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Summary

� Incongruent phylogenies have been widely observed between nuclear and plastid or mito-

chondrial genomes in terrestrial plants and animals. However, few studies have examined

these patterns in microalgae or the discordance between the two organelles.
� Here we investigated the nuclear–mitochondrial–plastid phylogenomic incongruence in

Emiliania–Gephyrocapsa, a group of cosmopolitan calcifying phytoplankton with enormous

populations and recent speciations. We assembled mitochondrial and plastid genomes of 27

strains from across global oceans and temperature regimes, and analyzed the phylogenomic

histories of the three compartments using concatenation and coalescence methods.
� Six major clades with varying morphology and distribution are well recognized in the

nuclear phylogeny, but such relationships are absent in the mitochondrial and plastid phyloge-

nies, which also differ substantially from each other. The rampant phylogenomic discordance

is due to a combination of organellar capture (introgression), organellar genome recombina-

tion, and incomplete lineage sorting of ancient polymorphic organellar genomes. Hybridiza-

tion can lead to replacements of whole organellar genomes without introgression of nuclear

genes and the two organelles are not inherited as a single cytoplasmic unit.
� This study illustrates the convoluted evolution and inheritance of organellar genomes in

isogamous haplodiplontic microalgae and provides a window into the phylogenomic complex-

ity of marine unicellular eukaryotes.

Introduction

Eukaryotes differ from prokaryotes by their nucleus and
organelles of endosymbiotic origins (Zimorski et al., 2014). Most
genes in the bacterial ancestors of mitochondria and plastids have
been transferred to the nuclear genome (Ku et al., 2015). How-
ever, endosymbiotic organelles generally retain a remnant
genome encoding fewer than c. 200 genes (Smith & Keeling,
2015), whose localization could be essential for the redox regula-
tion of their expression and bioenergetic functions (Allen, 2015).
The simple organization, relatively conserved gene contents, and
generally clonal and uniparental inheritance (Birky, 2008) of
mitochondrial genomes (mitogenomes) and plastid genomes
(plastomes) make them widely used for phylogenetic analyses of
different eukaryotes at various taxonomic levels (Galtier et al.,
2009; Dong et al., 2012). Organellar markers are also analyzed
together with nuclear markers to provide better resolution in
phylogenies (Phillips et al., 2006; Liu et al., 2010; Lockwood
et al., 2013).

However, incongruent phylogenies have been observed
between nuclear and organellar genes or genomes. Such cytonu-
clear discordance, either mito-nuclear or plastid-nuclear, can be
caused by a variety of processes, including sex-biased inheritance,
introgression leading to organellar capture (whole-genome

replacement) (Soltis & Kuzoff, 1995; Folk et al., 2017; Lee-Yaw
et al., 2019; Zhang et al., 2019; Sarver et al., 2021), and incom-
plete lineage sorting (ILS) (Meleshko et al., 2021; Rose et al.,
2021). Cytonuclear phylogenetic discordance can result from
inter-compartmental differences, such as higher level of introgres-
sion in mitochondrial than nuclear genome in some cases (Bon-
net et al., 2017; Sarver et al., 2021). Modes of organelle
inheritance, which might not be strictly clonal and uniparental,
are also important factors. Seed plants have different mechanisms
of organellar exclusion, with maternal organelle inheritance in
most angiosperms but paternal plastid inheritance in gym-
nosperms (Greiner et al., 2015). In contrast to sperm-egg mating
(oogamy) in plants and animals, in isogamous eukaryotes, two
morphologically indistinguishable gametic cells with similar
abundance of organelles and organellar DNA fuse into a zygote.
One example is budding yeasts, which have biparental inheri-
tance of mitochondria and transient heteroplasmy (i.e. different
organellar haplotypes in one cell) in the zygote (Solieri, 2010),
where mitochondria fuse and different haplotypes might recom-
bine (Fritsch et al., 2014). In another isogamous eukaryote, the
green microalga Chlamydomonas reinhardtii, plastid DNA is
inherited from the mt+ and mitochondrial DNA from the mt−

mating type through selective elimination of organellar DNA
from the opposite type (Miyamura, 2010). For most eukaryotes,
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which are unicellular and isogamous (Lehtonen et al., 2016), the
modes of organelle inheritance are yet to be characterized.

Phylogenomic analysis is a powerful method for unraveling the
inheritance history of different genomes, but our current under-
standing of cytonuclear discordance at the whole-genome level is
largely based on terrestrial animal and plant systems. In addition,
most studies focused on only the nuclear and mitochondrial or
only the nuclear and plastid genome. Despite the importance and
widespread distribution of plastids across the eukaryotic tree of
life—plants, diverse algae, and other plastid-bearing protists
(Keeling, 2013; Zimorski et al., 2014), differences in the phy-
logenomic history between the two organelles, plastids and mito-
chondria, remain poorly understood. Multigene phylogenetic
analyses of all three compartments have been limited to a few
studies on plants, which revealed varying degrees of incongruence
among the three genomes (Folk et al., 2017; Vargas et al., 2017;
Meleshko et al., 2021). In multicellular coralline red algae,
mitogenomes and plastomes support different groupings of taxo-
nomic orders (Lee et al., 2018). For other algae, including the
most abundant microalgae, very little is known about their inter-
compartmental phylogenomic discordance.

Microalgae are unicellular photosynthetic eukaryotes that have
been shaping global biogeochemical cycling and marine food
webs for at least 1.5 billion years (Falkowski et al., 2004; Worden
et al., 2015). Investigating the origins and evolution of dominant
microalgal species is key to our understanding of marine micro-
bial communities and their succession through geological time.
One unique group of microalgae is the calcifying phytoplankton,
coccolithophores (Haptophyta), which convert carbon into
organic photosynthates as well as the inorganic calcium carbonate
(CaCO3) plates called coccoliths (Taylor et al., 2017). Coccol-
ithophores account for 10% of annual global primary production
(Rousseaux & Gregg, 2013). The most common coccol-
ithophore, Emiliania huxleyi, is ubiquitous across global oceans
and forms massive annual blooms in temperate and subpolar
regions (Balch, 2018). Based on fossil and oxygen isotope
records, E. huxleyi originated < 0.3 Ma (Raffi et al., 2006) and
became the most dominant coccolithophore morphospecies
around 0.085 Ma (Thierstein et al., 1977), making it an excel-
lent model for studying recent global expansion of marine
microbes. Nuclear phylogenomic analyses suggested that E. hux-
leyi evolved from within Gephyrocapsa (Noëlaerhabdaceae,
Isochrysidales), which has been abundant throughout the Quater-
nary (Bendif et al., 2019). Despite its extremely large population
size, the nuclear genetic diversity of E. huxleyi is unexpectedly
limited, possibly as a result of strong linked selection rather than
unusually low mutation rates (Filatov, 2019; Krasovec et al.,
2020). Coccolithophores are apparently isogamous (Houdan
et al., 2004), but their mating process is still obscure. Similar to
C. reinhardtii, E. huxleyi has a single cup-shaped plastid, and its
mitochondria have variable shapes characteristic of dynamic
fusion and fission (Uwizeye et al., 2021).

The complete mitogenome and plastome sequences are avail-
able from E. huxleyi strains CCMP373 and CCMP1516
(Sánchez-Puerta et al., 2004, 2005; Smith & Keeling, 2012).
The mitogenome is c. 29 kb, with a 353-bp difference between

the two strains, and encodes 21 proteins, which are more than in
animals and fungi, but fewer than in most plants (Zardoya,
2020). The plastome is c. 105.3 kb in both strains, with a much
smaller inverted repeat region than that of plants (Zhu et al.,
2016) and more proteins encoded than in plants, which is consis-
tent with its origin from gene-rich plastomes of red algae
(Sánchez-Puerta et al., 2005; Green, 2011). Phylogenies of
nuclear ribosomal DNA (rDNA), plastid tufA, and mitochon-
drial cox1 and cox3 genes have apparently incongruent topologies
for some strains in the Emiliania–Gephyrocapsa clade (Bendif et
al., 2016). However, these trees had largely polytomous nodes,
likely because one or two genes generally do not bear sufficient
phylogenetic information to resolve the relationships between
closely related organisms. Besides, genes within the same genome
can have conflicting phylogenies due to distinct evolutionary his-
tories. To further understand the extent and potential mecha-
nisms of inter-compartmental discordance, whole-genome
assemblies and sequences are required.

In this study, we explore whole genomes of Emiliania–Gephy-
rocapsa to assess nuclear–mitochondrial–plastid phylogenomic
incongruence in these isogamous marine unicellular eukaryotes
with astronomically large populations, recent speciation, and
rapid global expansion. We assembled complete or near-
complete mitogenomes and plastomes, inferred their highly
resolved phylogenies, characterized intergenomic and intrage-
nomic incongruences, and finally elucidated the underlying evo-
lutionary processes. Our results reveal widespread phylogenomic
discordance across the three compartments, which resulted from
a combination of introgression, recombination, and ILS.

Materials and Methods

Strains and genomic data

Genomic data of 29 Emiliania–Gephyrocapsa strains (23 E. hux-
leyi, one G. ericsonii, one G. muellerae, two G. oceanica, and two
G. parvula) from across global oceans and temperature regimes
were retrieved from the National Center for Biotechnology Infor-
mation (NCBI) or newly sequenced in this study (Supporting
Information Table S1). The data include one nuclear
(CCMP1516; Read et al., 2013) and two mitochondrial and
plastid (CCMP373 and CCMP1516; Sánchez-Puerta et al.,
2004, 2005; Smith & Keeling, 2012) genome assemblies, as well
as 27 Illumina sequence read archives (Read et al., 2013; von
Dassow et al., 2015; Bendif et al., 2019; this study). For the
newly sequenced strains, a single-cell-derived culture was pre-
pared by isolating individual cells using a MoFlo XDP cell sorter
(Beckman Coulter Inc., Brea, CA, USA), followed by incubation
in modified K/2 medium (Keller et al., 1987; Probert, 2019)
with an antibiotic cocktail of cefotaxime (50 ppm), carbenicillin
(50 ppm), kanamycin (20 ppm), and amoxicillin (20 ppm) to
reduce bacterial contamination. Approximately 1 × 108 cells
were harvested by centrifugation (15 min at 3000 g) at the end
of log growing phase. The cells were embedded in 1.5% low-
melting-point agarose (50101; Lonza Group AG, Basel, Switzer-
land) and digested with proteinase K following a published
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method (Agarkova et al., 2006). From the gel plugs, high-
molecular-weight DNA was extracted according to Bionano Prep
Cell Culture DNA Isolation protocol (30026, revision F).
Linked-read libraries were prepared using ChromiumTM Genome
Library & Gel Bead Kit v.2 (10× Genomics Inc., Pleasanton,
CA, USA) and sequenced on Illumina NovaSeq 6000 (Illumina
Inc., San Diego, CA, USA).

Organellar genome assembly and annotation

Adapters and low-quality ends (Phred score < 20) of sequencing
reads were trimmed using BBDUK in BBTOOLS (http://
sourceforge.net/projects/bbmap). Both mitogenome and plas-
tome sequences were assembled either using NOVOPLASTY v.4.1
(Dierckxsens et al., 2016; for all strains except B39, B11, EH2,
M217, and M219) with the corresponding CCMP1516 genomes
as seed or de novo using SPADES v.3.15 (Bankevich et al., 2012;
for low-coverage single-end sequencing data of B39, B11, EH2,
M217, and M219) with the default parameters. The assemblies
were polished through mapping reads with BWA-MEM v.0.7.17
(Li, 2013), inspecting with IGV v.2.10.2 (Thorvaldsdottir et al.,
2013), and editing in ALIVIEW v.1.26 (Larsson, 2014). We were
unable to circularize most mitogenomes due to a highly repetitive
region between trnI and rps12. In addition, the highly frag-
mented mitogenome assemblies of B39 and M219 missed at least
two genes. The highly repetitive region and the two strains were
thus excluded from our subsequent analyses of mitogenomes.
Organellar protein-coding genes were predicted using BLAT

(Kent, 2002) and annotated and visualized using GESEQ (Tillich
et al., 2017) (Dataset S1).

Identification of putative single-copy core nuclear genes

Whole-genome de novo assemblies were constructed using
SPADES (plus scaffolding using ARKS in ARCS v.1.1.1 (Coombe
et al., 2018) for the strains with 10× linked-read data) and anno-
tated using AUGUSTUS v.3.3 (Stanke et al., 2006, 2008). The gene
model was trained with GENOMETHREADER (Gremme et al.,
2005) in BRAKER2 v.2.1.5 (Hoff et al., 2016, 2019; Brůna et al.,
2021) using the nuclear coding sequences of CCMP1516 (Read
et al., 2013) and the assembly of the haploid strain RCC1217
(this study). The single-copy genes shared by all strains were
identified by ORTHOFINDER v.2.5.2 (Emms & Kelly, 2019).

Phylogenomic analyses

Five datasets were prepared (Dataset S2), including three coding
sequence datasets: (1) 132 putative single-copy nuclear genes
shared by all 29 strains except CCMP373, which lacks nuclear
data; (2) 20 mitogenome shared genes (excluding dam, which
was incompletely assembled for some strains); (3) 112 plastome
shared genes (excluding open reading frames (ORFs) not widely
present across strains); and two whole-organellar nucleotide
datasets: (4) whole-mitogenome (excluding the highly repetitive
region); (5) whole-plastome. The coding sequences were aligned
using MUSCLE v.3.8.1 in ALIVIEW (Edgar, 2004) and the

organellar whole-genome nucleotide sequences were aligned
using MAFFT v.7.310 (Katoh & Standley, 2013). All alignments
were inspected and edited manually to exclude poorly aligned
regions flanking indels.

Phylogenies of nuclear, mitochondrial, and plastid genomes
were inferred separately using a concatenation maximum likeli-
hood (ML) approach (IQ-TREE 2 v.2.1.4-beta; Minh et al.,
2020b) and two coalescent methods, including one based on gene
trees inferred by IQ-TREE 2 (ASTRAL-III v.5.7.7; Zhang et al.,
2018) and the other based on single-nucleotide polymorphisms
(SVDQUARTETS in PAUP* 4.0a build 168; Chifman & Kubatko,
2014, 2015). The best partition schemes and codon evolutionary
models were selected using PARTITIONFINDER (Lanfear et al.,
2012). Branch supports were calculated using 1000 replicates of
ultrafast bootstrap that resamples both genes and sites (Hoang
et al., 2018) and SH-like aLRT (Guindon et al., 2010). We also
tried to infer the trees using amino acid or nucleotide models, to
partition the datasets using both genes and coding positions, or
to reduce the effects of positive selection by using only third
codon positions (Dataset S3), but no conflict in strongly sup-
ported branches (UFBoot > 95%) was observed.

Analyses of phylogenomic discordance

To visualize inter-genomic discordance, ML trees were fitted to
chronograms using chronos function in R package APE (Paradis
& Schliep, 2019) and tanglegrams were plotted between different
compartments using R package DENDEXTEND (Galili, 2015). Gene
and site concordance factors were calculated using the ‘--gcf’ and
‘--scf’ functions in IQ-TREE (Minh et al., 2020a). Phylogenomic
networks were built using SPLITSTREE4 (Huson & Bryant, 2006),
with super-networks inferred from individual IQ-TREE gene trees
and neighbor-nets from ML distances under GTR + I + G
model. Presence of hybridization among major clades was tested
with an ‘ABBA-BABA’-like method (HYDE; Blischak et al.,
2018). Pairwise substitution rates within each coding datasets
and whole-genome datasets were calculated using codeml (F3X4
model) and baseml (GTR model), respectively, in PAML 4 (Yang,
2007). Recombination in organellar genomes was analyzed using
RDP5 v.5.5 with seven different methods: RDP, GENECONV,
MAXCHI, CHIMAERA, BOOTSCAN, SISCAN, and 3SEQ
(Martin et al., 2021).

Results

Genome assemblies

Nuclear, mitochondrial, and plastid genomes of 29 Emiliania–
Gephyrocapsa strains (Fig. 1a) were analyzed in this study, includ-
ing new assemblies from 27 strains (Table S1; Figs S1, S2;
Dataset S1). To ensure the assembly correctness, we inspected
the mapping of reads onto each assembly. We found a few
ambiguous nucleotides (usually R and Y), especially in the highly
repetitive regions of mitogenomes and the inverted repeats of
plastomes, but there was no sign of heteroplasmy or DNA con-
taminations. We also double-checked the sequence identifiers
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(IDs) and confirmed that there was no mis-labeling of any strain
and genomes. In support of the accuracy of genome assemblies,
strains originally derived from the same laboratory source,
including RCC1216/RCC1217 (von Dassow et al., 2009),
CCMP1516/AWI1516/M217 (Read et al., 2013; Zhang et al.,
2016), or M219/NZEH (Read et al., 2013), are closely grouped
together in phylogenies (see later), although they have been main-
tained at and transferred between culture collection centers and
laboratories for 20 yr or longer.

The mitogenome and plastome median size are 28.8 kb
(25.3–31.1 kb except 45.4 kb in RCC1296) and 105.3 kb
(105.3–109.2 kb), respectively. The median GC contents of
whole genomes, mitogenomes, and plastomes are 63.4% (53.4–
65.9%), 26.6% (26.0–31.3%), and 36.8% (36.7–37.5%),
respectively (Table S1). The whole-genome GC contents of
Emiliania (61.3–65.9%) are generally higher than those of
Gephyrocapsa (G. muellerae: 53.4%; G. oceanica: 55.3 and
60.6%; G. parvula: 60.7 and 61.1%; G. ericsonii: 64.34%), but
the mitogenome GC contents of Emiliania (26.0–28.6%) are
mostly lower than those of Gephyrocapsa (28.5–31.3%).

The mean pairwise synonymous substitution rates (dS) from
high to low are nuclear genome (0.0334), mitogenome (0.0289),
and plastome (0.0235) (Table 1). The average dN/dS values of
all three genomes are far below 1 (nuclear: 0.100 (0.000–1.212);
mitochondrial: 0.055 (0.000–0.606); plastid: 0.055 (0.000–
0.478); Table S2), indicating the coding sequences are generally
under purifying selection (Yang & Bielawski, 2000). The dN/dS
value of one nuclear gene, EOD22827 (EMIHUDRAFT
447689; a cold-shock protein), is > 1, which is suggestive of
strong diversifying selection.

Nuclear core-gene phylogeny

To avoid confounding effects of gene paralogy, we only included
putatively single-copy genes shared by the nuclear genomes. The
ML phylogeny inferred from the concatenated alignment of the
coding sequences (Fig. 1b) is largely congruent with the trees
inferred using coalescent methods (Dataset S3), as well as the
ones inferred using other derived datasets (e.g. only third codon
positions), partitions, and evolutionary models. No conflict was
observed between the trees at any nodes with strong support
(SH-aLRT support ≥ 80% and UFBoot support ≥ 95%
(IQ-TREE 2), bootstrap support ≥ 70% (ASTRAL-III and
SVDQUARTETS), or posterior possibility ≥ 0.95 (ASTRAL-III)).

The ML phylogeny divides the Emiliania–Gephyrocapsa strains
into six major clades: GOC, GMU, GEP, EHB, EHA2, and
EHA1 (Fig. 1b). Overall the nuclear genome phylogeny reflects
the evolution of observable traits – morphological, physiological,
or ecological. Large, medium, and small Gephyrocapsa cells corre-
spond to clades GOC, GMU, and GEP, respectively. Gephyro-
capsa oceanica (GOC) is inferred as the earliest divergent lineage
within Emiliania–Gephyrocapsa based on midpoint rooting,
which is consistent with previous studies (Bendif et al., 2019;
Filatov et al., 2021). The other three Gephyrocapsa species are in
two clades, GMU (G. muellerae) and GEP (G. ericsonii and G.
parvula). Together they form a clade (GMEP) sister to the

strongly supported monophyletic species E. huxleyi (EHUX).
Within EHUX, two well-supported clades with different coccol-
ith morphology are recognized – EHB with lightly calcified coc-
coliths (morphotypes B and O) and EHA with heavily calcified
coccoliths (morphotypes A and R). Each of them consists of two
subgroups: the Atlantic subgroup EHB1, Pacific EHB2, temper-
ate EHA1, and low-latitude EHA2. According to the mean sea
surface temperatures (SSTs) between 1982 and 2010 (Fig. 1a)
and the reconstructed ancestral temperatures (Fig. 1c), Gephyro-
capsa clades are within the range of SST 18–22°C. EHB (SST
9.0–12.7°C) and EHA1 (SST 2.6–16.7°C) are distributed in
temperate and even artic zones, whereas EHA2 is found in much
warmer tropical regions (SST 20.9–26.4°C) similar to the ances-
tral state of EHUX as inferred from fossil records (Filatov et al.,
2021).

Organellar genome diversity and phylogenies

In addition to the published sequences of CCMP373 and
CCMP1516, we successfully assembled complete or near-
complete organellar genome sequences, including a total of 27
plastome and 25 mitogenome (excluding M219 and B39 which
had insufficient mitogenome reads) sequences (Table S1). We
inferred the phylogenies of mitogenomes and plastomes from the
concatenated alignments of their coding (Fig. 2) and whole
genome sequences (Dataset S2) using the IQ-TREE ML method
with different models and partitions as well as two coalescent
methods, which resulted in largely congruent topologies for each
organelle. Several well-supported clades can be recognized in the
mitogenome and plastome phylogenies, which are additionally
supported by some phylogenetically informative indels (4–3698
bp; Fig. 2). Following the naming system used for mitochondrial
cox1-cox3 and plastid tufA phylogenies (Bendif et al., 2016), we
named the mitogenome clades α (subdivided into α1 and α2), β,
and γ, and the plastome clades α0 (subdivided into α01 and α02),
β0, γ0, and δ0.

The γ mitogenome of G. oceanica is the most divergent
mitogenome lineage (Fig. 2a) with two distinct 0.8–2.6 kb indels
absent in the other Emiliania–Gephyrocapsa mitogenomes. One
of them contains ORF584, also reported in Chrysochromulina
(Nishimura et al., 2014), and the other contains partially dupli-
cated nad3 and cox2 genes. The mitogenome size and GC con-
tent are notably different between the two G. oceanica strains
(RCC3711: 28.2 kb, 28.9%; RCC1296: 45.4 kb, 31.3%). The
much larger size in RCC1296 is due to the presence of several
unique regions, including a 2419-bp insertion upstream of exon
a of cox1, a 2595-bp insertion in cob, a 758-bp insertion between
nad2 and nad3 that includes partially duplicated atp6 and
ORF104, and a 8271-bp insertion in the second intron of cox1
that contains ORF627 and ORF636, which are also found in the
noncalcifying haptophytes Chrysochromulina (Nishimura et al.,
2014) and Diacronema (Hulatt et al., 2020), respectively (Fig.
S1; Notes S1).

The β mitogenomes mainly occur in temperate strains (SST
9.0–15.0°C), including all members of the nuclear clade EHB,
more than half of EHA1 strains, and GMU. The α2
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mitogenomes are from strains distributed in the tropics of South
Pacific (SST 19.6–26.4°C), including five out of six EHA2
strains and one GEP strain. The α1 mitogenomes are geographi-
cally widely distributed (SST 2.6–23.1°C) and found in four
EHA1, one EHA2, and two GEP strains (Fig. 2a).

Different from the nuclear and mitogenome phylogenies,
GOC plastomes are in two distinct lineages, γ0 and α0. In the
plastome phylogeny with midpoint rooting (Fig. 2b), γ0 is less
divergent from α0 than the β0 and δ0 plastomes, suggesting the lat-
ter two evolved much faster and/or diverged much earlier than
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the other types of plastomes. The β0 plastomes are found in
GMU and temperate northern hemisphere strains of EHB and
EHA1. The δ0 lineage is unique to RCC1216 and its derived
haploid strain RCC1217. These two highly divergent plastome
lineages have slightly larger genome sizes (β0: 107.0–109.2 kb; δ0:
109.0 kb) than the other E. huxleyi (all 105.3 kb) and Gephyro-
capsa (105.3–107.1 kb) plastomes (Table S1). The α02 is mainly
found in low-latitude EHUX (EHA2) plus one GEP strain. The
α01 clade is the most heterogeneous in terms of its corresponding
nuclear clades, which include GOC, GEP, EHA2, and EHA1
(half of the strains).

Phylogenomic networks and organellar recombination

To examine the congruence of phylogenetic signals from differ-
ent genes and single nucleotide polymorphisms (SNPs) within
the nuclear and organellar genomes, gene and site concordance
factors (Minh et al., 2020a) were calculated for the nodes in the
ML phylogenies with strong SH-aLRT or UFBoot supports (Figs
1b, 2). Overall, most major clades in the ML phylogenies (i.e.
nuclear GOC, GEP, EHB; mitochondrial α, β, γ; and plastid α0,
β0, δ0) are supported by at least a quarter of genes and three-
quarters of decisive sites. In some rare cases, alternative quartets
were strongly supported. One notable case in the nuclear phy-
logeny is that 40% of the genes support GMU and GEP as sister
groups and 39% support either GEP or GMU as sister to EHUX.
The discordance among gene trees was also revealed by the
nuclear super-network inferred from gene trees (Fig. 3a). Never-
theless, in addition to ML trees, the sister relationship between
GMU and GEP is strongly supported by trees inferred using two

different coalescent methods (SVDQUARTETS: bootstrap support
99%; ASTRAL: bootstrap support 92%, posterior possibility 0.99)
and the neighbor-net inferred from ML distance (Fig. 3b). The
nuclear phylogenomic grouping of GMU and GEP is therefore
well supported, despite the relatively short branch uniting these
two lineages (Fig. 1b).

Another relationship with notable conflicts is the monophyly
of mitochondrial clade β. Although 52% of the genes support the
clade of L, ARC30-1, and RCC175 as sister to the other β
mitogenomes (Fig. 2a), 14% of the genes support it is more
closely related to clade α. This discordance is evident in the
mitogenome neighbor-net (Fig. 3c). Among the two coalescent
methods, ASTRAL strongly supported the monophyly of β (boot-
strap support 100%, posterior possibility 1.00), but the
SVDQUARTETS bootstrap support is only 61%. To resolve these
conflicting signals, we further tested recombination in mitochon-
drial genomes using various methods implemented in RDP5 v.5.5
(Martin et al., 2021) and found clear evidence for a recombined
origin of L, ARC30-1, and RCC175 mitogenomes. One recom-
bination breakpoint is located around the spacer between atp6
and ORF104 and the other in the highly repetitive region
between trnI and rps12. The sequence of the larger fragment (c.
18 kb) is highly similar to the other β mitogenomes, whereas the
smaller fragment (c. 9 kb) is more closely related to clade α (Fig.
S3). Recombination with an unknown source was also detected
in the mitogenome of RCC1296, at the sequences flanking its
unique 758 bp insert between nad2 and nad3. Some putative
recombination signals were found in almost all strains at the
highly repetitive region between trnI and rps12, which could not
be well aligned and was excluded from the alignment dataset for

Table 1 List of alignment datasets and sequence substitution rates.

CDS
Alignment length
(bp)

GC
(%)

Missing data and gap
(%)

Informative
codons

Informative
sites

Substitutions per
site dS dN/dS

Nuclear CDS 132 92 025 67.14 12.86 2895 3277 0.0101 0.0334 0.1000
Mitochondrial
CDS

20 15 519 30.51 0.61 394 406 0.0074 0.0289 0.0551

Whole
mitogenome

— 28 090 28.53 4.68 — 981 0.0110 — —

Plastid CDS 112 79 062 37.37 0.25 1329 1345 0.0060 0.0235 0.0552
Whole plastome — 108 119 36.82 2.53 — 1898 0.0062 — —

CDS, coding sequence.

Fig. 1 Geographical distribution and nuclear phylogeny of Emiliania–Gephyrocapsa strains included in this study. (a) The geographical origins of the 29
stains on a world map showing the mean sea surface temperature (SST) from 1982 to 2010. The SST source data from National Centers for Environmental
Information, National Oceanic and Atmospheric Administration, USA, were analyzed and visualized in R (R Core Team, 2021). Strains in different nuclear
clades are represented by different colors and symbols. (b) The maximum likelihood (ML) phylogeny of the nuclear genome was inferred from a
concatenated alignment of 132 putative single-copy genes with partitions and codon models selected by PARTITIONFINDER and presented with midpoint root-
ing. Branches with both SH-aLRT support ≥ 80% and UFBoot support ≥ 95% are thickened. For branches with SH-aLRT support ≥ 80% or UFBoot sup-
port ≥ 95%, five numbers are shown: SH-aLRT support, UFBoot support, SVDQUARTETS bootstrap support, gene concordance factor, and site concordance
factor (all in percentage). ‘-’: the topology is not supported by the SVDQUARTETS coalescent phylogeny. Six major clades are recognized and colored. GOC
(Gephyrocapsa oceanica), GMU (Gephyrocapsa muellerae), GEP (Gephyrocapsa ericsonii and Gephyrocapsa parvula), EHB, EHA2, and EHA1 (Emiliania

huxleyi). The major clades in the mitogenome and plastome phylogenies (Fig. 2), morphotypes, and geographic origins (northern (N)/southern (S) hemi-
sphere and Pacific (PAC)/Atlantic (ATL) Oceans) are also indicated for each strain. NA: not available. (c) Ancestral state reconstruction of SST based on the
fastAnc function in the R package PHYTOOLS (Revell, 2012).
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inferring phylogenies. We also inferred the plastome neighbor-
net based on the ML distances (Fig. 3d). In contrast to
mitogenomes, no strong signal of recombination was detected
among the plastomes, and the clades recognized in the ML phy-
logeny (Fig. 2b) are also well separated from each other in the
neighbor-net (Fig. 3d).

In addition, the presence of hybridizations (including intro-
gressive hybridizations) was tested using HYDE v.0.4.3 (Blis-
chak et al., 2018). When G. oceanica was set as the outgroup,
no admixture was detected among the clades GMU, GEP,
EHA, and EHB based on the nuclear dataset (Bonferroni cor-
rected P-values all > 0.1; Table S3). When all three genomes
were combined in one analysis based on the nuclear topology,
GEP was inferred as a mixture of EHUX (EHA or EHB) and
GMU, with a higher probability that it is sister to EHUX
(γ̂ > 0.5; EHA–GMU γ̂ = 0.836, EHB–GMU γ̂ = 0.761),
and EHA is a mixture of EHB and GMEP (GMU or GEP),
with a higher probability that it is sister to EHB (EHB–GMU
γ̂ = 0.919) or GEP (EHB–GEP γ̂ = 0.400). However, the γ̂
value is biased due to dataset sizes nonproportional to the
genome sizes, and the degree of hybridization of different
strains within a clade is not uniform.

Intergenomic comparisons of tree topologies

We compared the nuclear, mitochondrial, and plastid ML trees
in pairwise tanglegrams, which reveal widespread discordance at
different phylogenetic depths among the three genomes (Fig. 4).
In both nuclear and mitochondrial phylogenies, the two GOC
strains RCC3711 and RCC1296 form a distinct clade sister to all
the other taxa (Fig. 4a), whereas in the plastid phylogeny,
RCC3711 remains distinct (γ0), but the other strain RCC1296 is
firmly nested within clade α0 (Fig. 4b,c). The phylogenetic place-
ments of the other four Gephyrocapsa strains show even starker
nuclear-organellar incongruence. They form a well-supported
clade (GMEP) in the nuclear tree and are subdivided into the sis-
ter clades GMU and GEP, where G. ericsonii (RCC4032) is
closer to one G. parvula strain (RCC4033) than to the other
(RCC4034). In contrast to their monophyly in the nuclear phy-
logeny, they are scattered across each of the organellar phyloge-
nies, with RCC4032 and RCC4033 both located (but not as
sister groups) within α1 and α01, RCC4034 as the most basal lin-
eage in α2 and α02, and RCC3370 placed in β and β0.

All members of the lightly calcified temperate clade EHB are
nested within β and β0, which contain other temperate strains
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Fig. 2 Phylogenies of organellar genomes of Emiliania–Gephyrocapsa. (a) The mitochondrial maximum likelihood (ML) tree inferred from a concatenated
alignment of 20 coding genes. (b) The plastid ML tree inferred from a concatenated alignment of 112 coding genes. Both ML trees were midpoint-rooted.
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(a) Nuclear super-network (b) Nuclear neighbor-net

(c) Mitochondrial neighbor-net (d) Plastid neighbor-net
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including GMU and certain EHA1 members. All South Pacific
members of EHA2 have roughly the same phylogenetic relation-
ships among them across all three genomes. In both organellar
trees, one G. parvula strain, RCC4034, consistently forms the sis-
ter lineage to these EHA2 strains. However, CCMP371, the only

EHA2 member from North Atlantic, is most closely related to G.
ericsonii and nested in clades α1 and α01.

The members of EHA1 possess either an α1 or β mitogenome
and an α01, β0, or δ0 plastome. There is clear phylogenomic dis-
cordance, both cyto-nuclear and inter-organellar (Fig. 4c). For
example, NZEH, CCMP379, and 92E have β mitogenomes but
α01 plastomes. Another peculiar case is CCMP373, with the
mitogenome nested within α1 and plastome within α02. A partic-
ularly notable lineage is formed by RCC1216 and its haploid
strain RCC1217 derived from laboratory culture about 22 yr ago
(von Dassow et al., 2009). They are deeply nested within EHA1
and α1, but form their own distinct clade δ0 in the plastome
phylogeny (Fig. 2b), which is highly divergent from all the
other plastomes and likely represents an early-diverging plastome
lineage.

By comparing the distribution of individual strains across the
major clades in each tree, nuclear–mitochondrial–plastid discor-
dance can be identified at the level of major clades when one
strain is placed in unmatched clades. With the nuclear clades as
the reference, the matching nuclear/mitochondrial/plastid clades
are GOC/γ/γ0, EHB/β/β0, EHA1/α1/α01, and EHA2/α2/α02
(coded with the same colors in Figs 1b, 2), with GMU, GEP and
δ0 having no matching clades in the other trees. Based on occur-
rence of a strain in matching or unmatched clades, it can be clas-
sified into one of the four types (Fig. 5): (1) concordance
between major clades (occurring in matching clades across the
three genomes); (2) cytonuclear discordance (nuclear clade
unmatched with both organellar clades, which are matching); (3)
inter-organellar discordance with the plastome clade unmatched
with the other two; and (4) inter-organellar discordance with the
mitogenome clade unmatched with the other two.

Among the 26 strains found in all three trees, 12 occur in
matching clades (Fig. 5). They include M217, AWI1516, and
CCMP1516, which share the same laboratory origin. It should
also be pointed out that this type of concordance only takes into
account clade matching but not relationships between and within
these clades, which can differ greatly among the three trees. Such
topological differences include, for example, the sister group rela-
tionship between α0 and γ0 in the plastome tree but EHA/α and
EHB/β in the others, as well as the different positions of the sub-
clade formed by L, ARC30-1, and RCC175 within β and β0 (a
basal position in β but a nested position in β0). Given that these
conflicting topologies were not considered, the distribution of 14
out of 26 strains in unmatched clades (Fig. 5) merely depicts part
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Fig. 4 Tanglegrams visualizing the discordance between the maximum
likelihood (ML) phylogenies of nuclear, mitochondrial, and plastid
genomes of Emiliania–Gephyrocapsa. (a) Nuclear and mitochondrial trees.
(b) Nuclear and plastid trees. (c) Mitochondrial and plastid trees. Only
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of the phylogenomic discordance among the three compart-
ments.

Discussion

Nuclear–mitochondrial–plastid discordance

The nuclear genome phylogeny (Fig. 1) slightly differs from
those of two earlier studies (Read et al., 2013; Bendif et al.,
2019), but is consistent with recently published reference-based
analysis of whole genomes (Filatov et al., 2021). Both this (Fig.
3a; Table S1; Dataset S3) and previous studies (Bendif et al.,
2019; Filatov et al., 2021) found little or only modest discor-
dance between nuclear genes and weak signals of nuclear
hybridization or introgression. Similarly, there is little intrage-
nomic discordance within most organellar genomes, suggesting
the phylogenetic trees of concatenated alignments can generally
illustrate the whole-genome evolutionary history of organellar
haplotypes.

In terms of intergenomic discordance across major clades (Fig.
5), cytonuclear discordance is found in all four GMEP and four
EHUX strains (Notes S2). Cytonuclear discordance is the best
studied type of intergenomic discordance, partially because most
studies focused on plastid-less eukaryotes or only the nuclear and
one organellar genome. Inter-organellar comparisons can also be
challenging in plants due to frequent mitogenome rearrange-
ments (Rose et al., 2021). Here we illustrate the extent of cyto-
plasmic incongruence at the whole-genome level in algae,
identifying strains with unmatched plastome (RCC1296,
RCC1216, and RCC1217) or mitogenome (CCMP379, 92E,

and NZEH) clades. The extent of inter-organellar discordance in
these microalgae has rarely been observed in other photosynthetic
eukaryotes with phylogenomic analyses of all three genomes. For
example, the angiosperm genus Heuchera is well known for its
frequent hybridization and cytonuclear discordance (Soltis &
Kuzoff, 1995), but it has largely congruent mitogenome and plas-
tome phylogenies (Folk et al., 2017). Extensive cytonuclear dis-
cordance and overall inter-organellar congruence are also seen in
Sphagnum mosses (Meleshko et al., 2021).

Evolutionary processes underlying intergenomic
discordance

Rampant nuclear–mitochondrial–plastid discordance in Emilia-
nia–Gephyrocapsa was likely caused by a combination of evolu-
tionary processes, including recombination, introgression, and
ILS. Organellar genomes were traditionally assumed to be nonre-
combining, but intermolecular recombination has been docu-
mented for mitogenomes of animals, fungi, and plants (Barr
et al., 2005; White et al., 2008; Fritsch et al., 2014) and plas-
tomes of plants (Wolfe & Randle, 2004; Sullivan et al., 2017).
Here we provide strong evidence for inter-haplotype mitogenome
recombination in L, ARC30-1, and RCC175, which have a
major β fragment and minor α fragment (Figs 3c, S3). This clear
sign of past mitochondrial heteroplasmy suggests polymorphic
haplotypes can co-exist in one cell. The absence of heteroplasmy
in all 29 sampled strains indicates that heteroplasmy is uncom-
mon or transient or that heteroplasmy in the original field-
isolated cells has been lost due to organellar sorting at each cell
division and long-term laboratory maintenance. Transient

All three genomes are 
in matching clades

Cytonuclear 
discordance

Inter-organellar discordance 
(with unmatched plastome)

Inter-organellar discordance 
(with unmatched mitogenome)

12
(46%)

8
(31%) 3

(12%)

3
(12%)

nucleusmitochondrion plastid

unmatched

nucleus mitochondrionplastid

unmatched

nucleus mitochondrion plastid

unmatched

nucleus mitochondrion plastid
matching

Fig. 5 Summary of phylogenomic
concordance and discordance patterns of 26
Emiliania–Gephyrocapsa strains based on
distribution across major nuclear,
mitochondrial, and plastid clades. The major
clades of nuclear genomes (GOC, GMEP,
EHB, EHA1, and EHA2), mitogenomes (γ, β,
α1, and α2), and plastomes (δ0, γ0, β0, α01 and
α02) are defined in Figs 1 and 2, with the
‘matching clades’ of different genomes
(GOC/γ/γ0, EHB/β/β0, EHA1/α1/α01, and
EHA2/α2/α02) coded with the same color.
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mitogenome heteroplasmy is found in budding yeasts after syn-
gamy, where mitochondrial fusion makes inter-haplotype recom-
bination possible (Fritsch et al., 2014). The variably shaped
mitochondria of Emiliania–Gephyrocapsa probably have dynamic
fusion and fission (Uwizeye et al., 2021), whereas the plastid is
generally a single compartment. This might explain the observa-
tion of only mitogenome but not plastome recombination in this
study.

The vast majority of discordant patterns can be attributed to
introgression and ILS (Fig. 6). It was previously suggested that
introgressive hybridization might have caused incongruent
topologies of individual gene trees in these microalgae (Bendif et
al., 2015, 2016). Here the recombination-based evidence of past
heteroplasmy further indicates that hybridization can combine
cytoplasmic components (organelles) from the two gametes. In
addition to inter-haplotype recombination, another possible out-
come is random loss of the haplotype from one gamete. In that
case, if the nuclear genome is inherited only from the other
gamete due to some unknown mechanism, the nuclear and this
organellar genome would be unmatched (Fig. 6c), resulting in
apparent replacement of the organellar genome by one captured
from another lineage (e in Fig. 6b). Some possible examples of
strains with organellar captures include the four GMEP strains
with matching mitogenome and plastome clades. The original
cytoplasm of L, ARC30-1, and RCC175 was probably α1/α01,
matching their EHA1 nuclear genomes, but it might have been
fused with β/β0 organelles, completely replacing α01 plastome and
generating an α1-β recombined mitogenome. The ancestor of
RCC1296 might have been fused with α1/α01, but only the α01
plastome was captured whereas the α1 mitogenome was lost. In
contrast, 92E, CCMP379, and NZEH captured only the β

mitogenome but not the β0 plastome. Many organellar introgres-
sions involve EHB and EHA1 clades, each being equally repre-
sented in Atlantic and Pacific Oceans, and the introgressions led
to cells with EHA1 nuclear genomes capturing β/β0 organellar
genomes, but not vice versa. This unidirectional introgression
might be partially due to more EHA1 strains sampled than EHB,
but it is possible that EHB nuclei only co-exist with β/β0
organelles or EHA1 nuclei are more receptive to divergent
organellar genomes.

A combination of low nuclear intragenomic and strong mito-
nuclear or plastid-nuclear discordance has also been observed in
other eukaryotes (Folk et al., 2017; Sarver et al., 2021). The sub-
stantial effect of introgressive hybridization on mitochondrial but
not nuclear genomes in some animals has been explained by
mechanisms such as sex-linked biases, negative selection against
nuclear introgression, and adaptive introgression of mitogenomes
(Toews & Brelsford, 2012; Bonnet et al., 2017). However, coc-
colithophores are haplodiplontic (Frada et al., 2019), alternating
between diploid and haploid cells that can reproduce asexually
through mitosis, and they are apparently isogamous (Houdan et
al., 2004). Without egg-sperm or any sexual dimorphism, coccol-
ithophores seem much less likely than animals or plants to have
sex-linked biases. In addition, the average dN/dS of coding genes
is below 0.1 for both organellar genomes, suggesting the organel-
lar genes are generally under purifying selection. Unlike the
nuclear phylogeny, there is no apparent associations between
organellar phylogenies and geographical distribution or physical
environments. These observations suggest that some other mech-
anisms are responsible for such disparity in the amount of
introgression between nuclear and organellar genomes in
coccolithophores.
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Introgression (including organellar capture) can explain much
of the observed nuclear–mitochondrial–plastid discordance, but
we cannot exclude potential contributions from ILS (Fig. 6). The
presence of δ0 plastomes in RCC1216/RCC1217 clearly demon-
strates divergent organellar haplotypes can be found within E.
huxleyi, a species with extremely large population size (Filatov,
2019; Filatov et al., 2021). While δ0 in RCC1216 could be cap-
tured from an unsampled donor lineage, an alternative explana-
tion is the existence of ancient polymorphic haplotypes in E.
huxleyi populations where the rare δ0 was inherited by RCC1216.
The cytonuclear discordance in GEP can be explained by three
recent events of organellar capture in GEP strains, where
RCC4034 captured α2/α02 organelles and RCC4032 and
RCC4033, sisters in the nuclear phylogeny, each captured differ-
ent α1/α01 haplotypes. However, an alternative scenario is that
the ancestral GEP population had sampled different α/α0 haplo-
types, already diverged into α1 and α2 mitogenomes and α01 and
α02 plastomes, which were later sorted into the three GEP strains.
With the separation of GEP and EHUX α/α0 haplotypes since
the ancient introgression, this scenario might better explain the
more basal positions of GEP strains in α1, α2, α01, and α02. In
addition, ILS can explain why RCC4032 and RCC4033 do not
cluster together in the organellar phylogenies despite their well-
supported sister-group relationship in the nuclear tree. One
aforementioned unknown in coccolithophore hybridization is
how it impacts organellar genomes while barely affecting nuclear
genomes. The patterns of ILS, however, can be independent for
each genome and cause strong cytonuclear or inter-organellar dis-
cordance despite low nuclear intragenomic discordance. The ran-
dom segregation of organellar genomes during cell divisions also
has a potential role in evolution by creating segregational drift, as
shown for multicopy plasmids (Ilhan et al., 2019).

Implications for coccolithophore biology

The phylogenomic analyses of the three genomes provide
important insights into coccolithophore biology and life cycles.
Mitogenome inter-haplotype recombination points to
biparental inheritance and fusion of mitochondria following
plasmogamy in coccolithophores. Isogamy, fusion between
equally sized gametes, and biparental inheritance likely con-
tributed to the rampant discordance in coccolithophores. High
mito-nuclear discordance has also been reported from isoga-
mous yeasts (De Chiara et al., 2020) with known mitochon-
drial biparental inheritance, fusion, and recombination (Fritsch
et al., 2014). Biparental inheritance of cytoplasmic components
coupled with possible recombination or differential loss of hap-
lotypes would mean that the cytoplasm is not inherited as a
single unit and that introgression can greatly entangle organel-
lar genome phylogenies. This is in contrast with eukaryotes
having canonical uniparental inheritance with only occasional
leakage from the other parent. Nonetheless, it should be noted
that isogamy is not necessarily associated with biparental
organellar inheritance. Chlamydomonas reinhardtii has uni-
parental inheritance of both organelles (Miyamura, 2010),
whereas isogamous multicellular brown algae (e.g. Ectocarpus

siliculosus) have biparentally inherited plastids but maternally
inherited mitochondria (Motomura et al., 2010). Further
research should be undertaken to investigate if coccolithophore
plastids are biparentally inherited like their mitochondria.

In addition to organelle transmission, the mode of nuclear
genome inheritance can be an important factor in intergenomic
discordance. Given the low nuclear intragenomic discordance
despite introgressive hybridization, we hypothesize that coccol-
ithophore gamete mating leads to plasmogamy, but not necessar-
ily karyogamy and retention of biparental nuclear genomes. It
is similar to androgenesis (Hedtke & Hillis, 2011; Schwander &
Oldroyd, 2016) and gynogenesis (sperm-cell-dependent
parthenogenesis) (Schlupp, 2005; Jacquier et al., 2020) in some
animals and plants. Because of the lack of heteromorphic game-
tes, we term this kind of false syngamy, which results in cytoplas-
mic but not nuclear hybridization, ‘unigenesis’. The significance
of unigenesis is unclear, but it is possible that gamete fusion
between strains with large nuclear genome size differences (Read
et al., 2013) might fail to combine the two haploid genomes,
eventually eliminating one of them. In contrast to normal syn-
gamy, unigenesis would enable organellar but not nuclear intro-
gression between distant lineages.

Besides enormous population size, isogamy, and unigenesis,
the unicellular haplodiplontic life cycle also sets coccolithophores
apart from animals and plants. Animals are typically diplontic,
whereas most plants alternate between the diploid sporophyte
and haploid gametophyte with one dependent on the other. In
contrast, both haploid and diploid stages of coccolithophores are
free-living unicellular organisms that can reproduce asexually
(Frada et al., 2019). It was shown that haplodiploid animals
(haploid males and diploid females) exhibit reduced nuclear
introgression relative to mitochondrial introgression, leading to
mito-nuclear incongruence (Lohse & Ross, 2015; Patten et al.,
2015). The haplodiplontic life cycle of coccolithophores might
also contribute to intergenomic discordance. One possibility is
that haploid coccolithophores are fully independent, which
would allow for more efficient selection against any deleterious
genes or gene combinations during the haploid phase (Otto &
Gerstein, 2008) and thus reduce the chances of nuclear introgres-
sion.

With their unique calcifying physiology and global ecological
importance, coccolithophores have been widely used for studies
on cell biology (e.g. Taylor et al., 2017) and viral infection of
algae (e.g. Ku et al., 2020). High-throughput sequencing has
greatly advanced our knowledge on the genomics of these
microalgae, leading to discoveries about their pangenome varia-
tion (Read et al., 2013), speciation mode (Bendif et al., 2019;
Filatov et al., 2021), and evolution of extremely large popula-
tions (Filatov, 2019). Here we further establish coccolithophores
as an underexplored unicellular model for studying the relation-
ships between nuclear, mitochondrial, and plastid phylogenomic
histories. The extensive phylogenetic discordance among these
compartmentalized genomes hints at intriguing modes of repro-
duction and life cycling in coccolithophores, of which future
research would also shed light on the biology of other microalgae
and unicellular eukaryotes.
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