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Background. Hepatocellular carcinoma (HCC) is one of the deadliest diseases affecting humans. Its incidence has been increasing
over the last decade. It is characterized by poor prognosis as well as lack of therapeutic regimens for patients in the advanced
stages. It is therefore important to develop effective biomarkers for diagnosis, prognosis, and immunotherapy of HCC. Research
suggests that the NF-κB family plays vital roles in immune response, inflammation, tumorigenesis, and the progress of malignancy
in various cancers. However, its role in HCC remains unidentified. Methodology. )e expression and clinical significance of the
NF-κB family in HCC were analyzed using several bioinformatics tools including UALCAN, )e Human Protein Atlas, GEPIA,
GSCALite, David, GeneMANIA, and TIMER. Results. )e mRNA expression levels of RelA, RelB, NF-κB1, and NF-κB2 were
significantly elevated in HCC. )e mRNA levels of RelB and NF-κB2 were significantly upregulated in HCC tissues compared to
normal liver tissues in subgroup analyses based on patient’s race, gender, age, weight, tumor grade, cancer stage, and nodal
metastasis status. Moreover, HCC patients with elevated levels of RelB and NF-κB2 had a worse overall survival and disease-free
survival. Methylation downregulated the expressions of RelA, RelB, and NF-κB1 in HCC. NF-κB family was also significantly
involved in various hallmark cancer-related pathways such as the apoptosis, EMT, RTK, and cell cycle pathways. Similarly, the
expression of RelB and NF-κB2 was positively correlated with the abundance of immune cells and the expression of immune
biomarkers. Several kinase and miRNA targets of RelB and NF-κB2 were also identified. Conclusion. RelB and NF-κB2 are
potential biomarkers for the diagnosis, prognosis, and immunotherapy of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the deadliest
diseases that affect humans and the second cause of cancer-
related deaths globally. It is the fifth most common ma-
lignancy in men and the ninth in women [1]. Moreover, its
incidence has been increasing in the past ten years [2]. )e
main risk factors for HCC are cirrhosis, chronic viral in-
fection, and alcoholic liver disease [3]. )e prognosis of
HCC patients is poor. It is usually diagnosed at an advanced
stage and lacks therapeutic regimens at this stage. Consid-
erably, there is a need for effective novel biomarkers for
diagnosis, prognosis, and immunotherapy of HCC.

)e transcription factor nuclear factor-kappa B (NF-κB),
identified in the 1980s, functions by binding to the enhancer

element of the immunoglobulin kappa light chain of acti-
vated B cells [4]. In the immune cell function, NF-κB control
is mediated by the canonical and noncanonical NF-κB
signaling pathways. Here, the critical terminal components
of the NF-κB signaling pathway are the IκB protein (in-
hibitor) and IKK complex (activator) [5]. )e NF-κB family
has 5 distinct subunits that include RelA, RelB, Rel, NF-κB1,
and NF-κB2 [6]. Growing evidence highlights the signifi-
cance of the NF-κB family in immune response and in-
flammation as well as in tumorigenesis and progress of
malignancy [4, 7]. Moreover, the NF-κB family has been
postulated as biomarkers for various cancers [8]. For ex-
ample, the NF-κB family has been reported to play a key role
in tumor migration and as a potential therapeutic target in
colorectal cancer [9]. Similarly, RelA serves as a prognostic
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biomarker in chronic lymphocytic leukemia [10]. However,
the role of the NF-κB family in HCC remains unclear.

Herein, the expression and clinical significance of the
NF-κB family were explored using various bioinformatics
tools.

2. Materials and Methods

2.1. UALCAN. UALCAN is a comprehensive, user-friendly,
and interactive web resource for analyzing )e Cancer
Genome Atlas (TCGA) data [10]. TCGA is a landmark
cancer genomics program containing over 20,000 molecu-
larly characterized primary cancers and matched normal
samples spanning up to 33 cancer types. In this study, NF-κB
family was submitted to UALCAN and their mRNA ex-
pression in HCC was explored using TCGA HCC samples
(N� 442). Moreover, the association between the NF-κB
family expression and the clinicopathological parameters
was evaluated. P values less than 0.05 (P< 0.05) indicated
that there were significant differences.

2.2.*eHumanProteinAtlas. )eHuman Protein Atlas is a
Swedish-based program initiated in 2003 which maps all the
human proteins in cells, tissues, and organs [8]. All the NF-
κB family members were submitted to )e Human Protein
Atlas and their protein expression in HCC was explored.

2.3. GEPIA. GEPIA is a newly developed interactive web
server used to analyze RNA sequencing expression data via a
standard processing pipeline. It contains 9,736 tumors and
8,587 normal samples data from the TCGA and the GTEx
projects [11]. All the NF-κB family members were submitted
to the GEPIA and their correlated genes and prognostic
value in HCC were explored using TCGA HCC samples
(N� 442).)emedian level of the NF-κB family group cutoff
was determined through the Kaplan–Meier analysis method.
)e “Similar Genes” module was used to explore the top 10
significant genes correlated with NF-κB family in HCC.
)e statistical differences associated with P< 0.05 were
considered significant. )e hazard ratio (HR) was calculated
according to the Cox PH model.

2.4. GSCALite. GSCALite is a web-based analysis platform
used for gene set cancer analysis. )is includes methylation
analysis, cancer pathway analysis, and drug analysis, among
other analyses [12]. In GSCALite, the HCC genomics data
from TCGA and the normal tissue data from)e Genotype-
Tissue Expression (GTEx) project were integrated to build a
comprehensive public resource to study tissue-specific gene
expression and regulation.)e GTEx samples were collected
from 54 nondiseased tissue sites across nearly 1000 indi-
viduals. All the NF-κB family members were submitted to
the GSCALite website to analyze the methylation of the NF-
κB family in HCC using the TCGA HCC samples (N� 442).
Moreover, the role of NF-κB family in cancer pathway
activity and drug sensitivity, as well as NF-κB family as-
sociated miRNA regulation network, was explored. P values

or FDR less than 0.05 were considered as statistically
significant.

2.5. Enrichment Analysis. David and GeneMANIA are
bioinformatics portals which help individual researchers to
gain more insights on the function of genes [13]. For en-
richment analysis, all the members of the NF-κB family were
submitted to the David for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways.
Furthermore, all the NF-κB family members were submitted
to the GeneMANIA and a protein-protein interaction (PPI)
network was constructed to reveal their potential functions.

2.6. TIMER. TIMER is a web resource for systematic
evaluation of the clinical impact of different immune cells in
23 cancer types fromTCGA [11]. All themembers of the NF-
κB family were submitted to the TIMER website and their
correlation with immune cells and immune biomarkers in
HCC was explored using TCGA HCC samples (N� 442).
)ese immune biomarkers have been extensively encoun-
tered in previous studies [14–16].

3. Results

3.1. Profiles of NF-κB Subunit Expression in HCC. HCC
tissues exhibited significantly higher levels of RelA
(P �1.62E− 12), RelB (P �1.62E− 12), NF-κB1 (P � 0.012), and
NF-κB2 (P �1.62E− 12) expression (Figures 1(a), 1(b), 1(d),
and 1(e)) than normal liver tissues. Particularly, RelA had
the highest, whereas Rel recorded the lowest, mRNA levels in
HCC tissues (Figure 1(f)). Correlation analysis revealed a
medium association among the NF-κB family subunits in
HCC tissues (Figure 1(g)). Furthermore, analysis of the
dysregulated NF-κB family subunits (RelA, RelB, NF-κB1,
and NF-κB2), using tissues Atlas, revealed higher protein
levels in HCC, relative to specimens from normal controls
(Figure 2). Overall, these findings strongly affirmed the
significance of NF-κB family in HCC.

3.2.Diagnostic andPrognosticValue ofNF-κBFamily inHCC.
Overall survival analysis revealed that HCC patients with
high levels of RelA (HR� 1.6, P � 0.0055), RelB (HR� 1.5,
P � 0.024), and NF-κB2 (HR� 1.6, P � 0.0058) had a poor
overall survival rates. Conversely, levels of Rel and NF-κB1
expression had no significant effect on overall survival of
HCC patients (Figure 3(a)). On the other hand, results from
disease-free survival analysis showed that HCC patients with
high levels of RelB (HR� 1.5, P � 0.0055) and NF-κB2
(HR� 1.7, P � 0.00061) had poor disease-free survival,
whereas RelA, Rel, and NF-κB1 expression had no signifi-
cant effect on disease-free survival of HCC patients
(Figure 3(b)). )ese results suggested that RelB and NF-κB2
could be potential prognostic biomarkers for HCC.

A correlation between RelB and NF-κB2 expression with
clinicopathological parameters, including a patient’s race,
gender, age, weight, tumor grade, cancer stage, and nodal
metastasis status, revealed significant upregulation of RelB
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and NF-κB2 in HCC, relative to normal liver tissues
(Figure 4).)ese results suggested that RelB and NF-κB2may
be involved in tumor invasiveness during HCC development.

3.3. NF-κB Family Is Associated with Cancer Hallmarks in
HCC. To evaluate the potential effects of disrupting the
subunits in HCC patients, we correlated expression profiles
of NF-κB family subunits with methylation. )e results
revealed significantly lower levels of Rel, RelB, and NF-κB2

methylation, whereas those of NF-κB1 were significantly
upregulated in HCC, relative to normal tissues (Figure 5(a)).
In addition, methylation mediated downregulation of RelA,
RelB, and NF-κB1 but led to Rel upregulation in HCC tissues
(Figure 5(b)). Moreover, HCC patients who exhibited
hypermethylation had a better overall survival (Figure 5(c)).
Generally, genetic alterations drive tumorigenesis and
progression of cancer cells. In the present study, we found
alteration of RelA, RelB, Rel, NF-κB1, and NF-κB2 in 9, 8, 5,
6, and 5% of the queried HCC samples, respectively. )ese
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Figure 1: Expression profile of NF-κB family in HCC. (a)–(e) )e mRNA levels of NF-κB family members in HCC tissues and normal
tissues (UALCAN). (f ) )e relative mRNA level of each number of the NF-κB family in HCC tissues (GEPIA). (g) )e correlation of each
number of the NF-κB family in HCC tissues (GEPIA).
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alterations included missense and truncating mutations,
amplification, deep deletion, and high and low mRNA levels
(Figure 5(d)). In addition, we explored the role played by
members of the NF-κB family in cancer hallmark pathways,
including TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT,
hormone ER, hormone AR, EMT, DNA damage response,
cell cycle, and apoptosis. )e results showed that the NF-κB
family was significantly involved in the aforementioned
pathways. Specifically, the subunits were associated with
activation of the apoptosis, EMT, and RTK pathways, as well
as the inhibition of the cell cycle pathway (Figure 5(e)). A
correlation between expression of members of the NF-κB
family and drug sensitivity was also evaluated to identify
potential therapeutic targets in HCC tissues. Summarily, low
expression of Rel and RelB was associated with drug sen-
sitivity (Figure 5(f)). Further analysis revealed that 20
miRNAs potentially regulated RelA, whereas 12 miRNAs
potentially regulated NF-κB (Supplementary Figure 1).

3.4. Enrichment Analysis of NF-κB Family in HCC. To
evaluate the potential effects of NF-κB family subunits in
HCC patients, we performed an enrichment analysis and
then determined the ten most significant genes associated
with each NF-κB family subunit. A summary of the results is
provided in Supplementary Table 1. )e NF-κB family
subunits and the most significant genes were then submitted
to David and GeneMANIA for enrichment analysis. Sum-
marily, GO analysis results revealed that the NF-κB family
subunits were mainly involved in innate immune response,
NIK/NF-kappa B signaling, inflammatory response, protein
binding, DNA and poly(A) RNA binding, and cell adhesion
(Figure 6(a)). In addition, the results from KEGG pathways

analysis revealed that the NF-κB family subunits were
mainly involved in the MAPK, NF-kappa B, as well as B and
T cell receptor, NOD-like receptor signaling pathways, and
apoptosis (Figure 6(b)). Similarly, the PPI network indicated
that NF-κB family subunits are also involved in innate
immune response, toll-like receptor, and pattern recognition
receptor signaling pathways (Figure 7).

3.5. NF-κB Family Subunits Are Associated with Immune
Infiltration in HCC. )e role of NF-κB family subunits in
immune infiltration in HCC was further explored, based on
the results from enrichment analysis which had earlier
suggested that the NF-κB family is involved in immune
response. For this analysis, we selected RelB and NF-κB2,
due to their high significance in HCC progression. )e
results revealed a strong positive correlation between RelB
expression with immune infiltration level of B (Cor� 0.466,
P � 5.82e− 20), CD8+ T (Cor� 0.235, P � 1.09e− 05), and
CD4+ T cells (Cor� 0.447, P � 2.67e− 18), as well as macro-
phages (Cor� 0.44, P � 1.28e− 17), neutrophils (Cor� 0.415,
P � 8.02e− 16), and dendritic cells (Cor� 0.413, P � 1.82e− 15)
(Figure 8(a)). Similarly, NF-κB2 expression had a strong
positive correlation with immune infiltration levels of B
(Cor� 0.406, P � 4.65e− 15), CD8+ T (Cor� 0.221,
P � 3.69e− 05), and CD4+ T cells (Cor� 0.378, P � 4.05e− 13),
as well as macrophages (Cor� 0.39, P � 7.28e− 14), neutro-
phils (Cor� 0.382, P � 2.00e− 13), and dendritic cells
(Cor� 0.348, P � 4.38e− 11) (Figure 8(b)). Conversely, RelB-
mediated copy number alteration had no significant effect
on immune infiltration (Figure 8(c)), although that of NF-
κB2 partly promoted immune infiltration (Figure 8(d)).
Moreover, RelB and NF-κB2 expression had a significant

RELAT N

(a)

RELBT N

(b)

NF-кB1T N

(c)

NF-кB2T N

(d)

Figure 2: )e expression of NF-κB family at protein level in HCC ()e Human Protein Atlas). (a)–(d) Low protein expression of RELA,
RELB, NF-κB1, and NF-κB2 in normal liver tissues. Medium protein expression of RELB (b) and high protein expression of RELA (a), NF-
κB1 (c), and NF-κB2 (d) in HCC tissues. T: tumor tissues, N: normal tissues.
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Figure 3: )e prognostic value of NF-κB family in HCC (GEPIA). (a) High expression of RelA, RelB, and NF-κB2 correlated with worse
overall survival of HCC patients. (b) High expression of RelB and NF-κB2 correlated with worse disease-free survival of HCC patients. HR:
hazard ratio.
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Figure 4: Continued.
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positive correlation with a majority of the immune bio-
marker sets or immune checkpoint inhibitors in HCC
(Supplementary Tables 2 and 3). )ese results strongly
suggested that RelB and NF-κB2 may be potential immune
checkpoint inhibitors for HCC.

3.6. Kinase and miRNA Targets of RelB and NF-κB2. We
determined kinase and miRNA targets in RelB and NF-κB2,
owing to these subunits’ significance in HCC.)e top 5most
significant kinase targets for RelB in HCC were kinase SYK,
LCK, PRKCG, LYN, and ROCK1, whereas its miRNA
targets were ATAAGCT (MIR-21), TAATGTG (MIR-323),
ATGTTAA (MIR-302C), TAGGTCA (MIR-192 and MIR-
215), and TCTATGA (MIR-376A and MIR-376B) (Sup-
plementary Table 4). On the other hand, the top 5 most
significant kinase targets for NF-κB2 in HCC were CHUK,
PPKDC, IKBKB, ROCK1, and PPKCA, whereas its top 5
most significant miRNA targets were ACACTGG (MIR-
199A and MIR-199B), GCATTTG (MIR-105), TAGCTTT
(MIR-9), TGCACTT (MIR-519C, MIR-519B, and MIR-
519A), and GCTTGAA (MIR-498) (Supplementary Table 5).

)ese results suggested that RelB and NF-κB2 potentially
exert various functions in HCC via these targets.

4. Discussion

)e NF-κB family regulates various biological processes
such as inflammation, immune response, cellular prolif-
eration, and apoptosis [17]. Dysregulation of the NF-κB
family, therefore, leads to a series of diseases ranging from
cancers to inflammatory and immune disorders. Several
studies have explored the potential role of NF-κB family
subunits in the diagnosis, prognosis, and therapy of
cancers [18]. Herein, the expression and clinical signifi-
cance of NF-κB family subunits in HCC were explored
through data mining from various databases using bio-
informatics tools.

Our analyses revealed that RelA, RelB, NF-κB1, and
NF-κB2 were markedly higher in HCC tissues than in
normal liver tissues. Moreover, RelB and NF-κB2 showed
the potential to be diagnostic and prognostic biomarkers
of HCC. Currently, some NF-κB family subunits have
been reported to be biomarkers in other types of cancers.
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Figure 4: )e expression of RelB and NF-κB2 in HCC in subgroup analyses (UALCAN). Subgroup analyses were performed based on
patients’ race, gender, age, weight, tumor grade, individual cancer stages, and nodal metastasis status. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001.
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For example, RelB is involved in the regulation of cell cycle
and can predict good prognosis in glioma [19]. Similarly,
high REL levels have been shown to predict response to

immunochemotherapy in follicular lymphoma [20]. It is
therefore likely that NF-κB family subunits may influence
the tumorigenesis and progression of HCC.
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Figure 8: Association of immune infiltration with RelB and NF-κB2 in HCC (TIMER). (a)-(b) Relationship of RelB and NF-κB2 with the
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Changes in the expression of NF-κB family subunits
affect activities of several cancer-related pathways. For
instance, it has been reported to inhibit the cell cycle
pathway and activate apoptosis, EMT, and RTK pathways.
)is has been demonstrated in many studies [21–23]. In a
study by Pires et al., NF-κB family-regulated expression of
genes involved in EMT process in breast cancer [24]. NF-
κB family-regulated EMT process has been linked to tu-
morigenesis, growth, metastasis, drug resistance, and
progression of cancers [25–28]. A significant correlation
between NF-κB family and EMT pathway has been re-
ported in HCC tissues. HAX-1 promoted HCC metastasis
by enhancing EMT process via the NF-κB pathway [29].
Elsewhere, NKILA inhibited tumor metastasis by sup-
pressing the NF-κB/Slug mediated ETM pathway in HCC
[30]. Herein, some members of the NF-κB family were
found to influence tumor stage, grade, metastasis, and the
overall survival of HCC patients. )e NF-κB family
subunits influenced the aggressiveness of HCC cells by
regulating EMT pathway.

Here, we demonstrate a correlation between NF-κB
family subunits and immune infiltration. )e expression of
RelB and NF-κB2 was positively correlated with infiltration
of several immune cells (B cells, CD8+ Tcells, CD4+ Tcells,
macrophages, neutrophils, and dendritic cells) and the ex-
pression of immune biomarkers such as PD-1 and CTLA4.
Some of these immune cells or immune biomarkers have
been reported to be biomarkers or immunotherapeutic
targets of HCC. Increased CD4(+)CD25(+)FoxP3(+) Treg
may impair the effector function of CD8(+) Tcells, promote
HCC progression, and serve as a potential prognostic
marker and a therapeutic target for HCC [31]. Dendritic cells
are an attractive target for therapeutic manipulation in HCC
[32]. Upregulation of PD-L1 is strongly associated with poor
survival in HCC patients. As such, it may act as a potential
immunotherapeutic target for HCC [33]. Herein, RelB and
NF-κB2 were found to be potential immunotherapeutic
targets for HCC. However, further studies involving the use
of animal models should be performed to verify these results.

Several kinase targets of RelB and NF-κB2 in HCC were
also identified. Among them, SYK, LCK, and LYN are in-
volved in regulation of genomic stability, mitosis, and the
cell cycle [34, 35]. As such, RelB and NF-κB2 may regulate
DNA damage response and cell cycle progression via these
kinases [36]. Several miRNAs associated with RelB and NF-
κB2 were also identified. )ey included miR-21, miR-9, and
miR-105. )ese miRNAs regulate cell proliferation and
invasion in HCC [37, 38]. Moreover, these miRNAs have
been used as diagnostic and prognostic markers of HCC
[39]. )ese findings show that the NF-κB family may play a
vital role in tumorigenesis and progression of HCC via these
kinases and miRNAs.

5. Conclusion

)is study reveals the expression profile and clinical sig-
nificance of NF-κB family in HCC. )e results demonstrate
that RelB and NF-κB2 are potential biomarkers for the
diagnosis, prognosis, and immunotherapy of HCC.
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