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Abstract

A diuron-degrading endophyte DP8-1 was isolated from sugarcane root grown in diuron-

treated soil in the present study. The endophyte was identified as Neurospora intermedia

based on the morphological characteristics and sequence analysis. The fermentation

parameters including temperature, pH, inoculation size, carbon source, and initial diuron

concentration were also investigated for the optimization of degradation efficiency. The

results indicated that strain DP8-1 was capable of degrading up to 99% diuron within 3 days

under the optimal degrading condition. The study of degradation spectrum indicated that

strain DP8-1 could also degrade and utilize fenuron, monuron, metobromuron, isoproturon,

chlorbromuron, linuron, and chlortoluron as substrate for strain growth. On basis of liquid

chromatography-mass spectrometry analysis for the products of the degradation of diuron,

strain DP8-1 metabolized diuron to produce N-(3,4-dichlorophenyl)-urea and N-(3,4-dichlor-

ophenyl)-N-methylurea through sequential N-dealkylations. In a soil bioaugmentation

experiment, the inoculation of strain DP8-1 into diuron-treated soil effectively enhanced the

disappearance rate of diuron.

Introduction

Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), a phenylurea herbicide, is widely used as a

broad-spectrum herbicide for pre-emergence weed control in a wide variety of crops, espe-

cially sugarcane cultures [1]. Diuron is relatively persistent in soil with the mean half-life of

approximately 330 days [2], which contaminates surface and ground waters worldwide by

runoff [3, 4] and leaching [5, 6]. Diuron is classified as a Priority Hazardous Substance by the
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European Commission (Directive 2000/60/CE) and accordingly has been banned in Europe

but remains used in numerous regions of the world. The pollutant of its residues in the envi-

ronment affects not only terrestrial and aquatic biota but also human health. Additionally,

diuron is suspected to be a carcinogenic and genotoxic compound for humans and aquatic

organisms [7, 8]. Therefore, the dissipation of this compound from the environment is a cen-

tral issue.

The major route for natural dissipation of diuron from the environment is microbial degra-

dation [9]. The diuron-biodegrading potentials were reported about bacteria such as Arthro-
bacter sp. N2 [10, 11], Acinetobacter johnsonii [12], Streptomycete strains [13], Micrococcus sp.

PS-1 [14, 15], and Bacillus, Vagococcus, and Burkholderia spp. [16] isolated from soil samples.

Diuron-degrading bacteria identified as Pseudomonas sp. and Stenotrophomonas sp. were iso-

lated from lotic surface water that has been sensitized to diuron exposure for more than 10

years [17]. The degradation potentials for diuron of five soil fungus Mortierella strains were

compared [18]. The white-rot fungus Phanerochaete chrysosporium was reported for its capac-

ity to degrade diuron in liquid stationary cultures [1]. Sørensen et al. examined the degrada-

tion and mineralization of diuron at low concentrations by Sphingomonas sp. SRS2 from soil

samples in a British agricultural field [19]. So far, the majority of studies on the biodegradation

of diuron have focused on microbes isolated from soil, sludge, sediment and water samples in

various diuron exposed environments.

At present, fewer studies have reported about the biodegradation of herbicides by using

endophytic microbes that reside in the internal tissues of plants without causing apparent neg-

ative symptoms of infection. It was demonstrated that endophytes play a key role in host plant

adaptation in polluted environment [20]. Herbicide-degrading endophytes could be isolated

from plants grown in herbicide-treated areas. It was reported that endophytic rhizobacteria for

the degradation of simazine were isolated from the roots of corn plants and the nodules of soy-

bean plants [21]. A study isolated endophytic bacteria Pseudomonas oryzihabitans and Bur-
kholderia gladioliwhich from soybean grown in soil treated with glyphosate herbicide [22].

Recently, an endophytic quinclorac-degrading bacterium Bacillus megaterium Q3 was isolated

from the root of tobacco grown in quinclorac-contaminated soil [23]. Up to now, it has not

been reported endophytic microorganisms able to degrade diuron.

In the present paper, a diuron-degrading endophytic fungus DP8-1 was isolated from the

root of sugarcane grown in a diuron-treated field. The morphological characteristics and

sequence analysis of this endophyte was investigated to identify it as Neurospora intermedia.

The effect factors on the degradation efficiency were also studied to find the optimal degrading

condition. The degradation capability of this endophyte to other phenylurea herbicides was

also investigated. The biochemical degradation pathway of diuron by this endophyte was pro-

posed based on the analysis of degradation products. The endophyte was tested for the biore-

mediation of diuron-contaminated soil. To our knowledge, it was the first report on the

biodegradation of diuron by endophyte from sugarcane.

Materials and methods

Materials

The five standards with above 98% purity of diuron, 3,4-dichloroaniline (3,4-DCA), 1-(3,4-

dichloro-phenyl)-3-methylurea3-(4-chlorophenyl) methyl urea (DCPMU), 1-(3,4-dichloro-

phenyl) urea (DCPU), and 3,4-dichloroacetanilide (3,4-DCAA) were purchased from Dr.

Ehrenstorfer GmbH (Augsburg, Germany). Acetonitrile (chromatographic grade) was

obtained from Sigma Aldrich (USA). All other reagents used in this study were of analytical
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grade. The standard N. intermedia BNCC144684 was obtained from Bena Culture Colletion

(BNCC, China). Unless otherwise stated, deionized water was used in all of the experiments.

Sugarcane plants were removed from an agricultural filed in Wuming District of Nanning

city, Guangxi, China (23˚908.2476@N, 108˚11054.9828@E) with a previous history of diuron

application. No specific permission was required to sampling in this location. The roots of

sugarcane plant were collected and placed in a plastic bag and immediately transported to the

laboratory. Then, they were thoroughly washed using running tap water to remove soil and a

sonication step was employed to dislodge any soil and organic matter from the surface of sug-

arcane roots.

The mineral salt medium (MSM) contained (g L–1): NH4NO3 1.0, K2HPO4 1.5, KH2PO4

0.5, NaCl 1.0, MgSO4�7H2O 0.1, and FeSO4 0.025. The amendment MSM was prepared by

adding 0.5 g L–1 soluble starch. The Luria–Bertani’s (LB) medium was composed of 5 g L–1

yeast extract, 10 g L–1 tryptone, and 10 g L–1 NaCl. The composition of potato dextrose (PD)

medium for the purification and enlarged cultivation of the isolated endophyte was as follows

(g L–1): potato extract 3.0 and dextrose 20.0. Solid medium was prepared by adding 1.5%

(W/V) agar into above liquid medium.

Isolation of diuron-degrading endophytic fungus DP8-1

The cleaned sugarcane roots were surface-sterilized using serial washing in 75% (V/V) ethanol

for 2 min, deionized water three times with 1 min each, and 0.1% mercuric chloride for 1 min.

Finally, the surface-sterilized sugarcane roots were washed by sterile deionized water three

times to clean sterilization agent residues. To check the sterilization process, aliquots of sterile

deionized water from the final washing step were spread onto LB agar plate and incubated at

28˚C for 5 days. The sugarcane roots were considered clean if no colony was found on agar

plate after inoculation.

1 g fresh roots were cut up and ground with 10 mL sterile deionized water in a sterile mor-

tar. 100 μL of the grinding suspension was spread onto MSM agar plate containing 500 mg L–1

diuron and then cultured at 28˚C for 7 days. Colonies with clear zones were selected as poten-

tial diuron-degrading endophytic microbes.

Identification of the endophytic fungus DP8-1

Colony growth and morphology were examined on PD agar plate, following incubation

at 28˚C for 7 days. Cell morphology, mycelium, and spore were observed under a light

microscope.

The fungal strain DP8-1 was molecularly identified by the analysis of partial sequences

of β-tubulin (Bml), translational elongation factor1-α (tef-1), protein kinase C (pkc), 28S

rDNA, mitogen-activated protein kinase-2 (mak-2) and a hypothetical protein-coding gene

(NCU02332). For Bml, two regions were amplified with separate primer pairs, while for the

other gene loci one region was amplified. PCR amplifications were performed using a Analytik

Jena DNA thermal cycler (Gradient SL96, Germany) under the following conditions: initial

denaturation at 95˚C for 5 min, followed by 35 cycles of denaturation at 95˚C for 1 min,

annealing at 53–58˚C for 30 s, and extension at 72˚C for 1 min, with a final extension at 72˚C

for 10 min and final hold at 4˚C. The primers, annealing temperatures and references for all

target nuclear coli were summarized in Table 1. DNA sequencing was determined by the

Shanghai Invitrogen Biological Technology Co., Ltd (China) and aligned with the published

sequences in GenBank using BLAST program. Phylogenesis was analyzed using MEGA

software.
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Optimization of diuron-degrading conditions

Temperature, pH, and inoculation amount were important variables for the degradation of

diuron by strain DP8-1. The tested ranges were 20–40˚C, 5–9, and 0.1–1 g dry wt L−1 for tem-

perature, pH, and inoculum, respectively. Response surface methodology (RSM) based on the

Box–Behnken design of experiment was used to optimize these parameters and evaluate their

interaction which significantly affected the degradation of diuron by strain DP8-1 [29]. Three

independent variables were considered, and the total of 15 experimental runs with three repli-

cates were designed and performed in a random order. The experimental parameters and

coded levels of independent variables for diuron biodegradation were showed in Table 2. The

Table 1. The primers, annealing temperatures and references for all target nuclear coli.

Gene loci Primer Primer DNA sequence (5’–3’) Annealing temperatures References

Bml Bt1a TTCCCCCGTCTCCACTTCTTCATG 58 [24]

Bt1b GACGAGATCGTTCATGTTGAACTC

Bt2a GGTAACCAAATCGGTGCTGCTTTC

Bt2b ACCCTCAGTGTAGTGACCCTTGGC

tef-1 tef-1F RGACAAGRCTCACATCAACGTSGT 53 [25]

tef-1R CCAGTRATCATGTTCTTGATGAART

pkc PkcF AAGATCGAGCGCGAAAAGGCTCTGATC

pkcR TATCTCTTSARTGCCTGCTTCAAGAG

28S LR0R ACCCGCTGAACTTAAGC 55 [26]

LR5 ATCCTGAGGGAAACTTC [27]

mak-2 2393F GAACTGATGGAGACTGACATGC 58 [28]

2393R TTCAACTGCTCCTTGCTCA

NCU02332 2332F TGAAGAGGGTATTAAGGARATGA 58

2332R GATGCTGACCTCTCCAAG

https://doi.org/10.1371/journal.pone.0182556.t001

Table 2. Box-Behnken experimental design with three independent variables.

Run A B C Responses (residues of diuron, mg L–1)

1 –1 –1 0 20.20

2 1 –1 0 17.73

3 –1 1 0 16.52

4 1 1 0 9.87

5 –1 0 –1 15.33

6 1 0 –1 11.38

7 –1 0 1 13.12

8 1 0 1 11.66

9 0 –1 –1 10.33

10 0 1 –1 9.19

11 0 –1 1 8.31

12 0 1 1 5.18

13 0 0 0 3.72

14 0 0 0 3.95

15 0 0 0 2.73

A, temperature, –1 (20˚C), 0 (30˚C), 1 (40˚C); B, media pH, –1 (5), 0 (7), 1 (9); C, biomass amount, –1 (0.1 g

L–1), 0 (0.55 g L–1), 1 (1 g L–1).

https://doi.org/10.1371/journal.pone.0182556.t002
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MSM solution containing 50 mg L–1 diuron inoculated with strain DP8-1 was cultured on a

rotary shaker at 150 rpm and withdrawn for detecting diuron residues after 3 days. The

obtained data were accurately estimated by quadratic polynomial equation using the response

surface regression (RSREG) procedure of the Statistic Analysis System software packages (ver-

sion 8.0).

Yi ¼ b0 þ
X

biXi þ
X

bijXiXj þ
X

biiXi
2 ð1Þ

where Yi is the predicted response, Xi and Xj are variables, b0 is the constant, bi is the linear

coefficient, bij is the interaction coefficient, and bii is the quadratic coefficient.

Effect of alternate carbon source on the degradation of diuron

To study the effect of different carbon sources on diuron degradation by strain DP8-1, 0.5%

(W/V) carbon sources including soluble starch, sucrose, yeast extract, and glucose were added

into MSM with 50 mg L–1 diuron. The inoculated solutions in 250-mL Erlenmeyer flasks (in

triplicate) were incubated under the optimal conditions for 3 days. Non-inoculated samples

were kept as controls. Sample using diuron as the sole carbon source for culture was also used

to compare the efficiency of diuron degradation. Additionally, 0.2 mg L–1 biotin was added

into MSM with 50 mg L–1 diuron to study its effect on the growth and degradability of strain

DP8-1.

Biodegradation of diuron by strain DP8-1

The strain DP8-1 was cultured in 250-mL Erlenmeyer flasks containing 100 mL PD medium

supplemented with 50 mg L–1 diuron. The strain was collected by centrifugating at 5,000 rpm

for 5 min and washed three times with MSM to remove remaining PD medium. Then, 0.55 g

dry wt L–1 biomass was seeded into 100 mL amendment MSM fortified with 50 mg L–1 diuron

and incubated at 150 rpm on a rotary shaker. Controls including abiotic test and degradation

test by N. intermedia BNCC144684 were carried out to evaluate the degradation efficiency of

strain DP8-1. At regular time intervals, the degradation culture was withdrawn for the determi-

nation of strain growth and diuron degradation. The biomass of strain DP8-1 was measured by

dry weight of mycelium (in grams per liter), while the concentration of diuron was detected by

high performance liquid chromatography (HPLC) equipped with a UV detector and an XDB

C18 column (250×4.6 mm, 5 μm) (Agilent 1260, USA). Biodegradation of diuron at different

initial concentrations of 10–400 mg L−1 and other phenylurea herbicides with the concentration

of 50 mg L–1 including fenuron, monuron, metobromuron, isoproturon, chlorbromuron, and

linuron were also performed under the optimal conditions.

Determination of the degradation products of diuron

10 mL degradation liquid was centrifuged at 12,000 rpm for 10 min to remove the proteins.

The supernatant was mixed with 20 mL ethyl acetate to extract the degradation products.

Then, 5 g NaCl was added to make the mixed solutions separate into two phases. The upper

phase was taken, dewatered by Na2SO4, and concentrated before detection by liquid chro-

matogram-mass spectrometry (LC-MS) with an electrospray ionization (ESI) source (Agilent,

USA) [30, 31].

The ESI-MS condition was as follows: the capillary voltage was set to 3,000 V at gas temper-

ature of 350˚C with a drying gas flow of 10 L min–1, and the MS was operated in the positive

and negative polarity mode. Full scans were obtained by scanning from 100 to 500 m/z.
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Soil bioremediation experiment

The soil samples (the top 0–10 cm) were collected from a farm in Guangxi University, Nan-

ning, China, where was never applied diuron. The soil samples were ground to powder after

air drying and passed through a 2 mm sieve and sterilized on 3 consecutive days [32]. The

fresh and sterile soils added with 2.5 mg kg–1 diuron were inoculated with strain DP8-1, while

soils without strain DP8-1 were used as control. The biomass of this diuron-degrading strain

for each experiment was approximately 1 g per 100 g soil. The soil samples were incubated in

the dark at 30˚C, and the residue of diuron in the soils was determined at different intervals.

Results and discussion

Isolation and identification of the diuron-degrading strain

During the isolation of diuron-degrading strains from sugarcane root, a fungal strain was

found to degrade approximately 99% diuron in amendment MSM within 3 days under the opti-

mal conditions. This fungal strain was designated as DP8-1 and chosen for the intensive study.

The colony morphology of strain DP8-1 on PD agar plate was shown in S1a Fig. After culti-

vation for 1 day, the diameter of colony was more than 80 mm. The newborn hyphae of strain

DP8-1 were white, and then turned orange red at the top of aerial hyphae after cultivation for

5 days along with the generation of conidia. The color of the colony was grayish-yellow and

the reverse face of the colony was light yellow. The surface of the colony was flat and thin with

the submerged mycelia and sparse aerial hyphae. Microscopic examination of this strain illus-

trated in S1b Fig showed that mycelium composed of hyaline to pale brown hyphae, septate,

branched and anastomosing, smooth. The conidiophore in S1c Fig was orange red, spherical

or oval with 10–12 μm and the conidia surface showed irregular ornamentation in light micro-

scope. The morphological characteristics of strain DP8-1 matched with those of N. intermedia.

Six gene sequences of strain DP8-1 including Bml, tef-1, pkc, 28S rDNA, mak-2, and

NCU02332 were generated in this study. The concatenated dataset contained a total of 4607

bp. All sequence data of strain DP8-1 acquired for this study had been deposited in the Gen-

Bank under the accession numbers MF362950 to MF362955 (www.ncbi.nlm.nih.gov). To ana-

lyze the phylogeny of strain DP8-1, strains from 26 taxa including two outgroups were chosen

to construct a phylogenetic tree based on concatenated dataset of six gene loci using maximum

likelihood bootstrap values of MEGA software and their sequences used in the phylogenetic

analysis were downloaded from GenBank. In the phylogeny illustrated in Fig 1, strain DP8-1

clustered together with the heterothallic taxa N. intermedia, N. crassa, and N. perkinsii, forming

the branch of the ingroup. This group is monophyletic with full support value, in accordance

with earlier report [28]. Phylogenetic analysis of strain DP8-1 showed that strain DP8-1 was

closely related to the fungus species of N. intermedia FGSC 8901 and N. intermedia FGSC

8844.

According to the results of colonial and microscopic morphologies, and sequence evalua-

tions, strain DP8-1 was identified as N. intermedia. It was reported that the modern history of

Neurospora begins with meterial from sugarcane bagasse and sugarcane appears to be an ideal

substrate [33]. Obviously, the sugarcane root could fulfill the requirement of this biotin-auxo-

trophs fungus. Thus, this endophyte was isolated without added biotin. To our knowledge, this

study was the first report that Neurospora species degraded diuron.

Optimization of degradation conditions

The interactive effects of three important variables including temperature, medium pH, and

initial inoculation biomass were analyzed using Design-Expert Version 8.0 (Stat- Ease, Inc.
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Fig 1. Phylogenetic tree of strain DP8-1 and related by the neighbor-joining approach. Bootstrap

values obtained with 1000 repetitions are indicated as percentages at all branches.

https://doi.org/10.1371/journal.pone.0182556.g001

Table 3. ANOVA analysis for the response surface quadratic model.

Source Sum of squares df Mean square F value p-value prob>F

model 387.93 9 43.10 19.13 0.0023 significant

A-pH 26.39 1 26.39 11.71 0.0188

B-Temperature 31.24 1 31.24 13.86 0.0137

C-Biomass 7.92 1 7.92 3.51 0.1197

AB 4.37 1 4.37 1.94 0.2226

AC 1.55 1 1.55 0.69 0.4447

BC 0.99 1 0.99 0.44 0.5368

A2 274.14 1 274.14 121.64 0.0001

B2 58.98 1 58.98 26.17 0.0037

C2 2.30 1 2.30 1.02 0.3588

Residual 11.27 5 2.25

Lack of Fit 10.43 3 3.48 8.27 0.1098 not significant

Pure Error 0.84 2 0.42

Cor Total 399.20 14

https://doi.org/10.1371/journal.pone.0182556.t003
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Minneapolis, USA). The experimental designs were shown in Table 2. The data were applied

multiple regression analysis and the following second-degree polynomial equation was fitted

to account for diuron biodegradation by strain DP8-1:

Y ¼ 3:47 � 1:82A � 1:98B � 1:00C � 1:04ABþ 0:62AC � 0:50BCþ 8:62A2 þ 4:00B2

þ 0:79C2ð2Þ

where Y is the biodegradation rate and A, B, and C are independent variables of temperature,

pH, and initial inoculation biomass, respectively.

The results of ANOVA analysis for RSM were shown in Table 3. The accuracy of the model

was evaluated using a determination coefficient (R2 = 0.9718). The regression model with p

value<0.05, F value = 19.13, and a lack of fit value = 0.1098 was statistically acceptable [34, 35].

The results of regression analysis indicated that temperature and pH were significantly affected

the degradation rate of diuron by strain DP8-1 (p<0.05), which was consistent with previous

report [36]. The three-dimensional response surface plot in Fig 2 displayed the effects of tem-

perature and pH on the biodegradation activity of strain DP8-1 when the inoculation biomass

maintained at the fixed value of 0.55 g dry wt L–1. The theoretical maximum response value

was obtained when strain DP8-1 was cultured at 32.6˚C and pH 7.2.

Effect of carbon source on the degradation of diuron by strain DP8-1

To evaluate carbon source effect on the degradation of diuron by strain DP8-1, soluble starch,

sucrose, yeast extract, and glucose were added to MSM as supplementary carbon sources in

this study. Durion as the sole carbon source in MSM was also used to compare the degradation

efficiency. As shown in Fig 3, the degradation rate of diuron were 99.75%, 87.67%, 92.70%,

and 83.65% in the presence of soluble starch, sucrose, yeast extract, and glucose, respectively,

while lower degradation rate (61.02%) of diuron was observed in MSM without additional car-

bon sources. Abiotic degradation was negligible in non-inoculated control. The data in Fig 3

Fig 2. Response surface plot showing the effects of temperature and pH on diuron degradation by

strain DP8-1 with inoculum at 0.55 g dry wt L–1.

https://doi.org/10.1371/journal.pone.0182556.g002
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showed that four different carbon sources promoted diuron degradation after incubation for 3

days. Compared to other carbon sources studied, soluble starch was the best carbon source.

Thus, soluble starch was chosen as assisted carbon source for the biodegradation of diuron.

The results indicated that diuron degradation by strain DP8-1 may be undergo a co-metabolic

process, which was a very universal phenomenon in the biodegradation of herbicides [37].

Additionally, the degradation rate of diuron obtained in MSM with biotin was 66.44%. The

result showed that the growth and degradability of strain DP8-1 was slightly affected by biotin

and strain DP8-1 could well grow without biotin. Thus, the degradation experiments were car-

ried out without the addition of biotin.

Effect of initial concentration on the degradation of diuron by strain DP8-1

To determine the effect of initial concentration of diuron on the degradation efficiency, the deg-

radation experiments were conducted out with the concentration of diuron up to 400 mg L–1

under the optimal conditions and the results were illustrated in Fig 4. Observed from Fig 4, the

Fig 3. The effects of four different carbon sources on diuron degradation by strain DP8-1. Values were the mean of three replicates with

standard deviation.

https://doi.org/10.1371/journal.pone.0182556.g003
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degradation rate were 95.70%, 98.42%, 90.47%, 52.47%, and 60.04% at the diuron concentra-

tions of 10, 50 100, 200, and 400 mg L–1 within 3 days, respectively. The degradation rate pre-

liminarily increased with the increasing initial concentration and diuron could be effectively

degraded when the concentration was below 100 mg L–1. It may be due to that diuron could act

as energy source and promote the growth of strain DP8-1, thereby resulted in the effective bio-

degradation. Additionally, it was obvious that the degradation efficiency of diuron by strain

DP8-1 was weakened at higher diuron concentration. It was possible that the growth of strain

DP8-1 or activity of degrading enzymes from strain DP8-1 had been inhibited with the further

increase of diuron concentration. When diuron concentration was 50 mg L–1, the largest degra-

dation rate was obtained. Thus, 50 mg L–1 was chosen as the initial concentration of diuron.

Biodegradation of diuron by strain DP8-1

The diuron degradation and strain growth patterns were measured under the optimal condi-

tions and the results were illustrated in Fig 5. The concentration of diuron residue was rapidly

decreasing in the first day, then slowly changed in the next two to three days, finally slight

Fig 4. Degradation dynamics of diuron with different initial concentrations in MSM supplemented with 0.5% soluble starch as an additional

carbon source by strain DP8-1.

https://doi.org/10.1371/journal.pone.0182556.g004
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reduction at the last two days. The concentration change indicated that diuron was rapidly

degraded by strain DP8-1 during the first day and more than 98% degradation was detected

within 3 days. No significant change in diuron concentration was observed in non-inoculated

culture. The degradation rate of diuron by N. intermedia BNCC144684 was 13.97% after incu-

bation for 5 days. The comparisons showed that the degradation of diuron was due to strain

DP8-1 and strain DP8-1 possessed prominent biodegradability to diuron. Meanwhile, the dry

weight of mycelium constantly increased from 0.55 to 4.91 g during the process of diuron deg-

radation. Diuron decrease associated with fungal biomass increase indicated that strain DP8-1

could utilize diuron for their growth.

Biodegradation of various phenylurea herbicides by strain DP8-1

The ability of strain DP8-1 to degrade various phenylurea herbicides were shown in Table 4,

which were tested with the phenylurea herbicides at 50 mg L–1 after 7 days of incubation in

amendment MSM. Interestingly, isoproturon was completely degraded by strain DP8-1. The

degradation rates for fenuron, metobromuron, chlorbromuron, and linuron were 76.95%,

85.58%, 78.18%, and 89.63%, respectively. However, monuron was only degraded 40.26% at

Fig 5. Biomass of strain DP8-1 (■), and degradation kinetics of diuron by strain DP8-1 (●) and N. intermedia BNCC144684 (▲) in MSM

supplemented with 0.5% soluble starch as an additional carbon source.

https://doi.org/10.1371/journal.pone.0182556.g005
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the end of experiment. The results showed that strain DP8-1 could degrade a broad spectrum

of phenylurea herbicides. To our knowledge, it has not been reported that an endophytic fun-

gus N. intermedia can be used for the degradation of phenylurea herbicides. These findings

provided important information for applying N. intermedia in environmental protection and

pharmaceutical industry.

Determination of the degradation products of diuron

The diuron metabolic products in culture medium were extracted and identified by LC-MS and

HPLC. Based on LC-MS analysis, two major degradation products were detected with retention

times of 5.893 and 7.697 representing metabolites A and B, while diuron had a retention time

of 9.674 in positive ion mode (S2 Fig). Metabolite A in negative ion mode showed a molecular

ion at m/z 202.70 [M+H]– and a characteristic fragment ion peak at m/z 160.10. Metabolite B

showed molecular ions at m/z 218.80 and 216.80 [M+H]+, and characteristic fragment ion

peaks at m/z 163.90 and 160.00 in positive and negative ion mode, respectively. The two prod-

ucts were preliminarily identified as DCPU and DCPMU, respectively. Two metabolites were

also confirmed by the same retention time with their standard chemicals in HPLC analysis (S3

Fig). Their structural formula were showed in S4 Fig. According to the identified results, we

speculated that strain DP8-1 degraded diuron through sequential N-dealkylations (S4 Fig).

During the biodegradation process by strain DP8-1, the concentration of DCPMU reached

12.62 mg L−1 after cultivation for 1 day and decreased to 4.43 g mL−1 at the end of the experi-

ment. The metabolite DCPU was detected with a maximal concentration of 20.97 mg L−1 after

cultivation for 5 days (Fig 6). An unidentified peak with the retention time of 5.33 min was

also observed during the whole cultivation. In previous studies, it has been reported that some

fungal strains could degrade diuron to DCPMU and DCPU in liquid cultures [9, 19, 38, 39].

Some studies conducted in liquid cultures also showed that many fungal strains could finally

degrade diuron to 3,4-DCA [9, 19, 38, 40]. However, no 3,4-DCA was detected in the whole

degradation process by strain DP8-1. It may be due to that strain DP8-1 rapidly degraded

3,4-DCA to other metabolites. Indeed, we found that strain DP8-1 could utilize 3,4-DCA as

the sole carbon and energy source in MSM (data not shown). These results indicated that the

endophytic fungus DP8-1 may appear new metabolic pathway and mechanism for the degra-

dation and metabolism of diuron. In future, degradation pathway would be confirmed by 14C-

labelled method, and metabolites would be identified by nuclear magnetic resonance.

Soil bioremediation experiment

Degradation of diuron in different soil treatments were measured after 20 days of incubation

and the result was shown in Fig 7. In fresh soil, the degradation rates of diuron were 18.21%

Table 4. Degradation of various phenylurea herbicides by strain DP8-1 after 7 days of incubation in

amendment MSM.

Phenylurea herbicides Degradation rate (%)a

fenuron 76.95±5.91

monuron 40.26±7.34

metobromuron 85.58±4.19

isoproturon 100.00±0.00

chlorbromuron 78.18±3.37

linuron 89.63±1.95

a Values are the mean of three replicates with standard deviation.

https://doi.org/10.1371/journal.pone.0182556.t004
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and 30.33% for inoculating without and with strain DP8-1, respectively. In contrast, diuron in

sterile soil was removed up to 16.34% and 41.92% during the same time period. There existed

significant difference between all treatments by LSD analysis (p = 0.05). Diuron was slightly

degraded without strain DP8-1, which may be due to chemical hydrolysis. However, the degra-

dation rate of diuron was increased in the present of strain DP8-1. The results demonstrated

that strain DP8-1 significantly enhanced the degradation of diuron in soil samples.

The residues of diuron in sterile soil, fresh soil, and strain DP8-1 amended soils were also

determined at 10, 40, and 60 days. The corresponding first-order kinetic rate coefficients and

half-lives were shown in Table 5. Degradation efficiency in fresh soil was much better than

that in sterile soil, demonstrating that soil microbes played an important role in diuron degra-

dation [41]. After inoculated with strain DP8-1, diuron degradation was 2.28 and 1.83 times

faster than in fresh and sterile soils. The half-lives illustrated in this experiment were in accor-

dance with several previous reports with half-lives ranging from several weeks to several

months [2, 42, 43, 44]. The diversity of diuron half-life in soil was due to that it was affected

by many factors such as soil type, soil constitution, soil microbiota, tested strain, initial

Fig 6. Diuron degradation (▲) and the formation of DCPMU (■), DCPU (●) during the degradation.

https://doi.org/10.1371/journal.pone.0182556.g006
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concentration of diuron, and experimental condition, etc. This experiment showed that it was

worthy of further investigation to develop strain DP8-1 as a bioremediation agent for pheny-

lurea herbicide contaminated environments.

Conclusions

An endophytic fungus strain DP8-1, isolated from the root of sugarcane, could degrade diuron

in liquid medium and soil. The strain exhibited a broad degradation spectrum to phenylurea

herbicides including fenuron, monuron, metobromuron, isoproturon, chlorbromuron, and

Fig 7. Degradation of diuron in different soil treatments after 20 days of incubation. Error bars represented the standard deviation of the mean.

https://doi.org/10.1371/journal.pone.0182556.g007

Table 5. Degradation dynamics of diuron by strain DP8-1 in different soils.

Soil treatment Equation Correlation coefficient (R2) Half-life (day)

Fresh soil y = 81.245e−0.051x R2 = 0.7931 13.59

Fresh soil+DP8-1 y = 135.66e−0.116x R2 = 0.8930 5.97

Sterile soil y = 57.011e−0.018x R2 = 0.8919 38.50

Sterile soil+DP8-1 y = 54.782e−0.033x R2 = 0.9920 21.00

https://doi.org/10.1371/journal.pone.0182556.t005
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linuron. The main degradative pathway of diuron by this strain was sequential N-dealkylations.

The feasibility of using the isolated strain N. intermedia DP8-1 to remove and detoxify the diu-

ron contamination in practice needs to be investigated in detail in future.

Supporting information

S1 Fig. Morphological characteristics of the fungal strain DP8-1. (a) Colony morphology on

PD agar plate after incubation for 7 days. Fungal hypha (b) and conidia (c) observed under a

light microscope.

(TIF)

S2 Fig. Mass spectra of metabolic products (a) DCPU, (b) DCPMU, and (c) diuron.

(TIF)

S3 Fig. HPLC spectra of (a) diuron (12.426 min), (b) DCPU (6.342 min), DCPMU (9.088

min), 3,4-DCCA (11.511 min), and 3,4-DCA (16.311 min), and (c) metabolites after 3 days

of inoculation with strain DP8-1.

(TIF)

S4 Fig. Degradation pathway of diuron by strain DP8-1. DCPMU: [1-(3,4-dichlorophenyl)-

3-methylurea], DCPU: [1-(3,4-dichlorophenyl) urea].

(TIF)
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