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Identification of key molecules
in COVID-19 patients
significantly correlated with
clinical outcomes by analyzing
transcriptomic data
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1Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China
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Background: Although several key molecules have been identified tomodulate

SARS-CoV-2 invasion of human host cells, the molecules correlated with

outcomes in COVID-19 caused by SARS-CoV-2 infection remain

insufficiently explored.

Methods: This study analyzed three RNA-Seq gene expression profiling

datasets for COVID-19 and identified differentially expressed genes (DEGs)

between COVID-19 patients and normal people, commonly in the three

datasets. Furthermore, this study explored the correlation between the

expression of these genes and clinical features in COVID-19 patients.

Results: This analysis identified 13 genes significantly upregulated in COVID-19

patients’ leukocyte and SARS-CoV-2-infected nasopharyngeal tissue compared to

normal tissue. These genes includedOAS1,OAS2,OAS3,OASL,HERC6, SERPING1,

IFI6, IFI44, IFI44L,CMPK2, RSAD2, EPSTI1, andCXCL10, all of which are involved in

antiviral immune regulation. We found that these genes’ downregulation was

associated with worse clinical outcomes in COVID-19 patients, such as intensive

care unit (ICU) admission, mechanical ventilatory support (MVS) requirement,

elevated D-dimer levels, and increased viral loads. Furthermore, this analysis

identified two COVID-19 clusters based on the expression profiles of the 13

genes, termed COV-C1 and COV-C2. Compared with COV-C1, COV-C2 more

highly expressed the 13 genes, had stronger antiviral immune responses, were

younger, and displayed more favorable clinical outcomes.

Conclusions: A strong antiviral immune response is essential in reducing

severity of COVID-19.

KEYWORDS

COVID-19, intensive care unit, mechanical ventilatory support, viral loads, antiviral
immune responses, COVID-19 clusters
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Background

The coronavirus disease 2019 (COVID-19) pandemic

caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection has caused nearly 477 million cases

and more than 6 million deaths as of March 25, 2022 (1).

Moreover, the number of COVID-19 cases have been

dramatically increasing since the virus has evolved to higher

infectivity, such as the Omicron variant (2). Some key

molecules contributing to SARS-CoV-2 invasion of

human host ce l l s have been ident ified , inc luding

angiotensin-converting enzyme 2 (ACE2), transmembrane

serine protease 2 (TMPRSS2), FURIN, cathepsins B/L

(CTSB/L), cyclin G associated kinase (GAK), AP2 associated

kinase 1 (AAK1), and two pore segment channel 2 (TPCN2)

(3–8). Besides, myriad studies have explored the factors

responsible for the significantly different clinical outcomes

in COVID-19 patients, including age (9), gender (10), viral

load (11), immune (12), nutrient intake (13), and

underlying medical conditions (14).

Although multi-omics analyses have identified molecular

characteristics significantly associated with COVID-19

outcomes (15–17), there exist discrepant results among

different studies. To overcome this limitation, in this study, we

identified differentially expressed genes (DEGs) between

COVID-19 patients and normal people in three datasets,

respectively, and uncovered common DEGs among them. We

further analyzed associations between these genes and clinical

features of COVID-19 patients. This study is expected to provide

molecular insights into mechanisms of COVID-19 infection

and severity.
Methods

Datasets

Three RNA-Seq gene expression profiling datasets for

COVID-19 were downloaded from the NCBI Gene

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/). These datasets included GSE157103 (17) (gene

expression profiles in 100 COVID-19 patients’ leukocyte

samples) and GSE152075 (11) and GSE156063 (18) (gene

expression profiles in SARS-CoV-2-infected human tissues

from nasopharyngeal swabs). Table 1 is a summary of these

datasets, and more details on these datasets are presented in the

Supplementary Table S1.
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Quantifying immune signatures’
enrichment levels

The single-sample gene-set enrichment analysis (ssGSEA)

(19) was utilized to evaluate an immune signature’s enrichment

level in a COVID-19 patient based on the expression profiles of

its marker genes. The ssGSEA output the enrichment score of a

gene set in a sample based on the degree of the genes in the gene

set coordinately up- or down-regulated in the sample (19). The

ratios of two immune signatures were defined as the base-2 log-

transformed values of the geometric mean expression levels of all

marker genes of an immune signature divided by those of

another immune signature. The marker genes of the immune

signatures analyzed were shown in Table 2.
Identifying DEGs between COVID-19
patients and normal people

We identified DEGs between COVID-19 patients and

normal people by Student’s t test with a threshold of adjusted

P-value < 0.05 and mean expression fold change (FC) > 1.5. The

Benjamini-Hochberg method (20) was used to calculate the false

discovery rate (FDR) to adjust for P-values in multiple tests.
Clustering analysis

We hierarchically clustered COVID-19 patients based on the

expression profiles of the common DEGs between COVID-19

patients and normal people in the three datasets.

Before clustering, we normalized gene expression values by

z-score and transformed them into distance matrices by the R

function “dist” with the parameter: method = “Euclidean.” The

hierarchical clustering was performed with the function “hclust”

in the R package “Stats” with the parameters: method =

“ward.D2” and members = NULL.
Statistical analysis and visualization

In comparisons of two classes of data, the Mann–Whitney

U test was used if they were not normally distributed;

otherwise, Student’s t test was utilized. The Pearson or

Spearman method was employed to evaluate the correlation

between two groups of data. The Fisher’s exact test was utilized

to evaluate the association between two categorical variables.
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With the input of a significance level of 0.05, large effect sizes

recommended by Cohen (21), and the sample sizes of COVID-

19 patients and normal controls in the datasets into related

functions in the R package “pwr“, we performed power

calculations for all statistical tests in this study. All statistical

analyses were performed in the R programming environment

(version 4.1.2). The R package “ggplot2” was utilized to

plot figures.
Results

Common DEGs between COVID-19
patients and normal people in the
three datasets

This analysis found 13 genes whose expression levels were

significantly higher in COVID-19 patients than in normal

controls, consistently in the three datasets (two-tailed

Student’s t test, FDR < 0.05; FC > 1.5). These genes included

OAS1, OAS2, OAS3, OASL, HERC6, SERPING1, IFI6, IFI44,

IFI44L, CMPK2, RSAD2, EPSTI1, and CXCL10 (Table 3).

Notably, all these genes are involved in antiviral immune

responses or immune regulation (22–30). Among these genes,

four genes (OAS1, OAS2, OAS3, and OASL) encode members of

the 2′–5′-oligoadenylate synthetase (OAS) family (31). It is

justified that these genes are upregulated in COVID-19

patients since the OAS family plays important roles in the

antiviral activity of interferons (32). HERC6 (HECT And RLD

Domain Containing E3 Ubiquitin Protein Ligase Family

Member 6) is related to pathways of class I MHC mediated

antigen processing and presentation and innate immune system

(33, 34). SERPING1 (serpin family G member 1) encodes a

highly glycosylated plasma protein functioning in the regulation

of the complement cascade (35). Several genes encode proteins

induced by interferon, including IFI6 (interferon alpha inducible

protein 6), IFI44 (interferon induced protein 44), and IFI44L

(interferon induced protein 44 like). CMPK2 (cytidine/uridine

monophosphate kinase 2) encodes an enzyme in the nucleotide

synthesis salvage pathway involved in the regulation of terminal

differentiation of monocytic cells (36). RSAD2 (radical S-

adenosyl methionine domain containing 2) encodes a member

of the S-adenosyl-L-methionine (SAM) superfamily of enzymes,

which is an interferon-inducible antiviral protein playing a role

in antiviral response and innate immune signaling (37). EPSTI1

(epithelial stromal interaction 1) encodes a protein playing a role

in M1 macrophage polarization (27). CXCL10 (C-X-C motif

chemokine ligand 10) is an antimicrobial gene encoding a

chemokine of the CXC subfamily and ligand for the receptor

CXCR3. The binding of CXCL10 to CXCR3 exerts pleiotropic

effects on immune regulation (38). CXCL10 could also regulate

the “cytokine storm” response to SARS-CoV-2 infection (39).
TABLE 1 A summary of the datasets.

GSE157103

Tissue resource Leukocyte samples from hospitalized patients

Sample size n = 128 (102 patients versus 26 controls)

Demographic characteristics

Male sex – No. (%) 74 (57.8)

Age Range – No. (%)

Younger than 50 31 (24.6)

51–60 21(16.7)

61–70 30 (23.8)

71–80 23 (18.3)

81 and older 20 (15.9)

Missing data 1 (0.8)

Clinical characteristics

ICU admission – No. (%) 66 (52.4)

Hospital free days at 45 days 29.5 (median)

Mechanical ventilation – No.
(%)

51 (40.5)

Ventilator-free days 28 (median)

APACHE II score 21 (median)

SOFA score 8 (median)

Laboratory findings

C-reactive protein (mg/L) 122.5 (median)

Ferritin (mg/L) 573 (median)

Procalcitonin (mg/L) 0.5 (median)

D-dimer (mg/L) 1.83 (median)

Lactate (mmol/l) 1.22 (median)

GSE156063

Tissue resource Nasopharyngeal swabs

Sample size n = 234 (93 COVID-19 patients versus 141
controls)

Demographic characteristics

Male sex – No. (%) 110 (47.0)

Age Range – No. (%)

Younger than 50 117 (50.0)

51–60 33 (14.1)

61–70 42 (17.9)

71–80 29 (12.4)

81 and older 13 (5.6)

GSE152075

Tissue resource Nasopharyngeal swabs

Sample size n = 484 (430 COVID-19 patients versus 54
controls)

Demographic characteristics

Male sex – No. (%) 200 (41.3)

Age Range – No. (%)

Younger than 50 195 (40.3)

51–60 91 (18.8)

61–70 64 (13.2)

71–80 66 (13.6)

81 and older 51 (10.5)

Missing data 17 (3.5)
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This analysis found that the 13 upregulated genes likely had

significant positive expression correlations with the genes which

are key regulators of SARS-CoV-2 infection, including ACE2,

TMPRSS2, AAK1, CTSB, CTSL, FURIN, GAK, and TPCN2 (6–8,

40–43) (Pearson correlation, P < 0.05) (Figure 1A,

Supplementary Figure S1). Interestingly, these genes were

significantly downregulated in the intensive care unit (ICU)

COVID-19 patients versus non-ICU patients (two-tailed

Student’s t test, FDR < 0.05; FC > 1.5) in GSE157103

(Figure 1B). 11 of the 13 genes were significantly

downregulated in the mechanical ventilatory support (MVS)
Frontiers in Immunology 04
patients versus non-MVS patients (FDR < 0.05; FC > 1.5)

(Figure 1C). Moreover, all these genes showed significant

negative expression correlations with D-dimer levels

(Spearman correlation, FDR < 0.05) (Figure 1D), whose

elevation was associated with COVID-19 severity (44). In

GSE152075, the expression levels of the 13 genes were

significantly and negatively correlated with viral loads

(Spearman correlation, FDR < 0.05) (Figure 1E). In addition,

this analysis found that many of the 13 genes had significant

negative expression correlations with ages of COVID-19 patients

(Figure 1F). Taken together, these results indicate that

upregulation of these molecules is associated with better

clinical outcomes in COVID-19 patients.
Identification of COVID-19 subtypes
based on expression profiles of the 13
upregulated genes in COVID-19 patients

Based on the expression levels of the 13 genes upregulated in

COVID-19 patients, we identified two COVID-19 clusters

consistently in the three datasets (GSE152075, GSE156063, and

GSE157103) by hierarchical clustering. We termed them COV-C1

and COV-C2, respectively (Figure 2A). The 13 genes had

significantly higher expression levels in COV-C2 than in COV-

C1 (FDR < 0.05; FC > 1.5) (Figure 2B). In GSE152075, COV-C2

patients were younger than COV-C1 patients (one-tailed Mann–

Whitney U test, P = 7.61 × 10-5), while COV-C2 had significantly

lower viral loads than COV-C1 (P = 3.67 × 10-10) (Figure 3A). It

indicates a significantly negative association between age and viral

loads, in line with a previous report (45). In GSE157103, the

proportion of ICU patients was significantly lower in COV-C2

than in COV-C1 (37.7% versus 69.3%; Fisher’s exact test,
TABLE 2 Immune signatures and their marker genes.

Immune
signature

Marker genes

NK cells KLRC1, KLRF1

Immune cytolytic
activity

PRF1, GZMA

Th1 cells IFNG, TBX21, CTLA4, STAT4, CD38, IL12RB2, LTA,
CSF2

M1 macrophages FCGR1A, IDO1, SOCS1, CXCL10

M2 macrophages MRC1, TGM2, FCER2, CCL22

CD8+ T cells
CD4+ regulatory T
cells

CD8A
CTLA4, FOXP3, GPR15, IL32, IL4, IL5

pro-inflammatory
cytokines

IFNG, IL-1A, IL-1B, IL-2

anti-inflammatory
cytokines
PD-1

IL-4, IL-10, IL-11, TGFB1
PDCD1

Type I IFN response DDX4, IFIT1, IFIT2, IFIT3, IRF7, ISG20, MX1, MX2,
RSAD2, TNFSF10
TABLE 3 The 13 genes significantly upregulated in COVID-19 patients.

Gene symbol Gene ID Full Name

OAS1 4938 2’-5’-oligoadenylate synthetase 1

OAS2 4939 2’-5’-oligoadenylate synthetase 2

OAS3 4940 2’-5’-oligoadenylate synthetase 3

OASL 8638 2’-5’-oligoadenylate synthetase like

HERC6 55008 HECT and RLD domain containing E3 ubiquitin protein ligase family member 6

SERPING1 710 serpin family G member 1

IFI6 2537 interferon alpha inducible protein 6

IFI44 10561 interferon induced protein 44

IFI44L 10964 interferon induced protein 44 like

CMPK2 129607 cytidine/uridine monophosphate kinase 2

RSAD2 91543 radical S-adenosyl methionine domain containing 2

EPSTI1 94240 epithelial stromal interaction 1

CXCL10 3627 C-X-C motif chemokine ligand 10
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FIGURE 1

Expression correlations of the 13 genes upregulated in COVID-19 patients with the key regulators of SARS-CoV-2 infection and clinical features of
COVID-19 patients. (A) Heatmap showing expression correlations between the 13 genes and 8 key regulators of SARS-CoV-2 infection in
GSE152075. Pearson correlation coefficients (r) and P-values are shown. (B, C) Comparisons of the 13 genes’ expression levels between ICU and
non-ICU, and between MVS and non-MVS COVID-19 patients. Two-tailed student’s t test P-values are shown. (D–F) Expression correlations of the
13 genes with D-dimer levels, viral loads, and ages of COVID-19 patients. Spearman correlation coefficients (r) and P-values are shown. The results
shown in (B–F) were obtained by analyzing the dataset GSE157103. ICU, intensive care unit; MVS, mechanical ventilatory support. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, ns: not significant. They also apply to the following figures.
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A

B

FIGURE 2

Identification of COVID-19 subtypes based on expression profiles of the 13 upregulated genes in COVID-19 patients. (A) Hierarchical clustering
identifying two COVID-19 subtypes: COV-C1 and COV-C2, consistently in three datasets. (B) The 13 genes have significantly higher expression
levels in COV-C2 than in COV-C1. Two-tailed student’s t test P-values are shown. ****P < 0.0001.
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P = 0.004); the proportion of MVS patients was also significantly

lower in COV-C2 than in COV-C1 (31.1% versus 59.0%; Fisher’s

exact test, P = 0.007) (Figure 3B). Ventilator-free days is a measure

of outcomes in treating acute respiratory distress syndrome and

correlate inversely with disease severity (46). This analysis found

that COV-C2 patients were with significantly more ventilator-free

days than COV-C1 patients (P = 0.01) (Figure 3C). In addition,

several COVID-19 severity-associated laboratory measurements,

such as D-dimer and procalcitonin, displayed significantly lower

levels in COV-C2 than in COV-C1 (P < 0.02) (Figure 3C).

Altogether, these results indicated better outcomes in COV-C2

compared with COV-C1.
Frontiers in Immunology 07
COV-C2 patients have significantly
stronger antiviral immune signatures
than COV-C1 patients

We compared the enrichment scores (ssGSEA scores) of five

antiviral immune signatures between COV-C1 and COV-C2.

These immune signatures included NK cells, immune cytolytic

activity, type I interferon (IFN) response, M1 macrophages, and

Th1 cells. This analysis found that the enrichment scores of these

immune signatures were likely higher in COV-C2 than in COV-

C1 (Figure 4A). Moreover, the ratios of immunostimulatory/

immunoinhibitory signatures (CD8+/CD4+ regulatory T cells,
A

B

C

FIGURE 3

Comparisons of clinical features between COV-C1 and COV-C2 patients. (A) In GSE152075, COV-C2 patients are younger and have significantly
lower viral loads than COV-C1 patients. (B) COV-C2 has significantly lower proportions of ICU patients and MVS patients than COV-C1. Fisher’s
exact test P-values are shown. (C) COV-C2 patients are with significantly more ventilator-free days and have significantly lower levels of D-
dimer and procalcitonin than COV-C1 patients. One-tailed Mann–Whitney U test P-values are shown. The results shown in (B, C) were obtained
by analyzing the dataset GSE157103.
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M1/M2 macrophages, pro-/anti-inflammatory cytokines, and

CD8+/PD-1) were likely higher in COV-C2 than in COV-C1

(Figure 4B). Altogether, these results suggested the stronger

antiviral immune responses displayed in COV-C2 versus

COV-C1 patients. The stronger antiviral immune responses

could contribute to better outcomes in COV-C2 relative to

COV-C1 patients.
Discussion

In this study, we identified 13 genes significantly upregulated

in COVID-19 patients’ leukocyte and SARS-CoV-2-infected

nasopharyngeal tissue. This analysis found that all these genes

are involved in the regulation of host immune signaling.

Moreover, these genes’ upregulation is likely associated with

better clinical outcomes in COVID-19 patients. It is justified

since these molecules’ upregulation is associated with increased

antiviral immune responses to reduce COVID-19 disease

severity. Based on the expression profiles of the 13 genes, we

uncovered two COVID-19 subtypes (COV-C1 and COV-C2)
Frontiers in Immunology 08
reproducibly in three different datasets. Compared with COV-

C1, COV-C2 more highly expressed these upregulated genes in

COVID-19 patients and had stronger antiviral immune

responses. As a result, COV-C2 displayed more favorable

clinical outcomes.

The expression levels of the 13 genes were likely to correlate

negatively with ages of COVID-19 patients, and COV-C1

patients were younger than COV-C1 patients. These results

suggest that younger patients have stronger antiviral immune

responses than old patients. It could partially explain why

younger patients are less likely to develop severe COVID-19

(9). Intriguingly, younger patients had lower viral loads than old

patients, although the former displayed stronger antiviral

immune responses than the latter. It is reasonable since the

stronger antiviral immune responses promote the elimination of

more SARS-CoV-2 viruses in younger patients.

Our results showed no significant association between sex

and antiviral immune responses in COVID-19 patients,

although female patients are likely to have better prognosis

than male patients (10). In fact, some other factors could be

responsible for the better outcomes in female versus male
A B

FIGURE 4

Comparisons of antiviral immune signatures between COV-C1 and COV-C2 patients. (A) COV-C2 patients likely have higher enrichment scores
of antiviral immune signatures than COV-C1 patients. One-tailed Mann–Whitney U test P-values are shown. (B) COV-C2 patients have
significantly higher ratios of immunostimulatory over immunoinhibitory signatures. Two-tailed student’s t test P-values are shown.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.930866
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dong et al. 10.3389/fimmu.2022.930866
patients, such as estrogen levels (47), C-reactive protein

abundance (48), lifestyle (49), underlying conditions (50), and

renin-angiotensin system (51).

Our results suggest that a strong antiviral immune response

is essential in reducing severity of COVID-19. However,

excessive immune response, known as “cytokine storm,” may

result in worse clinical outcomes in COVID-19 patients (52).

These results collectively indicate that both insufficient and

excessive immune responses may contribute to COVID-

19 severity.

This study has several limitations. First, this study obtained

the results merely by bioinformatics analyses, whose reliability

needs to be validated by experimental and clinical data. Second,

because the sample size in this study is limited, the results need

to be supported by analyzing more datasets. Nevertheless, the

power analysis showed that all the powers of the statistical tests

were greater than 0.95 using a significance threshold of 0.05,

large effect sizes, and the sample sizes of the datasets. Finally, the

results and conclusions were obtained by analyzing mRNA

expression data. However, the gene expression pattern is not

necessarily identical to the protein expression pattern due to

some factors influencing the mapping from gene expression to

protein expression, e.g., post-translational modification. Thus,

the verification of our findings at protein level is a must.
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