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Abstract

The pathogenic mechanism of diabetic kidney disease (DKD) is involved in various

functions; however, its inadequate characterisation limits the availability of effective

treatments. Tubular damage is closely correlated with renal function and is thought

to be the main contributor to the injury observed in early DKD. Programed cell

death (PCD) occurs during the biological development of the living body. Accumu-

lating evidence has clarified the fundamental role of abnormalities in tubular PCD

during DKD pathogenesis. Among PCD types, classical apoptosis, autophagic cell

death, and pyroptosis are the most studied and will be the focus of this review. Our

review aims to elucidate the current knowledge of the mechanism of DKD and the

potential therapeutic potential of drugs targeting tubular PCD pathways in DKD.
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1 | INTRODUCTION

Normal kidney structure and function involve the coordination of

several different cell types, such as tubular epithelial cells, endo-

thelial cells, mesangial cells, and podocytes. Renal tubules are the

prominent executors of reabsorption and comprise four major seg-

ments, the proximal tubule, Henle's loop, the distal tubule, and the

collecting duct (Figure 1). Each segment consists of a layer of

epithelial cells specifically suitable for exerting unique transport

functions. The proximal tubule maintains blood glucose levels and

metabolic balance by reabsorbing filtered glucose to produce new

glucose.1 Tubular epithelial cells (TECs) are the most common cell

type in renal tubule and perform various regulatory functions under

different pathophysiological conditions.

Diabetic kidney disease (DKD) is the principal cause of the end‐
stage renal disease (ESRD) and has become a public issue that seri-

ously threatens human health. In recent years, although the develop-

ment of clinical therapies for DKD has made considerable advances,

the progression of DKD still cannot be effectively controlled, and its

exacerbation of renal failure needs urgent attention.2 When the kid-

ney is exposed to a high glucose (HG) environment, TECs are the initial

site of injury and are vulnerable to metabolic disturbances that can

induce oxidative stress and the secretion of a variety of cytokines,3,4

which contribute to interstitial inflammation and renal fibrosis.

Considering the initial site of injury, renal tubules are regarded not

only as a target tissue that suffers from injury but also as a driving

force for the induction of kidney diseases.5

2 | TUBULAR INJURY PRECEDES GLOMERULAR
ABNORMALITY IN DKD

The traditional theory of DKD pathogenesis emphasises that the

glomerulus acts as the major renal compartment where the injury is

induced by hyperglycaemia, whereas tubulo‐interstitial injury is a

secondary or later lesion. During the last decade, the significance of

tubulopathy in early DKD has been increasingly recognised as a

critical component of DKD progression.

Microalbuminuria is considered an early diagnostic marker for

DKD that can regress or remain unchanged, indicating the limitation

of glomerular damage in predicting renal function in DKD.6 Other

evidence from urinary biomarker data indicates that proximal tubular

injury contributes primarily rather than secondarily to early DKD in

human beings.7 Tubular damage markers appear before micro-

albuminuria in early DKD.8,9 In turn, accumulative proteinuria stim-

ulates inflammatory responses and oxidative stress in TECs,

contributing to changes in TECs morphology and function, epithelial‐
mesenchymal transition, epithelial cell detachment, and apoptosis.

Exfoliation and apoptosis of TECs ultimately result in renal fibrosis

and ESRD occurrence and progression.10

Owing to emerging evidence supporting a role for tubular injury in

DKD, interest has shifted to the proximal tubule, which may function

as an initiator, driver, or contributor in the early pathogenesis of kid-

ney disease under diabetic conditions. Diabetic tubulopathy is a real

entity that may possess separate pathophysiology from other renal

lesions. The mechanisms underlying tubular injury in DKD are com-

plex, and understanding the mechanisms of tubular damage could

contribute to new therapeutic interventions for DKD. Therefore, the

purpose of this review is to briefly summarise the current knowledge

of the pathogenesis of DKD caused by TEC damage from the

perspective of programed cell death (PCD) and offer a comprehensive

update of therapeutic strategies targeting tubular death in DKD.

3 | CELL DEATH UNDER NORMAL AND
ABNORMAL CONDITIONS

Programed cell death (PCD) occurs during the biological develop-

ment of an organism. When a cell is subjected to stimuli from internal

and external environments, the protective behaviours of PCD are

F I GUR E 1 Normal kidney structure
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initiated to remove injured cells. The Nomenclature Committee on

Cell Death (NCCD) uncovered 12 distinct cell death types and

execution modes in 2012.11 Among these PCD types, classical

apoptosis, autophagic cell death, and pyroptosis are the most studied

cell death modes relevant to the topic of this review. The differences

between the three cell death types are displayed in Table 1, and in

this section, the characteristics and biological functions of these

forms of PCD are discussed.

Apoptosis was first described by Kerr and Wyllin in 197212 as a

physiological and programed suicidal behaviour of cells. When

exposed to certain endogenous and exogenous stimuli, cells receive

the apoptotic signal, and then apoptotic regulatory molecules

interact with each other to activate the cell death pathway. This is

accompanied by the activation of proteolytic enzymes, including

caspase‐9 and caspase‐3, and programed apoptosis and continuous

reactions occur under the control of specific genes.

Autophagy was described by Duve and Wattiaux, who discov-

ered lysosomes in 1966.13 When confronted with abnormally stim-

ulated factors, such as external and internal stimuli including tissue

damage and oxidative stress, normal cells induce autophagy; proteins

and organelles are encased in autophagic vesicles that are trans-

ported into lysosomes for degradation, resulting in inflammation and

dysfunction.

Pyroptosis was first described by Cookson and Brennan in

200114 as a novel type of PCD when cells are exposed to classical

microbial infection. The execution of its function primarily relies on

caspase‐1, which is accompanied by the release of several pro‐
inflammatory factors. Pyroptosis is widely implicated in infectious,

atherosclerotic, and nervous system diseases, whereas pyroptosis is

relatively infrequent in DKD onset and development.

The cell death modes of renal tubular epithelial cells under HG

are summarised in Figure 2, and the specific contents of pathogenic

mechanism of renal tubular epithelial cells in DKD will be elaborated

in the next part.

4 | APOPTOSIS OF RENAL TUBULAR CELLS IN
DKD

Under normal conditions, apoptosis and cell division maintain the

total number of cells in the human body. In DKD, many factors can

attack cells and promote stronger apoptosis in cells than prolif-

eration, leading to structural changes, including tubular atrophy

and tubulointerstitial fibrosis and aggravating renal function failure.

Accumulating evidence confirm the fundamental role of TEC

apoptosis in DKD pathogenesis. Apoptotic cells have been

discovered in the tubular epithelium of human and experimental

diabetic kidneys,15,16 demonstrating that apoptosis may participate

in the loss of tubular cells in DKD. Studies have revealed that

apoptosis is associated with decreased Bcl‐2 expression and

increased Bax protein expression.17,18 Apoptosis of TECs is not

only a significant characteristic of DKD but also a reliable pre-

dictor and hallmark of DKD.19 Hence, elucidating the mechanism

of tubular apoptosis and targeting TEC apoptosis may be beneficial

in treating DKD.

4.1 | Mitochondrial damage is involved in TEC
apoptosis

Apoptosis is commonly caused by mitochondria‐related pathways.

Under normal conditions, the dicarboxylate carrier (DIC) and 2‐
oxoglutarate carrier (OGC) act as principal membrane carriers

and mediate the transport of glutathione to the mitochondrial

matrix. However, stable upregulation of DIC and OGC in DKD

promotes a reduction in mitochondrial nephrotoxic S‐(1,2‐dichlor-

ovinyl)‐L‐cysteine‐induced apoptosis in TECs.20 Furthermore, HG‐
induced apoptosis in the HK‐2 human proximal tubular cell line,

which manifested as the upregulation of fragmented DNA and

apoptosis molecules in the cells.21 Moreover, sirtuin‐1 (SIRT1) is

TAB L E 1 Summary of three programed cell death types, including classical apoptosis, autophagy, and pyroptosis

Types Initially proposed Morphological characteristics
DNA
damage Key genes involved Regulatory pathways Reference

Apoptosis In 1972 by Kerr,

Wyllie, and

Currie

Cell shrinkage, membrane

blebbing but preserved

initially, phosphatidylserine

externalisation, nuclear

condensation

√ Caspase‐1, caspase‐3/6/7,

caspase‐8/9/10, Fas,

Bcl2, cytochrome C,

p53

Mitochondrial pathway, death

receptor pathway,

endoplasmic reticulum

pathway

12

Autophagy In 1966 by

Christian de

Duve

Three distinct cellular processes—

macroautophagy(cell are

enclosed in double‐membrane

vesicles referred to as

autophagosomes.),

microautophagy and

chaperone‐mediated

autophagy

� ATG‐3/5/7, LC3 II, beclin 1,

vps34

mTOR, AMPK, cAMP‐
dependent PKA signalling,

JNK2, TLR4 signalling

13

Pyroptosis In 2001 by

Cookson and

Brennan

Rapidly lose cell membrane

integrity, increase in size, and

have smaller nuclei

√ Caspase‐1, gasdermin D

(GSDMD), caspase‐11/

4/5, NLRP3, ELAV1

Inflammasome, IL‐1β, damage‐
associated molecular

patterns

14
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involved in tubular apoptosis in DKD by regulating mitochondrial

function.22

4.2 | HG increases apoptosis in TECs through
enhanced reactive oxygen species generation

Enhanced oxidative stress caused by increased reactive oxygen

species (ROS) production promotes apoptosis in proximal tubular

epithelial cells (PTECs) through multiple caspase pathways.23 In

addition to caspase signalling pathways, ROS can contribute to the

activation of NF‐κB under hyperglycaemic conditions, which medi-

ates the induction of apoptosis.24 Another study revealed that

MAPK/NF‐κB activation is involved in HG‐induced tubular dysfunc-

tion and apoptosis in DKD.25 The interaction between thioredoxin‐
interacting protein (TXNIP) and thioredoxin (TRX) is a vital regula-

tory mechanism in DKD progression.26 Forkhead box protein O1

(FOXO1)/TXNIP‐TRX plays a productive role in activating HG‐
mediated tubular apoptosis by alleviating ROS generation, which

may provide new insights into therapeutic targets for DKD patho-

genesis.27 Furthermore, the role of SIRT1 in inhibiting oxidative

stress and protecting kidney cells from apoptosis was revealed by

Dong et al.22

The generation of peroxynitrite (ONOO‐), a powerful oxidant,

was augmented in PTECs, which further contributed to caspase‐
mediated apoptosis, whereas ebselen, a scavenger of ONOO‐, pre-

vented PTECs from HG‐induced apoptosis, indicating that ONOO‐ is

a proapoptotic ROS implicated in early DKD.23 Overexpression of

catalase, an enzyme involved in ROS generation in PTECs, was also

shown to mitigate tubular apoptosis in db/db mice.15 These studies

indicate the vital role of ROS in TEC apoptosis in DKD.

4.3 | Small non‐coding RNAs mediate TEC
apoptosis in DKD

Among the transcribed human genomes, only 2% of the transcripts

code for proteins, whereas others are known as non‐coding RNAs.

Small non‐coding RNAs (sncRNA) are a kind of non‐coding RNAs that

contain about 21 nucleotides and function to induce mRNA cleavage

and inhibit the translation of target mRNAs.4 Different sncRNAs

execute various functions during TECs damage. Research studies

showed that inhibiting the expression of miRNA, such as miR‐21828

and miR‐125b,29 could mitigate tubular damage and achieve a

reduction in TEC apoptosis. Furthermore, inhibition of microRNA‐
148b‐3p can reduce TEC apoptosis by suppressing tumour necrosis

factor receptor 2 (TNFR2).30 In contrast, the upregulation of miR‐
140‐5p suppressed the Toll‐like receptor 4 (TLR4)/NF‐κB signalling

pathway and inhibited apoptosis in TECs.31 Additionally, upregulation

of miR‐25 could improve HG‐induced PTEC apoptosis by activating

the PTEN/AKT pathway in DKD.32

4.4 | Other molecules and signalling pathways
involved in TEC apoptosis in DKD

Other potential molecules and related pathways that participate in

tubular apoptosis during DKD development are summarised in

Table 2. Studies have shown that the apoptosis of TECs is tightly

correlated with a decrease in full‐length cell adhesion molecule 1,33

3‐hydroxy‐3‐methylglutaryl reductase degradation protein,34 elec-

tron transfer flavoprotein β,35 C‐X‐C chemokine receptor type 4,36

vitamin D,37 autophagy protein 5 (Atg5),2 netrin‐1,38 stearoyl‐CoA

desaturase‐1,39 Rap1b,40 and mitoQ,41 which further exacerbate

F I GUR E 2 Cell death of renal tubular epithelial cells under high glucose
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renal tubular injuries during the development of DKD. Several

studies have also reported potential molecules and mechanisms that

promote TEC apoptosis. The upregulation of NADPH oxidase 4,36

cytochrome P450 family 24 subfamily A member 1,37 angiotensi-

nogen,42 protein arginine methyltranferase‐1,43 angiotensin II,44

calpain 10,45 myo‐inositol oxygenase (MIOX),46 advanced glycation

end products (AGEs),47 Bcl‐2 interacting mediator (Bim),48 advanced

oxidation protein products,49 p66Shc,50 and high levels of uric acid51

and fatty acids52 can lead to TEC apoptosis in DKD. The exact

mechanism and the role of TEC apoptosis during the development of

DKD remain active areas of the study.

4.5 | Pharmacological effects on TEC apoptosis in
DKD

Understanding the mechanisms underlying TECs apoptosis and

investigating its therapeutic targets are vital for the prevention of

tubular injury and failure that are associated with DKD. The phar-

macological effects of various drugs on TEC apoptosis are summar-

ised in Table 3. AGEs promote apoptosis in tubular cells,47 which are

disrupted by treatment with irbesartan.53 Metformin has been re-

ported to play a vital role in the prevention of tubular injury in DKD.

Ishibashi et al. revealed that metformin blocked AGE‐induced PTECs

apoptosis by activating AMP‐activated protein kinase (AMPK) and

inhibiting ROS generation by downregulating advanced glycation end

product receptor (RAGE) expression.54 Furthermore, the neph-

roprotective benefits of combination of metformin and irbesartan in

patients with DKD were also observed.54

The deterioration of apoptosis is caused by glucose overload in

the kidneys. The SGLT2 inhibitors, tofogliflozin and empagliflozin,

have anti‐apoptotic properties and protect against tubular injury in

DKD by inhibiting the glycer‐AGE/RAGE axis.55 Additionally, dapa-

gliflozin, the first approved SGLT2 inhibitor for the treatment of

T2DM, was reported to alleviate tubular apoptosis and injury in

DKD.56 Liraglutide, a human incretin GLP‐1 analogue, was shown to

prevent apoptosis in DKD rats by increasing GLP‐1R expression.57

Finally, the c‐peptide cleavage product of pro‐insulin and insulin

exhibited a protective potential in DKD by reducing tumour necrosis

factor α (TNF‐α)‐induced apoptosis by activating NF‐κB.58

In addition to these antihyperglycemic therapies, lipid‐reducing

drugs can reverse tubular damage in DKD. Pravastatin blocked

AGE‐induced apoptosis in PTECs by inhibiting geranylgeranyl pyro-

phosphate generation, indicating that the protective effect of pra-

vastatin on the DKD tubule occurs by disrupting the AGE/RAGE

axis.59 Moreover, taurine, an amino acid that exerts antioxidant

properties, alleviates HG‐induced PTEC apoptosis through the sup-

pression of ROS, suggesting that it is a potential therapeutic target

for DKD.18

In addition to chemical compounds, traditional Chinese medicine

(TCM) and natural compounds have also shown the protective role of

DKD tubules. Methylglyoxal, a metabolite of glucose metabolism, was

implicated in the pathogenesis of DKD through the formation ofT
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TAB L E 3 Pharmacological effects of drugs and therapy on the TECs apoptosis and autophagy

Drug or therapy Introduction

Pharmacological effects

on the TECs damage

Regulatory pathway and

involved mechanism Author and year

Metformin Antihyperglycemic drug by

activation of AMPK

Block AGEs‐induced human PTECs

apoptosis in vitro

Activation of AMPK and inhibiting

the generation of ROS

Ishibashi et al. in

2012 54

Liraglutide Antihyperglycemic drug as

human incretin GLP‐1
analogue

Ameliorate of renal tubular

apoptosis in STZ‐induced rats

and human PTECs apoptosis

Increase in GLP‐1 receptor

expression

Zhao et al. in

2015 57

Tofogliflozin Antihyperglycemic drug as

SGLT2 inhibitors

Prevent AGEs‐elicited apoptosis of

HG‐exposed human PTECs in

vitro

Inhibition of the glycer‐AGE/RAGE

axis and oxidative stress

Ishibashi et al. in

2016 55

Dapagliflozin Antihyperglycemic drug as

SGLT2 inhibitors

Alleviate the tubular apoptosis in Fr‐
STZ‐induced diabetes in rats

Unknown Oraby et al. in

2019 56

C‐peptide A cleavage product originated

from pro‐insulin and

insulin

Reduce the TNF‐α‐induced

apoptosis of opossum kidney

PTECs

Activation of NF‐κB Al‐Rasheed et al.

in 2006 58

Pravastatin Lipid‐lowering drug Block the AGEs‐induced human

PTECs apoptosis

Disrupt the AGEs/RAGE axis via

inhibition of geranylgeranyl

pyrophosphate generation

Ishibashi et al. in

2012 59

Taurine An amino acid Alleviate HG‐induced human PTECs

apoptosis

Through anti‐oxidation and

suppression of oxidative stress

Verzola et al. in

2002 18

Baicalin and chrysin

mixture

Natural compounds of

traditional Chinese

medicine

Methylglyoxal‐induced rat TECs

apoptosis and n STZ‐induced

diabetic rats

Unknown Singh et al. in

2017 61

Akebia saponin D Ingredients of herb, Dipsaci

Radix

Ameliorate the apoptosis of human

TECs and STZ‐induced diabetic

mice

Activation of Nrf2/HO‐1 and

inactivation of NF‐κB pathway

Lu et al. in 2020
63

Apigenin A natural compound

extracted from fruits and

vegetables

Disrupt human TECs apoptosis Increase the expression of Nrf2 and

HO‐1
Zhang et al. in

2019 64

Astragaloside IV An active component in the

medicinal plant Astragalus

membranaceus

Alleviate ER stress‐induced TECs

apoptosis of STZ‐induced

diabetic rats

Suppression the p‐PERK, ATF4 and

CHOP

Ju et al. in 2019
65

Anthocyanins Natural phenols present in

numerous fruits and

vegetables

Suppress human TECs apoptosis in

vitro and tubular apoptosis in db/

db mice in vivo

Increase thioredoxin 2 expression

and the biological activity of

thioredoxin

Wei et al. in

2018 66

Erianin A major bibenzyl present in D.

chrysotoxum

Protect rat TECs against apoptosis Inhibit activation of JNK/p38‐MAPK

and NF‐κB signalling

Chen et al. in

2019 67

Sulodexide A highly purified

glycosaminoglycan

Inhibit TECs apoptosis of STZ‐
induced rats

Upregulate the expression of klotho Liu et al. in 2017
47

Resveratrol SIRT1 activator Attenuate human TECs apoptosis

and STZ‐induced rats

Increase SIRT1 expression Wang et al. in

2016 21

Hepatocyte growth

factor

A type of growth factor Inhibit human PTECs apoptosis Reduction in the expression of TGF‐
β1

Mou et al. in

2010 68

Genipin Inhibitor of UCP2 Exacerbate rat TECs apoptosis Downregulation of UCP2 Chen et al. in

2014 69

Combination of

prostaglandin E1

and ACE inhibitor

Combination treatment Decrease the apoptosis of tubule in

DKD rats

Unknown Mou et al. in

2018 70

Prostaglandin E1 A 20‐carbon unsaturated

fatty acid

Protect PTECs against HG‐apoptosis

in DKD rats and human PTECs

Inhibit JNK/Bim signalling pathway Zhang et al. in

2020 72

Calcium dobesilate A vascular protective

compound of TCM

Prevent human PTECs from HG‐
induced apoptosis

Inhibit the Bim expression Cai et al. in 2017
73

(Continues)
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AGEs.60 In contrast, baicalin and chrysin were shown to have a

protective effect against methylglyoxal‐induced TEC apoptosis in

DKD.61 Akebia saponin D (ASD) is found in the herb Dipsaci Radix

and possesses various pharmacological effects.62 Lu et al. revealed

that ASD ameliorated apoptosis in DKD mice by activating NF‐E2‐
related factor 2 (Nrf2)/hemeoxygenase‐1 (HO‐1) and inactivating

the NF‐κB pathway.63 Furthermore, apigenin, a natural compound

extracted from vegetables, was shown to disrupt TEC apoptosis and

exert beneficial effects on HG‐induced renal injury by increasing the

expression of Nrf2 and HO‐1.64 Astragaloside IV (AS‐IV) is an active

component of the medicinal plant Astragalus membranaceus that al-

leviates apoptosis induced by endoplasmic reticulum (ER) stress by

suppressing phosphorylated protein kinase R‐like ER kinase, acti-

vating transcription factor 4 and C/EBP‐homologous protein, indi-

cating a novel theoretical application of AS‐IV as a treatment for

DKD.65 Furthermore, anthocyanins, the natural phenols present in

many fruits and vegetables, suppressed TEC apoptosis by increasing

thioredoxin 2 expression and stabilising the biological activity of

thioredoxin, indicating protective effects against TEC apoptosis in

DKD.66 Another study revealed that erianin, the major bibenzyl

present in Dendrobium chrysotoxum, protects TECs against injury by

ameliorating apoptosis by inactivating c‐Jun N‐terminal kinase (JNK)/

p38‐MAPK and NF‐κB signalling, suggesting it has a protective role in

DKD.67 Liu et al. reported that sulodexide, a highly purified glycos-

aminoglycan, can also inhibit TEC apoptosis and prevent the pro-

gression of DKD by upregulating the klotho enzymes.47 Treatment

with resveratrol (RSV), a SIRT1 activator, significantly attenuated the

expression of apoptosis indicators, which were further eliminated by

SIRT1 silencing, indicating a potential role for RSV in DKD through

the upregulation of SIRT1.21

Research revealed that the application of hepatocyte growth

factor could inhibit PTEC apoptosis and contribute to the prevention

of tubular damage in an HG environment.68 Furthermore, uncoupling

protein‐2 (UCP2), a mitochondrial membrane protein, has been

implicated in tubular apoptosis. Genipin, an inhibitor of UCP2,

exacerbated TEC apoptosis and was accompanied by caspase‐3

activation, which revealed that UCP2 activation is a candidate

target for DKD therapy.69 Additionally, Mou et al. revealed that the

apoptosis of tubules was significantly decreased by a combination of

prostaglandin E1 and angiotensin‐converting enzyme (ACE) in-

hibitors, which showcased the remarkable protective effect prosta-

glandin E1 and ACE inhibitors have on renal function in DKD.70

Zhang et al.71 reported that different sulfonylurea compounds

could mediate PTEC apoptosis by closing the KATP channel at

different binding selectivity and reversibility. A therapeutic effect of

gliclazide on the inhibition of PTEC apoptosis was also observed,

which benefited the preservation of functional PTEC mass.71

In terms of Bim‐mediated PTEC apoptosis, our team investigated

a series of therapeutic drugs,72–74 and their related mechanisms are

summarised in Figure 3. By developing a DKD rat model and HG‐
treated PTECs in vitro, we found that prostaglandin E1 reduced

the expression of JNK, Bim, Bax, and caspase‐3 and prevented

apoptosis in PTECs. Further application of a JNK activator and in-

hibitor indicated the nephroprotective role of prostaglandin E1

through the inhibition of the JNK/Bim signalling pathway.72 We also

revealed that TCM and the active components of herbs protected

TECs from apoptosis; in addition to vascular protection, calcium

dobesilate was shown to protect PTECs from HG‐induced apoptosis

by inhibiting Bim expression, suggesting its potential significance in

DKD treatment.73 Furthermore, salidroside isolated from Rhodiola

rosea was also found to have therapeutic efficacy in DKD. These data

showed that salidroside effectively suppressed tubular injury by

inhibiting Bim‐mediated PTEC apoptosis in DKD.74

5 | AUTOPHAGY OF RENAL TUBULAR CELLS IN
DKD

Autophagy affects various renal cell types to maintain renal patho-

physiology and homoeostasis in humans. Under normal conditions,

functional cells can mitigate the oxidative and ER stresses produced in

the diabetic kidney by promoting autophagic flux such that renal

T A B L E 3 (Continued)

Drug or therapy Introduction

Pharmacological effects

on the TECs damage

Regulatory pathway and

involved mechanism Author and year

Salidroside An active component isolated

from Rhodiola rosea
Suppress the PTECs apoptosis in

DKD rats and human PTECs

Suppress the Bim expression Guo et al. in

2018 74

Experimental

knockout of

SGLT2

Inhibition of SGLT2 Upregulate autophagic flux Enhance activation of SIRT1 and

AMPK

Packer et al. in

2020 90

Fenofibrate A fibric acid derivative Induce TECs autophagy in high‐fat

diet‐fed mice

AMPK activation and upregulation of

FAO enzymes

Sohn et al. in

2017 93

Abbreviations: ACE, angiotensin converting enzyme; AGEs, advanced glycation end products; AMPK, adenosine monophosphate activated protein

kinase; ATF4, activating transcription factor 4; Bim, Bcl‐2 interacting mediator; CHOP, C/EBP‐homologous protein; ER, endoplasmic reticulum; FAO,

fatty acid oxidation; Fr, fructose; GLP‐1, glucagon‐likepeptide‐1; HG, high glucose; HO‐1, hemeoxygenase‐1; JNK, c‐jun N‐terminal kinase; MAPK,

mitogen‐activated protein kinase; Nrf2, nuclear factor erythroid‐2 related factor 2; p‐PERK, phospho‐protein kinase R‐like ER kinase; PTECs, proximal

tubular epithelial cells; RAGE, advanced glycation end product receptor; ROS, reactive oxygen species; SGLT2, sodium‐glucose co‐transporter 2; SIRT1,

sirtuin‐1; STZ, streptozotocin; TCM, traditional Chinese medicine; TGF‐β1, transforming growth factor β1; TNF‐α, tumor necrosis factor α; UCP2,

uncoupling protein‐2.
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tubules can sustain their structural and functional integrity.75 Under

adverse conditions, proximal tubular cells are exposed to multiple

stimuli, including oxidative stress, ER stress, hypoxia, nutrient and

energy depletion, and mitochondrial damage, which can all activate

autophagy. The regulation of autophagy in renal tubular cells is

reduced in diabetes, significantly contributing to the severity of the

renal injury. Impaired autophagic activity is involved in the patho-

genesis of DKD; therefore, the study of the mechanisms of renal

tubular injury caused by abnormal tubular autophagy is a core area in

the study of DKD tubulopathy. Mechanistic evidence of cellular

autophagy was first proposed in a streptozotocin‐induced diabetes rat

model in the 1990s, which revealed that the number and volume of

autophagic vacuoles were markedly reduced in the proximal tu-

bules.76,77 Improving tubular autophagy inhibited oxidative stress in

TECs and ameliorated renal tubular injury in a diabetic mouse model.78

These studies provide evidence that suggests a pivotal role for auto-

phagy during cellular remodelling and renal tubule homoeostasis.

5.1 | Molecules and signalling pathways involved in
TEC autophagy impairment in DKD

Liu et al.79 reported that Atg5 deficiency in the proximal and distal

tubules contributes to serious tubular injury and dysfunction.

However, only distal tubules‐specific‐Atg5 knockout mice exhibited

the integrity of renal function and maintenance of tubular struc-

ture.79 These findings revealed that autophagy is crucial for the

integrity of proximal tubule function. In contrast, distal tubules

depend less on autophagy to maintain homoeostasis, presumably

because their function requires minimal energy.

Jiang et al.80 observed an increase in the expression of soluble

epoxide hydrolase (sEH) and damaged autophagy flux in PTECs from

db/db diabetic mice under HG conditions. The inhibition of sEH

notably alleviated tubular damage injury and improved autophagic

flux of PTECs in DKD, indicating that the suppression of sEH played a

protective role in proximal tubular injury in DKD and that there is a

potential capacity for targeting sEH‐mediated TEC autophagy as a

treatment of DKD.80

Under HG conditions, autophagy in HK‐2 cells was promoted and

accompanied by an increased expression of Beclin‐1 and LC3 II, as

well as serum and glucocorticoid‐induced kinases (SGK1).81 Inhibiting

autophagy signalling using the SGK1 inhibitor GSK650394 protected

PTECs against HG‐induced injury by activating PI3K/AKT/mTOR

signalling, demonstrating that SGK1 could act as an effective thera-

peutic target for DKD.81 Evidence suggests that PI3K/AKT/mTOR

signalling is part of the modulation of autophagy. The upregulation of

KCa3.1 participated in tubular autophagy dysfunction in DKD

through the activation of the PI3K/AKT/mTOR pathway.82 In

F I GUR E 3 Pharmacological effects targeting Bim protein and related pathways on the TECs apoptosis and autophagy in DKD. High
glucose induced the upregulation of transcription factors, FOXO1 and FOXO3a, and then Bim expression was increased and initiated BAX/
BAK‐mediated mitochondria‐dependent apoptosis, which further inhibited the autophagy of TECs (black arrows in the middle). The inhibitory

effect of prostaglandin E1 on the TECs apoptosis involved two pathways. On one hand, prostaglandin E1 reduced the ET‐1 and Ang II levels to
suppress the apoptosis (orange line). On the other hand, prostaglandin E1 attenuated high glucose‐induced Bim expression by inhibiting
phosphorylated JNK (red line). Calcium dobesilate exerted the protective function against TECs apoptosis by downregulating the expression of

Bim (light blue line). Salidroside inhibited the apoptosis of TECs by targeting Bim protein (green line). Glibenclamide aggravated TECs
apoptosis by inhibiting Bcl‐2 and upregulating Bax and suppressed autophagy (black line on the left side). In contrast, the therapeutic effect of
gliclazide on the inhibition of TECs apoptosis was achieved by increasing Bcl‐2 expression and suppressing Bax expression (yellow line). The

2D structure of drug was acquired from PubChem database. TECs: tubular epithelial cells; ET‐1: endothelin‐1; Ang II: angiotensin II; JNK: c‐Jun
N‐terminal kinase; FOXO1: forkhead box protein O1; FOXO3a: forkhead box protein O3a; Bim: Bcl‐2 interacting mediator
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contrast, the inhibition of PI3K/AKT/mTOR signalling initiated

autophagic activity and protected against tubular epithelial injury.83

Wang et al. reported that HG promoted miR‐155 expression in

HK‐2 cells, which was accompanied by the upregulation of p53 and the

downregulation of SIRT1 and autophagy‐associated proteins and

suggested that p53/miR‐155/SIRT1 signalling in the autophagic pro-

cess may be vital in the pathogenesis of DKD renal tubular injury.84

Huang et al. demonstrated that the inhibition of mitophagy in-

duces tubular injury via activation of TXNIP/mTOR/BCL2 interacting

protein 3 signalling in DKD mice, and suppression of TXNIP effec-

tively alleviates TEC autophagy and renal dysfunction in DKD.85 In

addition to the induction of aberrant apoptosis, Zhan et al.86 found

that increased MIOX expression was associated with defective

autophagy in the tubules of diabetic mice. Inhibition of MIOX

partially reversed autophagic abnormalities, indicating that MIOX

contributes to the regulation of autophagy during DKD.86

5.2 | Other harmful factors that impair TEC
autophagy in DKD

In addition to HG, obesity‐mediated autophagic deficiency in DKD

could be a vital factor evoking the vulnerability of PTEC under dia-

betic conditions. A study revealed that obesity‐mediated autophagy

impairment involves the induction of mTORC1 hyperactivation dur-

ing renal tubular damage.87 Moreover, oxidative stress provoked by

AGE‐RAGE interactions not only trigger the apoptosis of PTECs, but

play a fundamental role in autophagic abnormalities. For example,

AGEs induce lysosomal membrane permeabilisation and lysosomal

dysfunction, contributing to autophagic inactivation in PTECs.88

The profibrogenic cytokine, transforming growth factor β1 (TGF‐
β1), is involved in renal dysfunction and progression of DKD.

Research has shown that TGF‐β1 stimulation in renal tubules pro-

motes tubular autophagy and may represent a novel insight into

tubular disruption in DKD.89

5.3 | Pharmacological effects that improve
abnormal autophagy in TECs

The pharmacological influence on abnormal autophagy of TECs is

also summarised in Table 3. The dominant drivers of autophagy that

function as signalling molecules under nutrient deprivation include

SIRT1, AMPK, and hypoxia‐inducible factors (HIF‐1α and HIF‐2α),

which play a protective role in increasing autophagic flux in the

kidneys.90 Under hyperglycaemic conditions, suppression of SIRT1

and AMPK significantly decreases autophagic flux in tubules and

renal injury deterioration.91 Additionally, SGLT2 downregulation

helps reduce glomerular filtration pressure by suppressing proximal

reabsorption of glucose. Research has shown that the experimental

knockout of SGLT2 in PTECs upregulates autophagic flux by

enhancing SIRT1 and AMPK,90 indicating tubular SGLT2 may be a

promising target for therapeutic interventions in DKD.

Fenofibrate is a fibric acid derivative widely used in the clinic to

treat dyslipidaemia. AMPK is the crucial mediator of autophagy in

TECs and plays a critical role in fenofibrate‐mediated amelioration of

renal injury during lipotoxicity in db/db mice.92 Furthermore, feno-

fibrate treatment induced renal autophagy in DKD mice via AMPK

activation and the upregulation of fatty acid oxidation enzymes. This

indicates that fenofibrate can alleviate DKD injury by improving

tubular autophagic dysfunction.93

6 | THE ROLE OF PYROPTOSIS IN DKD

Unlike apoptosis and autophagy, pyroptosis is a pro‐inflammatory

type of PCD. In response to abnormal signals, immune cells in the

body release numerous pro‐inflammatory mediators, such as cyto-

kines that further attract more immune cells, induce the secretion of

cytokines, and form a perpetuating inflammatory cascade in the kidney

that contributes to the induction of cell swelling and cell death.

Pyroptosis is characterised by plasma membrane rupture mediated by

the NOD‐like receptor pyrin‐containing receptor 3 (NLRP3) inflam-

masome, caspase‐1, and secretion of pro‐inflammatory cytokines.94

Activation of the NLRP3 inflammasome and caspase‐1 is a critical step

for the execution of pyroptosis. Upon danger signal stimulation, in-

flammatory caspase‐1 is cleaved, and gasdermin D (GSDMD) is acti-

vated to generate the active form GSDMD‐N and the self‐inhibited

form GSDMD‐C. GSDMD‐N induces the formation of protein pores by

specifically binding to lipids in the cell membrane and mediating cell

swelling. When the swollen cells are activated by danger signals, cell

pyroptosis is observed. It results in cell membrane damage and the

release of cytoplasmic contents and pro‐inflammatory cytokines, such

as interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18).95,96

Several reports have shown that pyroptosis of TECs is a required

process in acute kidney injury (AKI),97 indicating that pyroptosis

contributes to the progression of tubulopathy in kidney diseases.

However, few studies have focussed on the role of pyroptosis in DKD

TECs. Pyroptosis is reportedly evoked by hyperglycaemia and exerts

its function by forming a multiprotein complex known as the supra-

molecular pyroptosome, which mainly contains caspase‐1.98 The

formation of pyroptosomes further results in the activation of the

pyroptosis‐related proteins ELAV‐like protein 1 (ELAVL1) and

NLRP3, which destroys cells and tissues. Evidence has shown that

pyroptosis is implicated in DKD via its activation of NLRP3 inflam-

masomes that further mediate DKD progression.99,100 Therefore,

pyroptosis in tubular cells plays a vital role in DKD, and the under-

lying mechanism requires further exploration.

6.1 | Molecular signalling pathways involved in
pyroptosis impairment in TECs in DKD

TLR4 is a member of the TLRs family that plays a vital role in acti-

vating the immune response. TLR4 has been implicated in the path-

ogenesis of acute and chronic renal disorders, such as AKI, DKD, and
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renal fibrosis.101 Wang et al.102 proposed that overexpressed TLR4

participates in tubular injury induced by enhanced pyroptosis, and

the inhibition of TLR4/NF‐κB signalling could reverse PTEC pyrop-

tosis and the release of IL‐1β, accompanied by increased expression

of GSDMD‐NT under HG conditions. Therefore, these findings sug-

gest that the TLR4/NF‐κB signalling pathway contributes to the

increased GSDMD‐related pyroptosis observed in DKD.

Another study showed that an A1 adenosine receptor (A1AR)

deletion increased caspase‐1/IL‐18 expression, megalin loss, and

albuminuria.103 The upregulation of A1AR successfully reversed

proximal tubular megalin loss‐associated albuminuria by interrupting

pyroptosis‐related caspase‐1/IL‐18 signalling in DKD, indicating a

protective role for A1AR in DKD renal injury.103

6.2 | Abnormal TEC pyroptosis is mediated by non‐
coding RNA in DKD

Emerging evidence indicates that long non‐coding RNAs (lncRNAs),

which are endogenous non‐coding RNAs of over 200 nucleotides that

lack protein‐coding functions, play crucial roles in the pathological

processes of diabetes and diabetes‐related complications.104 After

treatment with HG, HK‐2 cell pyroptosis was markedly induced,

accompanied by increased lncRNA‐antisense non‐coding RNA in the

INK4 locus (ANRIL), TXNIP expression, and decreased miR‐497

expression. Further research revealed that miR‐497 mimics inhibi-

ted caspase‐1‐dependent pyroptosis, whereas co‐overexpression of

TXNIP blocked its activity in HG‐treated HK‐2 cells. In other words,

upregulation of ARNIL in DKD promotes PTEC pyroptosis by

sponging miR‐497 to activate TXNIP/NLRP3/caspase‐1 signalling,

and this axis could serve as an effective therapeutic target for

DKD.105

Another study demonstrated that lncRNA metastasis‐associated

lung adenocarcinoma transcript‐1 (MALAT1) was involved in the

development of DKD, and that downregulating MALAT1 could inhibit

TEC pyroptosis by decreasing its interaction with the transcription

factor FOXO1 to activate SIRT1 transcription.106 Furthermore,

upregulated MALAT1 induced NLRP3‐mediated TEC pyroptosis by

inhibiting miR‐30c from targeting NLRP3, providing another potential

mechanistic model for ceRNA‐mediated pyroptosis in DKD patho-

genesis.107 In addition to sponging miR‐30c, the lncRNA MALAT1

also acts as an endogenous sponge of miR‐23c to remove the sup-

pression of the target gene ELAVL1, which further leads to the acti-

vation of the downstream protein NLRP3 and subsequent

pyroptosis.108

Other lncRNAs have also been confirmed to participate in the

pyroptosis of TECs in DKD. Overexpression of the lncRNA GAS5

alleviated HG‐induced pyroptosis of TECs by downregulating miR‐
452‐5p expression.109 Additionally, the downregulation of lncRNA

KCNQ1OT1 inhibited pyroptosis in HG‐induced PTECs by removing

the inhibition of its downstream miR‐506‐3p.110 This evidence elu-

cidates the promising therapeutic benefits of lncRNAs for DKD

treatment.

In addition to lncRNAs functioning as regulators of TEC pyrop-

tosis in DKD, the critical role of circRNAs in HG‐induced pyroptosis

in PTECs has been recently reported by Wen et al. They identified

circACTR2, which upregulated HG‐induced PTEC pyroptosis,

inflammation, and fibrosis, indicating a potential novel target for

DKD therapy in the future.111

7 | INTERACTION AMONG THE THREE PCD
PATTERNS IN TECS IN DKD

Although the three PCD patterns that contribute to executioner

activation have been identified independently, there is considerable

evidence of significant interactions among the three patterns. Auto-

phagy has been found to cross‐regulate apoptosis,112 mostly in an

inhibitory manner. As a mediator of abnormal apoptosis, Bim inhibi-

tion restored the defective autophagic activity in TECs that was

induced by HG.48 Furthermore, autophagy inhibitor, which was used

in Bim‐downregulated TECs, could trigger apoptosis again, indicating

that the relationship between apoptosis and autophagy was inhibi-

tory on each other in TECs.48 The targeted intervention of Bim had

dual effects on the inhibition of apoptosis and restoration of auto-

phagy in TECs. Kimura et al. developed a proximal tubule‐specific

autophagy‐knock out mouse model. They found that ubiquitin‐
positive inclusion bodies, damaged mitochondria, and misfolded

protein aggregates markedly accumulated in autophagy‐deficient

TECs, which manifested an obvious increase of apoptosis in

TECs.113 Thus, autophagy activation suppresses the apoptosis of

TECs and activation of the apoptosis couples the inhibition of

autophagy.

Interaction between pyroptosis and apoptosis also exists in DKD

tubules. TLR4 could aggravate tubular injury via the GSDMD‐
mediated pyroptosis in DKD.114 The upregulation of GSDMD

induced pyroptosis and suppressed apoptosis, which might partici-

pate in the switch mechanism between pyroptosis and apoptosis that

was mediated by TLR4 during DKD tubular injury.114 Moreover,

activation of caspase‐3, an executor of intrinsic and extrinsic

apoptosis, induced pyroptosis by cleaving gasdermin E in DKD tu-

bules.115 These findings suggest that the pyroptosis and apoptosis

interact closely in the TECs of DKD. Pyroptosis and autophagy

theoretically interact with each other; however, few studies report a

relationship between pyroptosis and autophagy in DKD tubular

injury. Thus, investigating the interaction between pyroptosis and

autophagy in TECs is essential to determine the underlying mecha-

nisms of DKD.

8 | CONCLUSION

The programed cell death (PCD) of TECs is vital to hyperglycaemia‐
mediated renal damage in DKD. By studying the mechanisms of

apoptosis, autophagy, and pyroptosis of TECs in DKD, many media-

tors and signalling pathways were identified, and their potential
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pharmacological effects on the prevention of tubular damage in DKD

were further investigated. The mechanism of programed TECs death

involved in the pathogenesis of DKD is complicated, and new ad-

vancements in the field show promise as novel therapeutic targets

for DKD.
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