionalization. The NP suspension was then
dialyzed in dialysis tubing against water to remove the free surfactants that could be in
the solution. Therefore, the obtained M3 micelles were able to functionalize two different
metallic NPs as IONPs and AuNPs, resulting in the new nanomaterials M3@IONPs and
M3@AuNPs, respectively.

3.3. Characterization of the Functionalized Metallic NPs

These nanomaterials were first characterized by DLS, measuring their HD sizes in wa-
ter (Figure 5A,B, and Table 2). As shown in Figure 5A, the intensity size distribution of the
IONPs showed a substantial increase from the oleic acid capped IONPs (insoluble in water)
to the IONPs encapsulated micelles (water soluble). In the same way, AuNPs showed a
remarkable difference in the intensity size distribution from the oleyl amine capped AuNPs
to the AuNP encapsulated micelles (Figure 5B). An increase in the HD sizes was observed
in both functionalizations, resulting diameters of 101.6 ± 1.4 nm and 240.7 ± 7.4 nm for the
M3@IONPs and M3@AuNPs, respectively (Table 2). It is also important to note that the
encapsulation of metallic NPs renders quite stable and monodisperse particles, as pictured
in Figure 5C with polydispersity indexes of 0.18 and 0.25 for the magnetic and gold derived
micelles, respectively (Table 2 and Supplementary Materials).

Finally, to demonstrate the presence of metallic NPs in the solutions, TEM images
of the corresponding micelles with encapsulated NPs were analyzed (Figure 6). In both
nanomaterials, the functionalized IONPs and AuNPs were observed to be homogeneously
distributed on the grid without the presence of any aggregates. However, the presence of



Nanomaterials 2022, 12, 1753 7 of 10

the organic component of the micelles was not observed in these TEM images because of
the high contrast from the inorganic NPs.

Figure 5. (A) Intensity size distributions of M3@IONPs in water (black) and IONPs in toluene (red).
(B) Intensity size distributions of M3@AuNPs in water (black) and AuNPs in hexane (red). (C) Picture
comparing the nanomaterials in suspension: (I) M3 in water, (II) AuNPs in hexane, (III) M3@AuNPs
in water, (IV) AuNPs in water, (V) IONPs in toluene, (VI) M3@IONPs in water and (VII) IONPs in water.

Figure 6. Representative TEM images of: (A) IONPs in toluene, (B) M3@IONPs in water, (C) AuNPs
in hexane and (D) M3@AuNPs in water. Scale bars correspond to 200 nm for the low magnification
TEM images and 50 nm for the insets.
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Table 2. HD sizes with the corresponding polydispersity indexes of the different nanomaterials.

Size (nm) PDI Std. Dev.

M3@AuNPs 240.7 0.25 7.4

M3@IONPs 101.6 0.18 1.4

AuNPs 14.6 0.01 0.04

IONPs 29.9 0.22 0.8

4. Conclusions

In this work, we developed a versatile micellar nanocarrier system able to encapsulate
a hydrophobic drug such as Dexa and also metallic NPs such as IONPs and AuNPs. These
micellar systems are based on surfactants derived from oleic acid as the hydrophobic tail
and the amino-ended TEG spacer as the polar head. Moreover, the cargo encapsulation
and release were shown to depend on the nature of the groups that connect the polar
head and the hydrophobic tail, thus encapsulating 54% and 74% of the drug cargo for
the triazol and amide connector derived micelles, respectively. On the other hand, the
release profiles at physiological pH showed that the M3 micelles with a triazol connector
allowed a higher percentage of free Dexa than the M5 micelles with an amide connector.
Furthermore, the M3 micelles were also capable of functionalizing metallic NPs as IONPs
and AuNPs, thus resulting in hybrid nanomaterials with high stability and monodispersity
in aqueous medium. To conclude, great versatility of encapsulations has been achieved by
using the micellar precursor 3, providing access to new micellar nanocarrier platforms for
drug delivery, magnetic resonance imaging, or computed tomography contrast agents for
therapeutic and diagnostic applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12101753/s1. Figure S1: 1H-NMR of 3 in D2O; Figure S2:
13C-NMR of 3 in MeOD; Figure S3: 1H-NMR of 5 in D2O; Figure S4: 13C-NMR of 5 in MeOD;
Figure S5: HRMS Spectrum of 3; Figure S6: HRMS Spectrum of 5; Figure S7: Top graph corresponds
to HPLC chromatogram of 3. Bottom graph corresponds to MS Spectrum of 3; Figure S8: Top graph
corresponds to HPLC chromatogram of 5. Bottom graph corresponds to MS Spectrum of 5; Figure S9:
1H-NMR of dexamethasone in DMSO-d6; Figure S10: 1H-NMR of M3 in D2O; Figure S11: 1H-NMR
of M5 in D2O; Figure S12: 1H-NMR of [M3@Dexa] in D2O (a) and in DMSO-d6 (b). 1H-NMR of
[M5@Dexa] in D2O (c) and in DMSO-d6 (d). In pink are indicated the new signals that appear in
DMSO-d6 ((b) and (d)) corresponding to dexamethasone; Figure S13: CMC curve of Compound
3; Figure S14: CMC curve of Compound 5; Figure S15: (A) HPLC chromatogram of Dexa, (B) UV
absorption spectrum of Dexa, and (C) Calibration curve of Dexa; Figure S16: Hydrodynamic sizes of
micelles M3, M3@IONPs and M3@AuNPs in water vs. time.
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