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Obesity, a growing chronic metabolic disease, greatly increases the risk of metabolic
syndrome which includes type 2 diabetes, fatty liver and cardiovascular diseases.
Obesity-associated metabolic diseases significantly contribute to mortality and reduce
life expectancy. Recently, innate lymphoid cells (ILCs) have emerged as crucial regulators
of metabolic homeostasis and tissue inflammation. This review focuses on the roles of
ILCs in different metabolic tissues, including adipose tissue, liver, pancreas, and intestine.
We briefly outline the relationship between obesity, inflammation, and insulin resistance.
We then discuss how ILCs in distinct metabolic organs may function to maintain metabolic
homeostasis and contribute to obesity and its associated metabolic diseases. The
potential of ILCs as the therapeutic target for obesity and insulin resistance is
also addressed.

Keywords: innate lymphoid cells, obesity, insulin resistance, immune regulation, metabolic syndrome
1 INTRODUCTION

Obesity is a chronic metabolic disease caused by the excessive accumulation of fat. The global
prevalence of obesity is overgrowing. The World Health Organization (WHO) estimates that obese
people worldwide have nearly tripled since 1975. From 1975 to 2014, the prevalence of obesity has
increased from 3.2% to 10.8% in adult males and from 6.4% to 14.9% in adult females worldwide (1).
And the prevalence of obesity among adolescents in the 5-19 years age group has dramatically
increased from 1975 to 2016 worldwide. Specifically, the prevalence of obesity has increased from
0.7% to 5.6% in girls and 0.9% to 7.8% in boys (2). Obesity increases all-cause mortality in four
continents (3, 4). Metabolic syndrome is a condition characterized by obesity, insulin resistance,
hypertension, and hyperlipidemia, which leads to the development of a range of diseases, including
type 2 diabetes mellitus, cardiovascular disease, non-alcoholic steatohepatitis and cancer. These
metabolic diseases are the leading causes of death nowadays. Obesity thus is a public health and
clinical challenge worldwide. Exploring the pathophysiological mechanisms underlying obesity is
thus critical for the development of efficient therapeutic strategies to combat this disease.

Insulin resistance, in short, is that insulin cannot function normally. The exact amount of insulin
fails to increase the uptake and utilization of glucose in adipose tissue, liver and muscle. The etiology
of insulin resistance is recognized as chronic tissue inflammation (5). Several potential mechanisms
underlying the development of obesity- associated low-grade inflammation have been proposed.
Firstly, obesity increases gut permeability, and gut microbiota-derived substances trigger the
n.org April 2022 | Volume 13 | Article 8551971
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inflammation signals by activating receptors such as Toll-like
receptor 4 (6). Secondly, obesity elevates various lipids in
circulation such as free fatty acids, leading to subsequent
activation of TLR2/NFkB pathways (7). Besides, the perturbed
phosphocreatine/creatine metabolism in the obese state results in
increased transcription of multiple pro-inflammatory genes (8).
Thirdly, obesity induces the rapid expansion of adipocytes,
which induces adipocyte death, hypoxia and mechanical stress
between the cell and the extracellular matrix (ECM), resulting in
inflammation (7). Inflammatory signaling such as NFkB and c-
Jun N-terminal kinase (JNK) can directly or indirectly block
insulin action. For example, JNK phosphorylates insulin receptor
substrates at serine/threonine sites rather than the tyrosine site,
thereby inhibiting downstream signals of insulin receptors (9).
The first evidence that obesity is connected with inflammation is
the discovery that TNF-a is overexpressed and promotes insulin
resistance in obese mice (10). Later, macrophages and their pro-
inflammatory polarization were shown as key risk factors in
obesity (11, 12). Subsequently, many other immune cells, such as
eosinophils and mast cells, were found to participate in the low-
grade chronic inflammation in obesity (13–16). These immune
cells orchestrate the local environment of metabolic organs and
are connected with insulin resistance in obesity (17–20).
Targeting immune pathways in chronic inflammation may
successfully prevent or treat obesity and insulin resistance.

Innate lymphoid cells (ILCs) are a recently identified group of
innate lymphocytes which lack antigen-specific receptors
expressed on T and B lymphocytes (21). On the basis of
developmental pathways, the ILC family have been divided
into five subsets: natural killer (NK) cells, group 1 ILCs
(ILC1s), group 2 ILCs (ILC2s), lymphoid tissue inducer (LTi)
cells, and group 3 ILCs (ILC3s) (22). They are considered as the
innate counterparts of T lymphocytes, which have been
introduced in many reviews (23–25). ILCs reside in the
intestine, lung, adipose tissue, liver, and pancreas, and react
rapidly to environmental stimuli (26). Mature ILCs are activated
by cytokines, alarmins, and inflammatory mediators from
myeloid cells or epithelial cells. For example, NK cells express
a range of NK cell receptors (NKRs) which recognize numerous
ligands on target stressed cells (27–29). IL-12 activates ILC1s,
while ILC2s are stimulated by IL-33 and IL-25 (30). IL-33
induces strong activation of ILC2s through the receptor
suppression of tumorigenicity 2 (ST2) (31, 32). RORgt+ ILC3s
are activated by IL-23 and then produce IL-17 and IL-22 (33, 34).
They quickly respond to stress signals and maintain tissue
homeostasis. However, they may also participate in the
progression of inflammation. Recently, studies have unveiled
the role of ILCs in metabolism. The functions of ILCs in different
metabolic tissues are being actively investigated in depth as a link
between the immune system and the metabolic system.

Obesity-induced chronic low-grade inflammation occurs in
multiple metabolic organs, including adipose tissue, liver,
pancreas, and intestine. Inflammation can lead to tissue
damage, necrosis, and fibrosis. ILCs in these metabolic organs
function to maintain homeostasis or contribute to inflammation.
Here, we focus on the roles of ILCs in obesity and insulin
Frontiers in Endocrinology | www.frontiersin.org 2
resistance, discuss how ILCs in different tissues regulate
metabolic homeostasis to protect against obesity or how they
contribute to inflammation and insulin resistance. Targeting
ILCs and their associated immune pathways may represent a
novel approach to treat obesity and insulin resistance.
2 ILCS IN ADIPOSE TISSUE

Adipose tissue is a dynamic organ regulating the homeostasis of
energy (35). When energy intake exceeds energy expenditure,
excess energy stores in white adipose tissue (WAT) in the form of
triglycerides. In normal circumstances, insulin activates
lipoprotein lipase and inhibits hormone-sensitive lipase and
thus increases absorption and deposition of triglyceride in the
adipose tissue after food intake. However, excessive fat
accumulation leads to adipocytes hypertrophy and hyperplasia
which results in inflammation and insulin resistance in the WAT
(36). In contrast to the white adipocytes whose main function is
storing triglyceride, beige adipocytes are thermogenic cells that
can promote energy consumption (37). Beige adipocytes are
inducible and plastic. When exposed to cold stimulation or b3-
adrenergic receptor agonists, the white adipose tissue can expend
energy by increasing the number of beige adipocytes and
improving their activity. Beige adipocytes exist in WAT and
are differentiated from Myf5 negative adipose progenitor cells or
transformed from mature white adipocytes. They can increase
the body’s energy expenditure and improve glucose and lipid
metabolism, thus becoming promising targets for preventing and
treating obesity and insulin resistance. Recently, Trim et al. have
reviewed that leukocytes in the adipose tissue regulate the
homeostasis of adipocytes and respond to the changes of
nutrition and body temperature (38). Here, we focus on the
function of ILCs in the adipose tissue in both health and obese
associated metabolic disease.

2.1 NK Cells and ILC1s Regulate the
Inflammation in Adipose Tissue
Recent studies showed that NK cells and ILC1s in the adipose
tissue participate in developing inflammation and insulin
resistance in obese mice (Figure 1A). Diet-induced obesity
(DIO) increases NK cell number and induces NK cells to
produce IFN-g and TNFa in the visceral adipose tissue (VAT).
IFN-g and TNFa induce type 1 macrophages (M1 macrophages)
accumulation and promote insulin resistance. Ablation of NK
cells prevents the differentiation of M1 macrophages, reduces
inflammation, and restores insulin sensitivity (Table 1) (40–42),
while expansion of NK cells exacerbates DIO-induced
inflammation and insulin resistance (41). Similarly, IL-12 acts
on IL-12R, activating STAT4, and then induces production of
IFN-g from ILC1s in DIO mice, resulting in the expansion of M1
macrophages and insulin resistance (43). Other than secreting
cytokines, group 1 ILCs constrain macrophages through
cytotoxicity as macrophages express stress ligand of activating
receptor NKG2D. The killing ability of ILC1s is impaired in DIO
mice, changing the proportion of M1 macrophages and anti-
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inflammatory M2 macrophages, leading to subsequent metabolic
disorders (44). Furthermore, a recent study shows that obesity
increases the number of a specific interleukin-6 receptor (IL6R)
a+ NK subpopulation in mice and humans. This specific NK cell
population facilitates obesity and insulin resistance (45). The
exact site of origin, the precursors and the factors to stimulate
IL6Ra+ NK cells, remain unclear. Nevertheless, these results
show that NK cells and ILC1s contribute to obesity and
insulin resistance.
Frontiers in Endocrinology | www.frontiersin.org 3
Human adipose tissue-resident ILC1s include two subsets,
CD56+CD127lo ILC1-like population and CD56dim CD16+

peripheral NK-like subset cells (44). Increased number of
adipose and circulating ILC1s has been detected in obese type
2 diabetes patients. Patients with higher levels of ILC1s are
associated with a greater risk of type 2 diabetes (46). Bariatric
surgery decreases circulating ILC1s numbers and improves
metabolic disorders. Adipose tissue ILC1s of type 2 diabetes
patients promote adipose fibrogenesis and CD11c+ macrophage
A

B

FIGURE 1 | NK cells and ILC1s in the adipose tissue and liver. (A) NK cells and ILC1s produce IFNg and TNFa to induce insulin resistance in obesity by inducing
M1 macrophages and adipose tissue fibrosis. (B) NK cells in the liver prevent liver fibrosis by killing hepatic stellate cells (HSC) or inducing macrophages M1
polarization. In the obese liver, NK cells are more like ILC1s (39). The reduction of NK cell cytotoxicity may benefit the liver in NAFLD.
TABLE 1 | Summary of ILCs depletion strategies.

Animal genotype Ablation of cells

Rag2-/- mice T cells, B cells
Il2rg-/- Rag2-/- mice ILCs, T cells, B cells
Il15-/- Rag2-/- mice ILC1s, NK cells, ILC3s, T cells, B cells
Cre-Ert2 Tg (B6.129 Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J) × Gata3flox/flox mice + 4-hydroxytamoxifen ILC2s, Th2 cells
Rorcgfp/gfp ILC3s, LTi cells, Th17 cells
NKp46-Cre × loxP-stop codon-loxP huDTR + diphtheria toxin (DT) NK cells, ILC1s, NKp46+NKT cells and NKp46+ILC3s
April 2022 | Volume 13 | Article 855197
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activation (47). Besides, IFNg+ NK cells play a role in the
progression of human obesity. IFNg+ NK cells are positively
correlated with inflammation in adipose tissue, plasma glucose
levels, and insulin resistance (48). These data show that ILC1s in
human adipose tissue promote adipose inflammation and
fibrosis in obesity-related type 2 diabetes.

NK cells in obese people are activated, stressed and fail to
proliferate or lyse tumors (49, 50). Obesity makes robust lipid
accumulation in NK cells, inhibiting their mTOR signaling,
blocking their cytotoxic effector functions (51). Interestingly,
physical exercise and caloric restriction can increase NK cell
cytotoxicity in mice (52, 53). These results collectively
demonstrate that the obese environment impairs peripheral
NK cells functions and suggest that metabolic reprogramming
of NK cells may impair immune cell function, increasing the risk
of obesity-related diseases.

Overall, NK cells and ILC1s contribute to insulin resistance in
obesity by inductionofM1macrophages andadipose tissuefibrosis.
Frontiers in Endocrinology | www.frontiersin.org 4
Targeting the pathways ofNKcells and ILC1s in adipose tissuemay
provide new strategies for treating obesity and associated disease.

2.2 ILC2s Regulate Metabolic
Homeostasis in the Adipose Tissue
ILC2s limit obesity and insulin resistance and control the
metabolic homeostasis in adipose tissue (Figure 2). ILC2s in
adipose tissue increase the number of eosinophils and M2
macrophages by type 2 cytokines IL-5 or IL-13 (54).
Eosinophils in adipose tissue maintain M2 macrophages and
thus promote insulin sensitivity and metabolic homeostasis (55,
56). The deficiency of IL-5 significantly reduces visceral adipose
tissue (VAT) eosinophils, increasing obesity and insulin
resistance in high fat diet (HFD) fed mice (54). Further,
infiltration of ILC2s into VAT by IL-25 administration leads to
weight loss and improves glucose tolerance in obese mice.
Consistently, transferring ILC2s into obese mice also shows
that ILC2s prevent diet-induced obesity (57). In addition,
FIGURE 2 | ILC2s in the adipose tissue in lean and obesity state. ILC2s promote the accumulation of eosinophils and M2 macrophages through IL-5 or IL-13 and
thus protect against insulin resistance. ILC2s can also directly promote the beigeing of subcutaneous WAT. ILC2s are regulated by the mesenchymal cells and
adipocytes in the adipose tissue directly or indirectly.
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engagement of glucocorticoid-induced tumor necrosis factor
receptor (GITR) on activated ILC2s with GITR agonist, DTA-
1, induces type 2 cytokines by ILC2s. Experiments of Rag2
deficient mice injected with DTA-1 and adoptive transfer of
adipose ILC2s to GITR-/- mice injected with DTA-1 shows that
engagement of GITR on ILC2s is protective against insulin
resistance. Further, transfer experiment of IL5-/- or IL-13-/-

ILC2s shows that the protective effects of GITR engagement
depends on IL-13 particularly (58). Moreover, ILC2s are present
in para-aortic adipose tissue. Diet-induced obesity reduced the
number of ILC2s in para-aortic adipose tissue. Expansion of
ILC2s improves the progression of atherosclerosis while ablation
of ILC2s exacerbates atherosclerosis . Bone marrow
transplantation experiments showed that the function of ILC2s
on atherosclerosis is dependent on IL-5 and IL-13 (59). Thus,
ILC2s regulate metabolic homeostasis partly through type
2 cytokines.

ILC2s in white adipose tissue (WAT) contribute to
thermogenesis. Strikingly, ILC2s activated by interleukin-33
(IL-33) are sufficient to promote WAT beigeing in
thermoneutral mice. ILC2s secrete IL-13 which targets IL-4R
in PDGFRa+ adipose precursor cells and promotes beige
adipogenesis (60). This research highlights the critical role of
ILC2s and type 2 cytokines in regulating adipose precursor cell
number and fate. Another study shows that ILC2s are present in
human WAT and demonstrates that ILC2s in WAT are
dysregulated in obesity. Notably, this study provides a novel
mechanism by which IL-33-induced ILC2s drive white fat
beigeing. It is not dependent on the eosinophil/IL-4Ra/
macrophage pathway or the adaptive immune system. Instead,
ILC2s express proprotein convertase subtilisin/kexin type 1
(Pcsk1) which processes the production of methionine-
enkephalin (Met-Enk), which directly acts on adipocytes and
promotes beige adipocyte formation (61). In addition, cold
exposure elevates the level of IL-33, ILC2s, and eosinophils in
subcutaneous adipose tissue. Blocking the IL-33 signal reverses
the expression of the thermogenic gene UCP1, highlighting that
ILC2s are involved in cold-induced thermogenesis (62).
Interestingly, a recent study has reported that loss of ILC2s in
adipose tissue drives thermogenic failure in aging. ILC2s are lost
in aging, and an adoptive transfer experiment showed that adult
ILC2s could help old mice resist cold (63). These studies shed
light on the role of ILC2s in regulating metabolism and may
represent a novel approach for treating obesity.

2.3 ILC2s Interact With Local Cells in the
Adipose Tissue
As tissue-resident cells, ILC2s interact with the stromal cells and
adipocytes in adipose tissue to regulate metabolic homeostasis.
White adipose tissue pluripotent mesenchymal cells produce IL-
33, increasing the proliferation of ILC2s and the production of
type 2 cytokine, thus promoting regulatory circuits that maintain
WAT homeostasis (64, 65). Studies by Shan et al. have further
demonstrated (66) that IL-33 is only expressed in DPP4+ cells
and its expression is directly regulated by the b1- adrenergic
receptor signaling pathway and CREB protein. Cold exposure
Frontiers in Endocrinology | www.frontiersin.org 5
rapidly stimulates DPP4+ cells to secrete IL-33, which in turn
induces the proliferation and activation of ILC2s, thereby
promoting white adipose beigeing. IL-33 increases death
receptor 3 (DR3) expression on ILC2s and activates the NF-kB
pathways, thus stimulating ILC2s and protecting against insulin
resistance (67). Besides, activation of ILC2 by IL-33 increases the
expression of PPARg, which is indispensable for the proliferation
and expression of cytokines of ILC2s. Inhibition of PPARg
decreases expression of CD36 and uptake of fatty acids (68).
IL-33 increases the uptake of lipids and glucose of ILC2s to
promote the proliferation of ILC2s in the context of allergen-
driven airway inflammation (69). On the other hand, sST2, the
soluble isoform of the IL-33 receptor ST2, secreted by adipocytes,
attenuates the signaling of IL-33 and disrupts the ILC2
homeostasis in adipose tissue, thereby exacerbating obesity-
associated insulin resistance. Zbtb7b, a negative regulator of
adipocyte expression of sST2, maintains glucose homeostasis
and prevents insulin resistance at a steady-state (70). In addition,
the deficiency of ST2 decreases ILC2s in WAT, resulting in
increased visceral fat, decreased browning, and impairment of
glucose metabolism (71). Meanwhile, adipokine Chemerin and
its receptor chemokine-like receptor 1 (CMKLR1) inhibit
adipocyte cAMP-PKA signaling, interfering with cold-induced
IL-33 secretion and downstream ILC2 activation. This action
thereby inhibits white adipose tissue beigeing, leading to obesity
and metabolic disorders (72). Other than IL-33, pluripotent
mesenchymal cells express the intercellular adhesion molecule
ICAM-1, while ILC2s express its ligand LFA antigen 1 (LFA-1).
This direct interaction also promotes ILC2s and induces their
production of cytokines, which induces mesenchymal cells to
secrete eotaxin and support eosinophil recruitment (73). Besides,
fibroblasts in adipose tissue express a classical cadherin,
cadherin-11, that mediates cell-to-cell adhesion. In Cadherin-
11-deficient mice, the stromal cells produced more IL-33 which
increased the activity of adipose tissue ILC2s and M2
macrophages, thus reducing inflammation, fibrosis, and
glucose intolerance (74). Moreover, adipose mesenchymal cells
express glial-derived neurotrophic factor (GNDF) upon
stimulation by sympathetic nerve terminals through the b2-
adrenergic receptor. GNDF regulates adipose tissue-resident
ILC2s, ameliorating high-fat diet-induced obesity (75).
Although murine intestinal ILC2s express the b2-adrenergic
receptor (b2-AR), which negatively regulates ILC2s responses
(76), the adipose ILC2s are mainly regulated indirectly by the
sympathetic signals through mesenchymal cells. These studies
reveal that mesenchymal cells and adipocytes have a multifaceted
dia logue wi th ILC2s to mainta in type 2 immune
microenvironment in white adipose tissue.

ILC2s also interact with other immune cells through newly
identified pathways in the adipose tissue. After IL-33 treatment,
ILC2s interact with T cells via ICOSL-ICOS, promoting Treg cell
accumulation. On the other hand, IFN-g treatment inhibits ILC2
activation and reduces the interaction of ILC2s and T cells, thus
reducing Treg cell accumulation. Interestingly, this repression
increases with HFD-induced obesity (77). Besides, ILC2s express
OX40 ligand (OX40L), which interacts with OX40 on T cells to
April 2022 | Volume 13 | Article 855197

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Chen et al. Innate Lymphoid Cells and Obesity
sustain Treg cells and Th2 cells responses in adipose tissue after
IL-33 induction (78). Thus, ILC2s mediate type 2 immune
responses, sustaining metabolic homeostasis in a lean state. In
obesity, TNF triggers IL-33-dependent expression of PD-1 on
ILC2s and further recruits and activates PD-L1hi M1
macrophages. PD-1-PD-L1 pathway is responsible for ILC2
destabilization after HFD and results in impaired metabolism
in obesity (79). Besides, a hybrid cytokine IL233 with the
activities of both IL-2 and IL-33 protects mice from obesity-
linked diabetic nephropathy with a more significant
accumulation of Tregs, ILC2s, M2 macrophages, and
eosinophils in VAT (80). This evidence reveals the crosstalk
between ILC2s and other immune cells in adipose tissue,
providing novel targets to ameliorate obesity.

2.4 ILC3s Are Related to Obesity in Human
Adipose Tissue
The function of ILC3s in adipose tissue is less studied. O’Sullivan
has reported that ILC3s are absent in lean or obese mouse white
adipose tissue (43). Consistently, Sasaki et al. have reported that
adoptive transfer of bone marrow cells from Rag2−/− mice into
Il2rg−/−Rag2−/− mice fails to increase ILC3s characterized as
lineage-KLRG1−IL-7Ra+Thy-1+ cells in the adipose tissue (81).
However, studies using single cell RNA-seq and flow cytometry
by Hildreth et al. have recently demonstrated the presence of
ILC3s in human white adipose tissue (82). Importantly, the
frequency and density of ILC3s increases in obese white
adipose tissue compared with healthy people. The frequency
and density of ILC3s are positively correlated with patient BMI.
What’s more, they have identified a group of ILC precursor
(ILCP) cells in human adipose tissue which give rise to ILC1s and
ILC3s, but not ILC2s. Further studies are needed to verify
whether ILC3s regulate the metabolic homeostasis in the lean
state or contribute to the inflammation by expressing LIF,
TNFSF13B and MIF in the obese state. The distinct function
for ILC3s in adipose tissue between mice and human being
suggests that ILCs may not be evolutionarily conserved.
3 ILCS IN LIVER

Non-alcoholic fatty liver disease (NAFLD) is a growing chronic
liver disease worldwide, which can lead to cirrhosis and even
hepatocellular carcinoma (83, 84). The global prevalence of
NAFLD is currently about 25%. Assessing the prevalence of
NAFLD in different geographic regions revealed that NAFLD is
prevalent on all continents, with South America (31%) and the
Middle East (32%) having the highest prevalence, followed by
Asia (27%), North America (24%), and Europe (23%), and Africa
the lowest prevalence (13%) (85). The progression of NAFLD is
closely related to insulin resistance and metabolic syndrome (86).
With the increasing prevalence of obesity, type 2 diabetes, and
metabolic syndrome, NAFLD is expected to become the leading
cause of cirrhosis requiring liver transplantation in the next
decade (87). NAFLD includes a range of liver lesions, including
simple steatosis, steatohepatitis (Non-alcoholic steatohepatitis,
Frontiers in Endocrinology | www.frontiersin.org 6
NASH), and fibrosis. During the progression of NAFLD, innate
immune cells play a significant role (88).
3.1 NK Cells and ILC1s Regulate the
Progression of NAFLD
NK cells account for 30–50% of the total lymphocytes in the
human liver (89). They are important during the progression of
NAFLD. Here we introduce the related studies of NK cells in
different stages of NAFLD.

In the stage of HFD-induced liver steatosis, NK cells produce
osteopontin, which induces hepatic ER stress and promotes
insulin resistance. Ablation of NK cells with neutralizing
antibody can improve HFD-induced ER stress, insulin
resistance, and liver steatosis (90). This study shows a
pathogenic role of NK cells. On contrary, in the liver of obese
mice fed 24 weeks on a high fat and sugar diet, NK cells are less
cytotoxic, more like ILC1s, and seem to be protective against
NAFLD, although the reduction of cytotoxicity increases the
susceptibility to cancer. This shift of liver NK cells to ILC1s
reflect the plasticity of NK cells. Reducing the cytotoxicity by
perforin knockout alleviates the symptoms of NAFLD in
mice (39).

Besides, NK cells prevent NASH progression to fibrosis by
regulating liver macrophages polarization. In the NASH model of
mice fed with a methionine and choline deficient (MCD) diet,
DX5+NKp46+ NK cells increased, which inducedmacrophagesM1-
polarized through the production of IFN‐g by NK cells.
Accordingly, ablation of NKp46+ cells makes macrophage shift
toward M2 phenotypes, which fail to clear damaged cells effectively,
thereby promoting the development offibrosis (91). Besides, genetic
deletion of TNF-related apoptosis-inducing ligand (TRAIL)
receptor reduces inflammatory macrophages in the liver and
suppresses steatohepatitis in FFC (a diet high in saturated fat,
cholesterol, and fructose)-fed mice (92). As the mice used in this
study is whole body knockout of TRAILR, the reduction in
hepatocyte lipoapoptosis may occur after the improved metabolic
niche. And this research can’t identify the tissue-specific roles of
TRAIL signaling. Using tissue- and cell-specific TRAILR-/- mice
may address these problems. Despite the changes of NK cells in
mouse model, in patients with NAFLD confirmed by biopsy, the
number and function of NK cells is not altered, except for the
increased expression of NKG2D onNK cells in NASH patients (93).
Further studies exploring how NASH affects NK cells in humans
is needed.

Many studies reported the protective role of NK cells in liver
fibrosis induced by carbon-tetrachloride (CCl4). Melhem et al.
reported that NK cells can improve liver fibrosis by killing
activated hepatic stellate cells (HSC) (94). HSC are dominant
contributors to liver fibrosis and give rise to 82-96% of
myofibroblasts (95, 96). Radaeva et al. employed the fibrosis
model of mice fed with the 3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC) diet or injected with CCl4. They
further found that NK cells kill activated HSC dependent on
retinoic acid early inducible 1/NKG2D and TRAIL. NK cells tend
to lyse the activated HSC as the activated HSC rather than the
quiescent HSC express the NKG2D ligand (97). Other than
April 2022 | Volume 13 | Article 855197
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ligand for NKG2D, murine and human HSC express the ligand
for NKp46 of NK cells. NK cells kill HSC dependent on NKp46,
and thus ameliorating liver fibrosis induced by CCl4 (98).
Besides, IL-18 and TLR3 ligand activated NK cells kill HSC
through the p38/PI3K/AKT-dependent pathway in vitro (99).
These studies revealed that NK cells protect against the liver
fibrosis by killing HSC.

Besides, NK cells are involved in the development of
hepatocellular carcinoma (100). NK cells are important for the
surveillance of hepatocellular carcinoma. In patients with
hepatocellular carcinoma, the number of NK cells significantly
decreased (101). NK cells are regulated by monocytes and
macrophages by CD48/2B4 axis in hepatocellular carcinoma
(102). Besides, myeloid derived suppressor cells inhibit the
cytotoxicity and production of cytokines from natural killer
cells via the NKp30 receptor in hepatocellular carcinoma
(103). Moreover, fibroblasts inducing NK cells dysfunction
through production of prostaglandin E2 and indoleamine 2,3-
dioxygenase in hepatocellular carcinoma (104). These studies
revealed that multiple pathways lead to the dysfunction of NK
cells and promote the occurrence and development of
hepatocellular carcinoma.

Overall, there are several mechanisms of how NK cells protect
against the progression of NAFLD (Figure 1B) although some
studies reported NK cells play the opposite role. As for the role of
ILC1s in the liver, a study reported that liver ILC1s is protective
against acute liver injury. Intraperitoneally injected with 10%
CCl4 in corn oil at a dose of 10 uL per gram body weight activates
liver ILC1s dependent on DNAM-1 and IL-7R. Activated ILC1s
secrete IFN-g, which is regulated by Adenosine triphosphate
(ATP)-purinergic receptor P2X, ligand-gated ion channel, 7
(P2RX7) signaling. And then, IFN-g induces hepatocytes
expressing Bcl-Xl, thus protecting mice from CCl4-induced
acute liver injury (105).These results suggest that liver ILC1s
are essential for protecting mice from acute liver injury. Notably,
a recent study reported that unlike conventional NK cells which
derive from the hematopoietic stem cells in adult bone marrow,
liver ILC1s develop from Lin-Sca1+Mac1+ pluripotent
hematopoietic hepatocytes which are derived from fetal liver.
IFN-g produced by liver ILC1s themselves promote their in situ
development by acting on IFN-gR+ liver precursor cells, which
forms an IFN-g feedback loop (106). This study revealed that
liver ILC1s are different from conventional NK cells in
developmental pathway and emphasized the unique immune
status of the liver. The role of liver ILC1s in the development of
NAFLD still needs to be explored.
3.2 ILC2s and ILC3s Are Involved in the
Progression of NAFLD
Little is known on the role of ILC2s during hepatic steatosis and
NASH. Main findings are related to fibrosis and tissue repair. In
both humans and mice with hepatic fibrosis, IL-33 expression is
increased. Further, IL-33 is able to cause rodent liver fibrosis. IL-
33 activates liver ILC2s and induces ILC2s expansion. The
proportion of ILC2s in ILCs is low in normal human liver.
However, their number increases when liver fibrosis occurs and
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is directly related to the severity of the disease (107). Liver ILC2s
secretes IL-13 when stimulated by IL-3, IL-25, and TSLP from
hepatocytes, HSCs, and Kupffer cells in response to TLR3
stimulation (108). ILC2-derived IL-13 activates HSC through
IL-4R and STAT6-dependent signaling and thus mediates
hepatic fibrosis (109, 110). These results suggest ILC2s are
involved in liver fibrosis. Targeting ILC2s and modulation of
IL-33 may be therapeutic strategies for treating liver fibrosis.

In CCl4-induced liver fibrosis, the proportion of IL-22+ ILC3
and IL-17A+ ILC3 subsets markedly increased. A Co-culture
experiment with LX-2 cells showed that ILC3s directly promote
LX-2 fibrogenesis by IL-17A and IL-22 (111). However, a recent
study using Rorcgfp/gfp mice and in vitro primary hepatocytes
showed that ILC3s protect from HFD induced steatohepatitis
and IL-22 from ILC3s increases lipid metabolism and suppresses
apoptosis (112). Besides, IL-22 can regulate lipogenesis related
genes and prevent liver steatosis (113). IL-22-Fc treatment
restores liver insulin sensitivity, decreased hepatic triglyceride
and cholesterol levels, and ameliorated liver steatosis in diet-
induce obesity and db/db mice. IL-22-Fc directly functioned on
hepatocytes to induce Stat3 activation in vitro (114). This study
indicates that ILC3s can protect mice from liver steatosis through
producing IL-22. However, whether ILC3s in the liver play a
protective or promoting role in the progression of NAFLD is
worth further investigation.
4 ILCS IN PANCREAS

Pancreas contains exocrine glands and endocrine glands.
Exocrine glands secret pancreatic juice, which has a strong
digestion capacity. Endocrine function is performed by
specialized cells located in the pancreas. These cells aggregate
into clusters and are dispersed in the pancreas, called pancreatic
islets. There are four types of hormone-secreting cells in the
pancreatic islet, a, b, d, and F cells. Among them, a cells secrete
glucagon and b cells secrete insulin. Insulin plays a wide and
complex physiological role in regulation of glucose and lipid
metabolism. Type 1 diabetes mellitus has an early onset
autoimmune disorder, which leads to failure of insulin
secretion. In contrast, Type 2 diabetes mellitus is associated
with obesity and insulin resistance. In the early stages of
insulin resistance, b-cells compensate by secreting more insulin
and increasing b-cell proliferation. As insulin resistance and
inflammation prolong, b-cell stress impairs glucose tolerance.
Finally, b-cell failure leads to type 2 diabetes. As there are few
studies about NK cells and ILC1s in the pancreas in obesity and
insulin resistance, we introduce the role of ILC2s and ILC3s in
the pancreas.

4.1 ILC2s Regulate the Pancreas Function
During obesity, the inflammation in pancreatic islets makes b
cells fail to secrete insulin. In lean mice, IL-33 from islet
mesenchymal cells activates ILC2s in the pancreas. Activated
ILC2s secrete colony-stimulating factor 2 and IL-13, therefore
inducing retinoic acid (RA) from macrophages and dendritic
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cells. Local RA signals promote b cell function and increase
insulin secretion. Obesity impairs the IL-33-ILC2 signal and islet
function, which can be rescued by IL-33 injection (115). Besides,
ILC2s activate tumor immunity to restrict pancreas-specific
tumor growth (116). These results suggest that ILC2s can
promote insulin secretion. Selective activation of type 2
immunity may be a therapeutic strategy for treating diabetes.

4.2 ILC3s Alter the Pancreatic Function
AHR ligands from gut microbiota induce pancreatic ILC3s
secreting IL-22 which induces pancreatic endocrine cells
expressing b-defensin 14 (mBD14). mBD14 stimulates B cells
secreting IL-4, promoting regulatory macrophages and T cells to
inhibit autoimmune diabetes (117). This study identified
crosstalk between ILCs and endocrine cells in pancreas
associated with autoimmune diabetes. Besides, IL-22
administration inhibits islets’ oxidative stress and ER stress,
restoring insulin secretion and glucose homeostasis in obese
mice (118). This study indicates that ILC3s and IL-22 in the
pancreas may play a role in preventing obesity-associated type 2
diabetes. However, this hypothesis still needs to be verified.
5 ILCS IN INTESTINE

The gut is an extensive immune system due to exposure to
many microorganisms and ingested antigens. The gut microbiota
is altered in obesity and its associated metabolic disease, known
as dysbiosis (119–121). One major consequence of dysbiosis is
defects in the gut barrier, increasing the leakage of bacterial
products and contributing to chronic low-grade inflammation
and insulin resistance (122–124). As sensor of the microbiota,
the intestinal immune system was an essential regulator of
obesity-related insulin resistance (125–127). As there are few
studies about NK cells and ILC1s in the intestine in obesity, we
introduce ILC2s and ILC3s in the intestine and focus on the
function and regulation of intestinal ILC3 in metabolism.

5.1 ILC2s in the Intestine Induce Obesity
Despite that ILC2s in adipose tissue have the potential to limit
obesity, a recent study suggested that ILC2s in the gut induce
obesity (81). Il2rg−/−Rag2−/− mice lacking ILCs, T and B cells
resist HFD-induced obesity compared with Rag2−/− mice lacking
T and B cells. Adoptive transfer experiment has showed that
supplementation of ILC2s from the small intestine could render
Il2rg-/-Rag2-/- mice prone to HFD-induced obesity. IL-2 from
ILC2s in the small intestine may thus be critical to the induction
of obesity and insulin resistance. These results also suggest that
the role of ILCs in the regulation of obesity and associated
metabolic disease is tissue-specific. The detailed effect of
intestinal ILC2s on obesity still needs to be further investigated.

5.2 Intestinal ILC3s Produce Cytokines to
Regulate Metabolism
ILC3s are abundant in the intestine. Gut ILC3 cells produce the
cytokine interleukin-22 (IL-22), which exerts essential roles in
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eliciting an innate immune response (128), maintaining mucosal
barrier integrity (129), and assuring gut homeostasis (130–132).
Notably, IL-22 from ILC3s has been demonstrated to improve
metabolic disorders. IL-22 from ILCs and CD4+ T cells is
reduced in obesity under immune challenges. Mice deficient in
the IL-22 receptor are more prone to metabolic disorders.
Injection of IL-22 can reverse many metabolic symptoms in
obese mice. The beneficial effects of IL-22 include preserving gut
permeability, reducing endotoxemia and inflammation,
regulating lipid metabolism, and improving insulin sensitivity
(114). Moreover, IL-22 from ILC3s improves the Polycystic
ovary syndrome (PCOS) phenotype. Mice transplanted with
stool from PCOS patients display a reduced percentage of IL-
22+ ILC3s and develop insulin resistance. Administration of
glycodeoxycholic acid induces IL-22 secretion from ILC3s
through GATA3, which improves the disorder. The
mechanisms of IL-22-mediated improvements likely involve
promoting adipose t issue browning and inhibit ing
inflammation (133). Interestingly, exhaustive exercise decreases
the proportion of ILC3s and mRNA levels of IL-22 in lamina
propria, which destroys intestinal barrier integrity and
aggravates intestinal inflammation (134). However, IL-22 can
decrease the expression of lipid transporter in the small intestine,
which impairs lipid metabolism (135). Consistently, a study
using single-cell RNA sequencing has identified a population
of DC cells, named CIA-DCs, as the major source of IL-22
binding protein (IL-22BP). Mice lacking IL-22BP demonstrate
an increase in functional IL-22. This alteration is associated with
the concurrent reduction in the expression of lipid transporters,
leading to a decrement in lipid resorption and subsequent change
in body fat homeostasis (136). Interestingly, mice feeding
carbohydrate diet express higher levels of enzymes and
transporters required for carbohydrate digestion and
absorption, compared with mice feeding protein diet. gdT cells
regulate this process by inhibiting IL-22 production by ILC3s.
Treating Organoids with IL-22 reduced the carbohydrate
transcriptional program (137). These studies thus indicate that
IL-22 from ILC3s regulates nutrition absorption. Overall, the fact
that IL-22 from ILC3s regulates metabolism homeostasis
highlights the link between metabolism and immunity and
provides a new avenue for therapeutic intervention of
metabolic diseases.

Although ILC populations and their potentiality of secreting
IL-22 are nearly intact in the colon of obese mice, the upstream
cytokine IL-23, which activates ILC3 to produce IL-22, is reduced
in obese mice after pathogenic bacteria infection (114). Lack of
IL-23-IL-22 signaling damaged the intestinal barrier, increasing
the concentration of lipopolysaccharide (LPS) in plasma (138).
In mice fed HFD, the relative proportion of IL22-producing
NKp46+ CD4− ILC3s is reduced despite the increase in the total
cell numbers of ILC3s in the colon (125). The impairment of IL-
23-ILC3-IL22 signaling may partly lead to obesity and
insulin resistance.

Another essential cytokine produced by ILC3s is IL-17. IL-17
regulates the migration of intestinal neutrophils, protects the gut
barrier, reduces systemic LPS, and improve metabolic syndrome
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(139). Intestinal IL-17-secreting ILCs can also promote host-
microbiota mutualism, preventing liver inflammation and
dysfunction of lipid metabolism (140). However, Teijeiro et al.
have reported (141) that IL-17A promotes diet-induced obesity
and metabolic syndrome. Disruption of IL-17 production or
knockdown of IL-17 receptor inhibits diet-induced obesity and
metabolic disorders, promoting adipose tissue beigeing,
thermogenesis and energy expenditure. Mechanistically, IL-
17A induces phosphorylation of the serine 273 site of PPARg
in adipocytes in a Cyclin-dependent Kinase 5 (CDK5)-
dependent manner, which subsequently modifies the
expression of obesity-associated genes. Interestingly, mothers
exposed to HFD render the offspring having more IL-17+

ILC3s through microbiota, and increasing the offspring’s
susceptibility to intestinal injury. Further, the IL-17 blockade
reversed the susceptibility to inflammation (142). Thus, whether
IL-17+ ILC3s in the intestine are beneficial or adverse to
metabolism remains paradoxical, which may depend on
specific conditions.

5.3 Regulation of Intestinal ILC3s
Multiple signaling pathways regulate ILC3 responses in the
intestine (Figure 3). Among these modulations, mTOR
complex 1 (mTORC1) is critical for the proliferation of ILC3s
and production of IL-22 and IL-17A after activation and
Citrobacter rodentium infection (143). Moreover, the capacity
of ILC3s presenting antigen to T cells is reduced by IL-23, which
is also dependent on mTORC1 phosphorylation (144). Recent
studies further reveal that both mTORC1 and mTORC2 control
ILC3 cell numbers and ILC3-driven inflammation during colitis
(145). mTOR signaling influences ILC3s in the intestine, leading
to subsequent alteration in metabolic homeostasis. Notably,
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another study has reported that activation of ILC3s upon low
oxygen challenge occurs via a HIF-1a-dependent mechanism
instead of mTOR-signaling (146). P38 MAPK pathway also
regulates the production of GM-CSF by ILC3s after activation
of death receptor 3 (DR3) signaling (147, 148). PI3K-AKT or
ERK signaling regulates the activation of ILC3s by
Lysophosphatidylserine (LysoPS) from apoptotic neutrophils
(149). IL-17D acts via the CD93 on ILC3s to regulate the
production of IL-22 (150), whereas IL-7 activates ILC3s to
secret IL-22 through aryl hydrocarbon receptor (AHR) and
STAT3 (151). However, a recent study has reported that ILC3-
driven tissue repair is IL-22 and STAT3 independent. Instead,
this occurs through activation of Src family kinases (152).

Functions of ILC3s in the intestine are influenced
by rhythmicity. Environmental light signals regulate intestinal
ILC3s functions and further regulate the homeostasis of the
intestine and the lipid metabolism in mice (153). This concept
is further supported by two distinct reports (154, 155). What’s
more, food intake affects the functions of ILC3s. ILC3s
express vasoactive intestinal peptide receptor type 2 (VIPR2).
Food induced-VIPR2 activation inhibits the secreting of
IL-22 of ILC3 and epithelial anti-microbial response, thus
enhancing the growth of segmented filamentous bacteria and
increasing lipid absorption (156). In contrast, another study
finds that VIP markedly increased the production of IL-22 of
ILC3s. Lack of VIPR2 impaired the production of IL-22 of ILC3s
and made mice more susceptible to DSS-induced gut injury
(157). Meanwhile, VIP regulates the recruitment of intestinal
ILC3s by increasing the gut-homing receptor CCR9
indirectly (158). Whether the VIP-VIPR2 pathway in ILC3s
inhibi ts or s t imulates the product ion of IL-22 is
still controversial.
FIGURE 3 | ILC3s in the intestine. ILC3s produce IL-22 to protect mice from obesity and metabolic disorders. ILC3s are regulated by many signals, such as
signaling pathways, biological rhythmicity, nutritional signals, and microbiota products.
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Nutritional signals also regulate ILC3s. GPR183 and its ligand
7a ,25-dihydroxycholesterol (7a ,25-OHC) regulate the
migration of ILC3s. GPR183-deficient mice have lower IL22+

ILC3s in the intestine and increased susceptibility to enteric
bacterial infection (159). Vitamin D/vitamin D receptor (VDR)
signaling regulates the proliferation and function of ILC3 (160).
Since VDR is also a receptor of bile acids (161), bile acids
may regulate gut ILC3s through VDR. Besides, colonic ILC3s
express the receptor, Ffar2, which can sense microbial
metabolites. Ffar2 activation by short-chain fatty acid (SCFA)
increases IL-22+ ILC3s via an AKT and STAT3 axis and
modulates gut homeostasis (162–164). What’s more, in
Vitamin A-deficient mice, ILC3s are markedly reduced, which
makes mice more susceptible to acute bacterial infection (165).
Besides, erythritol can increase the number of ILC3s in the small
intestine and markedly decrease metabolic disorders such as
insulin resistance (166). Whether erythritol influences ILC3s
directly or indirectly by short-chain fatty acids still needs
further study.

Commensal microbes or their products also regulate the
intestinal ILC3s. Symbiotic microbiota represses the
production of IL-22 from ILC3s (167), while it indirectly
induces the production of GM-CSF and IL-2 from ILC3s by
increasing the interleukin-1b (IL-1b) from macrophages. GM-
CSF and IL-2 in turn help maintain Treg cell numbers and
intestinal homeostasis (168, 169). Besides, gut microbiota
regulates ILC3s through bile acid metabolism (161, 170).
Glycodeoxycholic acid induces intestinal ILC3s to secrete IL-
22, improving insulin resistance (133). Interestingly, ketogenic
diets alleviate colitis and reduce the activation of ILC3s (171).
Furthermore, single-cell RNA-seq reveals that ILC3s integrate
signals from the microbiota to alter phenotypic and functional
plasticity (172). The gut microbiome and metabolic syndrome
are closely linked (121). Whether gut microbiota influences the
metabolism by regulating ILC3s still needs to be investigated.
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Overall, ILC3s are involved in the development of obesity and
insulin resistance through the production of IL-22 and IL-17.
The signals regulating ILC3s may provide novel therapeutic
approaches against obesity and metabolic disorders.
6 CONCLUSION AND PERSPECTIVES

Multiple immune cells in the metabolic organs play diverse roles
(Table 2). Here, we focus on the functions of ILCs in different
metabolic organs in obesity and insulin resistance. In adipose
tissue, NK cells and ILC1s trigger macrophage M1 polarization
and thus contribute to inflammation, insulin resistance, and even
adipose tissue fibrosis.ILC2s produce type 2 cytokines,
orchestrate type 2 immunity and maintain metabolic
homeostasis. Besides, ILC2s promote white adipose tissue
beigeing, increasing energy expenditure and protecting against
obesity and insulin resistance. However, the homeostasis of
ILC2s is disrupted in obesity. ILC3s are present in human
adipose tissue but not mice adipose tissue. The frequency and
density of ILC3s increase with the BMI of obese patients.
However, further analyses are required to clarify the function
and mechanism of ILC3s in human adipose tissue. In the liver,
NK cells and ILC1s prevent fibrosis, while ILC2s are profibrotic.
These observations suggest a tissue-specific action for ILCs.
Whether ILC3s promote or inhibit the progression of NAFLD
is worth further investigation. In the pancreas, ILC2s and ILC3s
regulate the development of type 2 and type 1 diabetes,
respectively. Whether ILC3s in the pancreas are relevant to
type 2 diabetes requires further investigation. In the intestine,
ILC3s may either improve metabolic disorders through the
production of IL-22 or promote metabolic disease by
producing IL-17. The intestinal ILC3s are regulated by internal
and external signals, which may further influence the
TABLE 2 | Summary of reported roles for adipose tissue immune cells.

Cell types Produce molecules Inflammation and Insulin
resistance

Beigeing

M1 Macrophages MCP1, osteopontin, TNFa promote (173) inhibit (174)
CD8+ T cells IFN-g promote (175, 176) inhibit (176)
Th1 cells IFN-g promote (177) N
Th17 cells IL-17 promote (178) N
MAIT cells IL-17 promote (179, 180) N
B2 cells IgG2c, TNF, IFN-g, MCP1, IL-6, IL-8 promote (181–183) N
Plasmacytoid dendritic cell IFNa promote (184) N
ILC1s IFN-g, TNFa promote (44) N
NK cells IFN-g promote (41) N
Mast cells Serotonin, 15-deoxy-D12,14-prostaglandin J2, mast cell protease 6 promote (185) inhibit (186)
M2 Macrophages platelet-derived growth factor, matrix metalloproteinases, vascular endothelial growth factor inhibit (187) promote
Eosinophils IL-4, IL-13 inhibit (53) promote (188)
Th2 cells IL-4, IL-13 inhibit (177, 189) N
Treg cells IL-10 inhibit (190, 191) promote (190)
gd T cells IL-17A and IL-17F inhibit (192, 193) promote (192)
iNKT cells IL-2, IL-4, IL-10 inhibit (194, 195) promote (195)
B1 cells IgM and IL-10 proinflammatory IgG inhibit (181–183) N
Conventional dendritic cell IL-10 inhibit (196) N
ILC2s IL-5, IL-4, IL-13, Met-Enk inhibit (54) promote (60)
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homeostasis of the intestine and the metabolism. ILC2s in the gut
induce obesity through IL-2.

Despite these findings, numerous questions remain
unsolved relating to the roles of ILCs on metabolic disease.
For example, can ILC3s affect metabolic homeostasis in
response to the altered gut microbiota? Do ILC1s suppress
adipose tissue beigeing by inducing macrophages’ M1
polarization? What’s the specific role of intestinal ILC2s and
ILC3s in developing obesity and insulin resistance? Is there a
specific population of ILC3s in the adipose tissue, and if yes,
what function do they serve? Addressing these relevant
questions will shed new light on the immune regulation of
metabolism. Further research investigating the mechanisms of
how ILCs influence metabolism may provide novel approaches
for intervention of obesity and insulin resistance.
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28. Walzer T, Bléry M, Chaix J, Fuseri N, Chasson L, Robbins SH, et al.
Identification, Activation, and Selective In Vivo Ablation of Mouse NK
Cells via Nkp46. Proc Natl Acad Sci U.S.A. (2007) 104:3384–9. doi: 10.1073/
pnas.0609692104

29. Arnon TI, Markel G, Mandelboim O. Tumor and Viral Recognition by
Natural Killer Cells Receptors. Semin Cancer Biol (2006) 16:348–58.
doi: 10.1016/j.semcancer.2006.07.005

30. Weizman O-E, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, et al.
ILC1 Confer Early Host Protection at Initial Sites of Viral Infection. Cell
(2017) 171:795–808.e12. doi: 10.1016/j.cell.2017.09.052
April 2022 | Volume 13 | Article 855197

https://doi.org/10.1016/S0140-6736(16)30054-X
https://doi.org/10.1016/S0140-6736(17)32129-3
https://doi.org/10.1016/S0140-6736(16)30175-1
https://doi.org/10.1016/S0140-6736(16)30175-1
https://doi.org/10.1097/00005768-199911001-00019
https://doi.org/10.1097/00005768-199911001-00019
https://doi.org/10.1172/JCI57132
https://doi.org/10.1152/physiol.00041.2015
https://doi.org/10.1074/jbc.M706762200
https://doi.org/10.1038/s42255-022-00525-9
https://doi.org/10.1126/stke.2682005pe4
https://doi.org/10.1126/science.7678183
https://doi.org/10.1172/JCI19246
https://doi.org/10.1038/ni.2865
https://doi.org/10.1038/nature21363
https://doi.org/10.1016/j.cell.2015.02.022
https://doi.org/10.1172/JCI88876
https://doi.org/10.1016/j.cmet.2016.08.016
https://doi.org/10.1016/j.cmet.2016.08.016
https://doi.org/10.1038/nrendo.2015.189
https://doi.org/10.1172/JCI92035
https://doi.org/10.1016/j.cell.2017.12.025
https://doi.org/10.1016/j.molmed.2013.05.001
https://doi.org/10.1126/science.aac9593
https://doi.org/10.1016/j.cell.2018.07.017
https://doi.org/10.1016/j.cell.2018.07.017
https://doi.org/10.1038/nri3365
https://doi.org/10.1126/science.aaa6566
https://doi.org/10.1038/nature14189
https://doi.org/10.1038/ni.3489
https://doi.org/10.1038/ni1582
https://doi.org/10.1073/pnas.0609692104
https://doi.org/10.1073/pnas.0609692104
https://doi.org/10.1016/j.semcancer.2006.07.005
https://doi.org/10.1016/j.cell.2017.09.052
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Chen et al. Innate Lymphoid Cells and Obesity
31. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al.
Innate Production of TH2 Cytokines by Adipose Tissue-Associated C-Kit
+Sca-1+ Lymphoid Cells. Nature (2010) 463:540–4. doi: 10.1038/
nature08636

32. Guia S, Narni-Mancinelli E. Helper-Like Innate Lymphoid Cells in Humans
and Mice. Trends Immunol (2020) 41:436–52. doi: 10.1016/j.it.2020.03.002

33. Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, et al.
Lymphoid Tissue Inducer-Like Cells Are an Innate Source of IL-17 and IL-
22. J Exp Med (2009) 206:35–41. doi: 10.1084/jem.20072713

34. Hernández PP, Mahlakoiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F,
et al. Interferon-l and Interleukin 22 Act Synergistically for the Induction of
Interferon-Stimulated Genes and Control of Rotavirus Infection. Nat
Immunol (2015) 16:698–707. doi: 10.1038/ni.3180

35. Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-Tissue Plasticity
in Health and Disease. Cell (2022) 185:419–46. doi: 10.1016/
j.cell.2021.12.016

36. Klein S, Gastaldelli A, Yki-Järvinen H, Scherer PE. Why Does Obesity Cause
Diabetes? Cell Metab (2022) 34:11–20. doi: 10.1016/j.cmet.2021.12.012

37. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, et al. Beige
Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and
Human. Cell (2012) 150:366–76. doi: 10.1016/j.cell.2012.05.016

38. Trim WV, Lynch L. Immune and Non-Immune Functions of Adipose
Tissue Leukocytes. Nat Rev Immunol (2021). doi: 10.1038/s41577-021-
00635-7

39. Cuff AO, Sillito F, Dertschnig S, Hall A, Luong TV, Chakraverty R, et al. The
Obese Liver Environment Mediates Conversion of NK Cells to a Less
Cytotoxic ILC1-Like Phenotype. Front Immunol (2019) 10:2180.
doi: 10.3389/fimmu.2019.02180
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127. Garidou L, Pomié C, Klopp P, Waget A, Charpentier J, Aloulou M, et al. The
Gut Microbiota Regulates Intestinal CD4 T Cells Expressing Rorgt and
Controls Metabolic Disease. Cell Metab (2015) 22:100–12. doi: 10.1016/
j.cmet.2015.06.001

128. Muñoz M, Eidenschenk C, Ota N, Wong K, Lohmann U, Kühl AA, et al.
Interleukin-22 Induces Interleukin-18 Expression From Epithelial Cells
During Intestinal Infection. Immunity (2015) 42:321–31. doi: 10.1016/
j.immuni.2015.01.011

129. Sonnenberg GF, Fouser LA, Artis D. Border Patrol: Regulation of Immunity,
Inflammation and Tissue Homeostasis at Barrier Surfaces by IL-22. Nat
Immunol (2011) 12:383–90. doi: 10.1038/ni.2025

130. Gronke K, Hernández PP, Zimmermann J, Klose CSN, Kofoed-Branzk M,
Guendel F, et al. Interleukin-22 Protects Intestinal Stem Cells Against
Genotoxic Stress. Nature (2019) 566:249–53. doi: 10.1038/s41586-019-
0899-7

131. Lindemans CA, Calafiore M, Mertelsmann AM, O’Connor MH, Dudakov
JA, Jenq RR, et al. Interleukin-22 Promotes Intestinal-Stem-Cell-Mediated
Epithelial Regeneration. Nature (2015) 528:560–4. doi: 10.1038/nature16460

132. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA,
Kunisawa J, et al. Innate Lymphoid Cells Promote Anatomical
Containment of Lymphoid-Resident Commensal Bacteria. Science (2012)
336:1321–5. doi: 10.1126/science.1222551

133. Qi X, Yun C, Sun L, Xia J, Wu Q, Wang Y, et al. Gut Microbiota–Bile Acid–
Interleukin-22 Axis Orchestrates Polycystic Ovary Syndrome. Nat Med
(2019) 25:1225–33. doi: 10.1038/s41591-019-0509-0

134. Hou P, Zhou X, Yu L, Yao Y, Zhang Y, Huang Y, et al. Exhaustive Exercise
Induces Gastrointestinal Syndrome Through Reduced Ilc3 and Il-22 in
Mouse Model. Med Sci Sports Exerc (2020) 52:1710–8. doi: 10.1249/MSS.
0000000000002298

135. Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N, Martins AJ,
et al. Innate and Adaptive Lymphocytes Sequentially Shape the Gut
Microbiota and Lipid Metabolism. Nature (2018) 554:255–9. doi: 10.1038/
nature25437

136. Guendel F, Kofoed-Branzk M, Gronke K, Tizian C, Witkowski M, Cheng
H-W, et al. Group 3 Innate Lymphoid Cells Program a Distinct Subset of IL-
22bp-Producing Dendritic Cells Demarcating Solitary Intestinal Lymphoid
Tissues. Immunity (2020) 53:1015–32.e8. doi: 10.1016/j.immuni.2020.10.012

137. Sullivan ZA, Khoury-Hanold W, Lim J, Smillie C, Biton M, Reis BS, et al. gd
T Cells Regulate the Intestinal Response to Nutrient Sensing. Science (2021)
371:eaba8310. doi: 10.1126/science.aba8310

138. Fatkhullina AR, Peshkova IO, Dzutsev A, Aghayev T, McCulloch JA,
Thovarai V, et al. An Interleukin-23-Interleukin-22 Axis Regulates
Intestinal Microbial Homeostasis to Protect From Diet-Induced
Atherosclerosis. Immunity (2018) 49:943–57.e9. doi: 10.1016/j.immuni.
2018.09.011
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