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ORIGINAL RESEARCH

Timing of Pubertal Development in Boys 
and Girls With Congenital Heart Defects:  
A Nationwide Cohort Study
Louise F. Udholm , MD; Anne Gaml- Sørensen , MHSc; Linn H. Arendt, MD, PhD; Nis Brix, MD, PhD;  
Lea L. H. Lunddorf , MD; Andreas Ernst, MD, PhD; Ulla B. Knudsen, MD, PhD; Vibeke E. Hjortdal, MD, PhD, DMSc;  
Cecilia H. Ramlau- Hansen , MHSc, PhD

BACKGROUND: Children with congenital heart defects (CHD) have an increased risk of developmental delay. It remains sparsely 
investigated if these patients also have a delayed pubertal development. In this nationwide cohort study, we evaluated if CHD 
was associated with timing of puberty using longitudinally collected data on pubertal milestones.

METHODS AND RESULTS: We used data from the Danish nationwide Puberty Cohort. Information on CHD was obtained from the 
Danish National Patient Register. Information on pubertal development was obtained from 15 780 children through question-
naires answered half- yearly from 11 years until 18 years or full maturity. Using a multivariable regression model for censored 
time- to- event data, mean difference in age at attaining each pubertal milestone was estimated, including a combined pubertal 
marker. Compared with children without CHD, analyses were performed for both CHD overall and subdivided into simple and 
complex CHD. In a subanalysis, analyses were repeated in children born at term. In total, 137 children (62 boys and 75 girls) 
had a CHD diagnosis. Overall, no difference in age at pubertal timing was observed for children with CHD compared with 
unaffected children. The average differences were small for both boys (1.6 [95% CI, −2.6 to 5.7] months) and girls (1.0 [95% CI, 
−2.5 to 4.4] months). The same differences were observed when subdividing into simple or complex CHD and when restricting 
to children born at term.

CONCLUSIONS: We found no association between CHD and pubertal timing. For the group of children with complex CHD, we 
were unable to exclude a later pubertal timing.
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The management of children with congenital heart 
defects (CHD) has improved substantially over the 
past decades.1– 3 The corresponding increase in 

long- term survival has shifted the research focus from 
mortality to morbidity, driving our attention to physical 
and cognitive development of the affected children.

Puberty is one of the fundamental periods of de-
velopment during life. Its onset and progression are 
driven by a dynamic interplay between several fac-
tors, including genetics, nutritional status, and envi-
ronmental exposures.4 Both physical growth from 

conception to early childhood and childhood body 
mass index (BMI) are highly associated with pubertal 
timing.5– 9 Although low birth weight is associated with 
earlier onset of puberty,5 low childhood BMI may re-
sult in later pubertal onset.6,7,9 Children with CHD are 
at risk of impaired fetal, neonatal, and early childhood 
growth.10– 14 With early detection and comprehensive 
and improved treatment, significant catch- up growth is 
observed in nearly all children with CHD.15– 17 The pop-
ulation of Danish children with CHD does, however, 
continue to have a slightly lower BMI and increased 
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risk of underweight throughout childhood compared 
with the background population.18 Children with CHD 
might therefore be at risk of a later pubertal timing. 
In children with univentricular heart defects, palliated 
with the Fontan circulation, a delay of 1.5 to 2.0 years 
has been found for breast, genital, and pubic hair de-
velopment compared with national standard charts.19 
Further information on puberty in children with CHD is 
limited to studies on age at menarche including adult 
women with CHD, reporting higher recalled age at 
menarche in women with complex or cyanotic CHD 
such as women with Fontan circulation.20– 25 Thus, our 
knowledge on pubertal timing in children with CHD 
is limited and for children with more simple defects 
nonexistent. As late puberty has been associated with 
adverse health outcomes later in life,26– 29 including 
mental and psychosocial consequences,30 further 
studies are needed to examine pubertal timing in chil-
dren with CHD.

In this nationwide cohort study, we investigate 
whether children with CHD, including simple defects, 

had later pubertal timing compared with children with-
out CHD using longitudinally collected data.

METHODS
The DNBC (Danish National Birth Cohort) oper-
ates an open access policy. Access to personalized 
data requires permission from both the Danish Data 
Protection Agency as well as from the DNBC Steering 
Committee. Please refer to https://www.dnbc.dk/
acces s- to- dnbc- data.

Study Population
This study used data from the Puberty Cohort, a 
subcohort of the DNBC, with more than 100  000 
mother– child pairs.31 Mothers were enrolled dur-
ing early pregnancy from 1996 to 2002. Through 
computer- assisted telephone interviews, informa-
tion on maternal lifestyle, health, and socioeconomic 
factors during pregnancy was obtained on average 
at gestational weeks 17 and 30. Follow- up of the 
children was performed at ages 7 and 11  years. 
Children eligible for being sampled for the Puberty 
Cohort were live- born singletons born between 2000 
and 2003, whose mothers participated in the first 
computer- assisted telephone interview during preg-
nancy and had not withdrawn from the DNBC. In 
total, 22 439 of 56 641 eligible children were invited 
to participate in the Puberty Cohort. To increase the 
exposure contrast, the eligible children were sam-
pled according to 15 different prenatal and perinatal 
exposures thought to be of relevance for pubertal 
development. Further, a random sample of 8000 of 
the 56 641 eligible children was added. From the age 
of 11.5 years, the participants in the Puberty Cohort 
were invited to give information on puberty every 
6  months through web- based questionnaires until 
18  years or full maturity. Full maturity was defined 
as Tanner stage 5 for genital and pubic hair devel-
opment for boys and Tanner stage 5 for breast and 
pubic hair development for girls.32,33 Additionally, the 
11- year questionnaire in the DNBC also contained 
information on puberty. When combining the data 
from the 11- year questionnaire and the longitudinal 
data in the Puberty Cohort, information on pubertal 
development was available on 15 819 of the 22 439 
children in the Puberty Cohort (participation rate 
70%) (Figure 1). All children born with a chromosomal 
syndrome (International Classification of Diseases, 
Tenth Revision [ICD- 10] codes DQ90– DQ99) or 
nonchromosomal syndrome (ICD- 10 codes DD82.1, 
DQ44.7B, DQ87.1D, DQ87.2A, DQ87.4, DQ87.8J, 
DQ93.8A) related to CHD and growth disturbances34 
were excluded from this study (n=39) yielding a final 
study population of 15 780.

CLINICAL PERSPECTIVE

What Is New?
• With this nationwide cohort study, we are the 

first to evaluate whether children born with con-
genital heart defects had later pubertal onset 
compared with children born without congenital 
heart defects using longitudinally collected data 
every 6 months on several pubertal markers.

• We found normal age at pubertal onset in boys 
and girls with congenital heart defects com-
pared with boys and girls without.

• This remained unchanged when evaluating 
simple and complex heart defect subgroups, 
though the complex group included a limited 
number of children.

What Are the Clinical Implications?
• Our study adds to the very limited knowledge 

on pubertal development in children with con-
genital heart defects.

• Our findings for children with simple heart de-
fects are reassuring information to patients 
and health care professionals, considering the 
markedly delayed puberty found in children with 
Fontan circulation.

Nonstandard Abbreviations and Acronyms

CHD congenital heart defects
DNBC Danish National Birth Cohort

https://www.dnbc.dk/access-to-dnbc-data
https://www.dnbc.dk/access-to-dnbc-data
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The Committee for Biomedical Research Ethics in 
Denmark approved the collection of data in the DNBC 
([KF]hn 01- 471/94). The present study was approved 
by the steering committee of the DNBC (2020- 04) 
and registered by the Danish Data Protection Agency 
(P- 2020- 728). When entering the cohort, mothers 
provided a written informed consent covering both 
themselves and their child.

Assessment of Congenital Heart Defects
Information on CHD was obtained from the DNPR 
(Danish National Patient Register), which contains in-
formation on all hospital contacts in Denmark, dates 
of admission and discharge, surgical procedures, and 

discharge diagnoses coded according to the ICD.35 
Children with CHD were identified using the ICD- 10 
codes Q20- Q26 (except for Q26.5- Q26.6, not spe-
cific to CHD). Children with patent ductus arterio-
sus (DQ25.0) were included if born after gestational 
week 37. To increase the positive predictive value of 
the classification, we included only main (A) diagno-
ses registered at university hospitals in Denmark. We 
studied CHD overall, as well as subdivided into simple 
and complex CHD according to the classification pre-
sented by Larsen et al.3 (Table S1). Children with more 
than 1 diagnosis were categorized according to the 
most severe main diagnosis obtained at a university 
hospital.36

Figure 1. Flow diagram on the inclusion of participants in the Puberty Cohort nested within the Danish National Birth 
Cohort (DNBC), Denmark, 2000 to 2018.
CHD indicates congenital heart disease.
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Assessment of Pubertal Development
Information on pubertal development was collected 
through web- based questionnaires at 11 years of age 
in the DNBC and from 11.5  years of age and every 
6 months in the Puberty Cohort. Boys were asked to 
report their current Tanner stage of genital develop-
ment (G1– G5), Tanner stage of pubic hair development 
(PH1– PH5), as well as axillary hair (yes or no), acne (yes 
or no), voice break (yes or no), and first ejaculation of 
semen (yes or no; if yes: years and months). Girls were 
asked to report their Tanner stage of breast develop-
ment (B1– B5), pubic hair development (PH1– PH5), 
axillary hair (yes or no), acne (yes or no), and age at 
menarche (years and months). The questionnaires 
included illustrations and a short description of each 
Tanner stage.37

Covariates
Information on maternal lifestyle and health during 
pregnancy was available from the interviews con-
ducted in the DNBC. Mothers were also asked to report 
their own age at menarche. Information on childhood 
BMI was available from the 7- year questionnaire in the 
DNBC. Further, from the Danish Medical Birth Register, 
information on maternal age at delivery, parity, gesta-
tional age, birth weight, and head circumference was 
obtained.38 Birth weight and head circumference were 
both converted into Z scores using reference mate-
rial by Marsal et al.,39 Olsen et al.,40 and World Health 
Organization standard head circumference curves.41,42 
Z scores express the number of SDs the birth weight 
deviates from the expected birth weight based on sex 
and gestational age. The same applied for head cir-
cumference. Lastly, information on pregestational dia-
betes was available from the DNPR,35 and information 
on highest social class of parents was obtained from 
Statistics Denmark, defined by level of education and 
occupation according to the International Standard 
Classification of Occupation and Education codes. 
Covariates were categorized or kept continuous as 
shown in Table 1.

Based on reviews of the current literature, poten-
tial confounders were identified using directed acyclic 
graphs,43 and we included highest social class of par-
ents, maternal smoking in first trimester, prepregnancy 
BMI, and maternal age at menarche.

Statistical Analysis
As the children in the Puberty Cohort were asked to 
report their pubertal stage every 6 months, the data 
on age at achieving the pubertal milestones were ei-
ther left, interval, or right censored.44 Data were left 
censored if the pubertal stage was attained before first 
completed questionnaire, interval censored if the pu-
bertal stage was attained between 2 questionnaires, 

or right censored if not attained by the last question-
naire. Data were analyzed using a multivariable regres-
sion model for censored time- to- event data fitted by 
maximum likelihood estimation (STATA’s - intreg-  pack-
age). This model assumes normally distributed residu-
als. This was assessed by plotting the residuals from 
each of the regression models in R (x64 3.3.1) as the 
cumulative incidence function, based on the Turnbull 
estimator, against the normal distribution. Data were 
compatible with the assumption (data not shown).

In the main analyses, we estimated the mean 
monthly difference in age at attaining each puber-
tal milestone for boys and girls with CHD compared 
with those born without CHD. All pubertal milestones 
were also combined into 1 estimate for each sex using 
Huber- White robust variance estimation. This ap-
proach reduces the risk of type 1 errors due to multiple 
testing of correlated outcomes.45,46 Furthermore, the 
main analyses were repeated with CHD subdivided 
into simple and complex CHD. Lastly, we performed 
a subanalysis restricting our study population to boys 
and girls born at term because gestational age may be 
related to pubertal timing.

To account for the oversampling of children ex-
posed to potential risk factors of altered pubertal onset, 
sampling weights were used in the Puberty Cohort as 
described in detail elsewhere.44 Furthermore, selection 
weights were applied to account for potential selec-
tion bias due to nonparticipation.47 Selection weights 
were estimated as the inverse probability of participa-
tion using a logistic regression model on participation 
(yes/no), including CHD and all potential confounders 
included as explanatory variables. This was done sep-
arately for boys and girls. The estimates for the partic-
ipating 15 819 children should be representative for all 
22 439 invited. Further information about the derivation 
of selection weights, including tables with coefficients, 
standard errors, and intercept, is presented in Data 
S1through S3 and Tables  S2 through S5. The sam-
pling and selection weights were then multiplied and 
included in all analyses. Lastly, all models were fitted 
with robust standard errors to account for the weights 
and clustering of siblings. All analyses were conducted 
in STATA 16.1 MP software (Statacorp, College Station, 
TX).

RESULTS
Of the 15 780 children included, 137 (0.9%) had a CHD 
diagnosis (62 boys and 75 girls). When dividing into 
subtypes, 111 (81.0%) children had a simple defect (50 
boys and 61 girls) and 26 (19.0%) were diagnosed with 
a complex defect (12 boys and 14 girls) (Table 1). The 
most frequent simple cardiac diagnoses were ventric-
ular and atrial septal defect, whereas atrioventricular 
septal defect was most common in the complex group 
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(Table S1). Children with CHD were more often born 
preterm compared with children born without CHD. 
Compared with mothers of unaffected children, moth-
ers of children with CHD had more often pregestational 
diabetes and were of lower socioeconomic status. 
Birth weight Z score, head circumference Z score and 
childhood BMI did not differ between the 2 groups 
(Table 1).

Overall, no differences in mean age at achieving the 
pubertal milestones were observed in boys and girls 
with CHD (Figure 2 and Table 2). For the combined es-
timate, we observed a 1.5 (95% CI, −2.6 to 5.7) months 
difference among boys and a 1.0 (95% CI, −2.5 to 
4.4) month difference among girls. The same pattern 
was observed when subdividing CHD into simple and 
complex CHD (Figure 3 and Table 3). Results remained 

unchanged when we restricted the study population to 
children born at term (Table S6).

DISCUSSION
This is the first nationwide cohort study evaluating pubertal 
timing in boys and girls with CHD in comparison with chil-
dren without CHD. Children with CHD reached puberty at 
an age comparable with those born without CHD, both 
overall and when subdividing into simple and complex 
CHD. For the complex CHD group, however, we were not 
able to rule out a later pubertal development because of 
the few cases included. Results were consistent when 
evaluating pubertal timing in boys and girls born at term.

With the present study, we are the first to provide 
knowledge on pubertal development in children with 

Table 1. Background Characteristics According to CHDs for 15 780 Children in the Puberty Cohort, Denmark, 2000 to 
2018

No CHD CHD

n=15 643 (99.1%) n=137 (0.9%)

Child’s characteristics

Subtype of CHD, n (%)

Simple CHD 111 (81.0)

Complex CHD 26 (19.0)

Mean birth weight Z score (SD)* 0.0 (1.2) −0.3 (1.3)

Mean head circumference Z score (SD)* 1.2 (1.7) 1.0 (1.9)

Birth before gestation wk 37, n (%)*

No 14 470 (92.9) 119 (86.9)

Yes 1098 (7.1) 18 (13.1)

BMI at 7 y, mean (SD)† 15.6 (1.7) 15.6 (1.7)

Maternal characteristics

Prepregnancy BMI, mean (SD)* 23.8 (4.6) 24.3 (4.5)

Maternal age at delivery in years, mean (SD)* 30.6 (4.4) 30.1 (4.6)

Smoking during first trimester, n (%)*

No 11 224 (72.0) 96 (70.1)

Yes 4366 (28.0) 41 (29.9)

Maternal age of menarche, n (%)*

Earlier than peers 3964 (25.5) 34 (25.2)

Same time as peers 8894 (57.3) <77 (<56.2)‡

Later than peers 2665 (17.2) >26 (>19.0)‡

Highest social class of parents, n (%)*

High/low grade professional 8791 (56.3) >71 (>51.8)‡

Skilled/unskilled worker 6426 (41.2) <59 (<43.0)‡

Student/economically inactive 396 (2.5) 7 (5.1)

Pregestational diabetes, n (%)

No 15 245 (97.5) 130 (94.9)

Yes 398 (2.5) 7 (5.1)

BMI indicates body mass index; and CHD, congenital heart defects.
*<10% of data were missing.
†≈30% of data were missing.
‡Owing to local data regulations, it is not allowed to report smaller numbers than 5, including missing data on smaller than 5. The numbers have therefore 

been changed to mask these instances.
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simple CHD. Our findings are reassuring considering 
the increasing amount of literature suggesting that 
patients with simple CHD may not be as healthy as 
previously expected.48– 55 Despite ventricular and atrial 
septal defects traditionally being considered minor 
heart defects, growth impairment is described in fetal 
and neonatal life10– 12 and early childhood until clo-
sure.13,14 Further, a Danish nationwide study evaluating 
BMI in 2679 children with CHD aged 1 to 15 years found 
an increased risk of underweight in children with sim-
ple defects, although less pronounced than children 
with severe defects. Although rapid catch- up growth 
in infancy has been associated with earlier onset of 
puberty,5 the potentially continued growth impairment 
throughout early childhood may affect later physi-
cal growth.6,8 Therefore, a pubertal delay might have 
been anticipated in children with simple heart defects. 
However, our findings of normal pubertal timing in this 
subgroup indicates that the prevalence, magnitude, or 

duration of growth impairment in early life may not be 
significant enough to affect pubertal development. In 
children with complex CHD, we were unable to detect 
a pubertal delay. This may be explained by the low 
number of children in the group, as well as participa-
tion of, presumably, the healthiest children with com-
plex CHD. As such, our group of children with complex 
defects is most likely not representative of all children 
with severe heart defects. In addition, our CHD group 
included no children with hypoplastic left heart syn-
drome, which generally has major impacts on growth.

Our knowledge on pubertal development in chil-
dren with CHD is sparse. The available literature is 
limited to 9 studies, of which 8 reported only recalled 
age at menarche among adult women with CHD. In the 
Puberty Cohort, girls with CHD had their menarche at 
a mean age of 12.7 years, comparable with girls with-
out CHD. Similar age at menarche was found by Opic 
et al., who included 136 Dutch women operated for 

Figure 2. Adjusted mean differences in age at attaining different pubertal milestones in boys and girls 
according to congenital heart defects among 15 780 children in the Puberty Cohort, Denmark, 2012 to 2018.
B1– B5 indicates Tanner stages of breast development; G1– G5, Tanner stages of genital development; and PH1– 
PH5, Tanner stages of pubic hair development.
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CHD.56 In contrast, Drenthen et al. published a case- 
series of more than 1500 Dutch and Belgian women 
with CHD, reporting a slightly later age at menarche 
(13.3  years) in comparison with the general popu-
lation (13.15  years).20 The highest age at menarche 
was found in women with pulmonary hypertension in-
cluding Eisenmenger (13.8 years), and complex CHD 
(14.1  years). These subgroups also had increased 
risk of primary amenorrhea (absence of menarche by 
15  years of age) when compared with simple CHD 
women (odds ratio, 2.08; 95% CI, 1.25– 3.47). Other 
studies also found later menarche in complex and cy-
anotic subgroups.22,57,58 In women with Fontan circula-
tion, representing those with highest grade of severity, 
3 studies found later age at menarche when compared 

with the general population.23– 25 To our knowledge, 
the Fontan population is the only CHD subgroup with 
previous assessment of Tanner stages. Using self- 
reported questionnaires, Menon et al. evaluated 299 
American boys and girls with single ventricle physi-
ology and found an average pubertal delay of 1.5 to 
2.0 years compared with background population.19

Several limitations must be noted in the aforemen-
tioned studies. With the exception of Canobbio et al.,21 
all studies were case series with no comparison groups. 
The study populations mainly consisted of adult women, 
who retrospectively reported their age at menarche, 
which increased the risk of recall bias, and none of the 
studies adjusted for potential confounders. Nevertheless, 
higher severity of a heart defect may be associated with 

Table 2. Mean Age and Adjusted Mean Monthly Differences in Age at Attaining Pubertal Milestones in Boys and Girls 
According to CHDs, Puberty Cohort, Denmark, 2012 to 2018

No CHD (ref.) CHD

Pubertal milestones Mean age (y)* Mean age (y)†
Adjusted mean monthly age difference 
from ref. (95% CI)‡

Boys§

Tanner genital stage 2 10.9 11.1 0.7 (−8.2 to 9.5)

Tanner genital stage 3 12.5 12.8 3.1 (−3.6 to 9.3)

Tanner genital stage 4 13.7 14.0 3.3 (−2.9 to 9.5)

Tanner genital stage 5 15.8 15.8 −1.6 (−8.6 to 5.6)

Tanner pubic hair stage 2 11.3 11.4 1.0 (−4.4 to 6.5)

Tanner pubic hair stage 3 12.7 13.0 2.1 (−2.5 to 6.7)

Tanner pubic hair stage 4 13.5 13.7 1.6 (−3.6 to 6.8)

Tanner pubic hair stage 5 14.8 15.2 6.4 (−2.4 to 15.2)

Axillary hair 13.3 13.5 −1.2 (−6.9 to 4.5)

Acne 12.2 12.3 0.3 (−7.4 to 7.9)

Voice break 13.0 13.0 −1.3 (−8.8 to 6.2)

First ejaculation 13.3 13.3 −1.1 (−6.0 to 3.9)

Combined estimate 13.1 13.3 1.1 (−3.5 to 5.6)

Girls||

Tanner breast stage 2 9.8 10.0 2.4 (−4.0 to 8.7)

Tanner breast stage 3 11.6 11.5 −2.0 (−6.5 to 2.4)

Tanner breast stage 4 13.0 13.1 1.7 (−3.0 to 6.4)

Tanner breast stage 5 16.0 16.1 0.9 (−8.9 to 10.6)

Tanner pubic hair stage 2 11.2 11.3 1.6 (−2.3 to 5.5)

Tanner pubic hair stage 3 12.5 12.4 0.0 (−4.0 to 4.0)

Tanner pubic hair stage 4 13.5 13.6 4.0 (−1.9 to 9.9)

Tanner pubic hair stage 5 15.5 15.4 2.2 (−4.5 to 9.6)

Axillary hair 11.9 11.8 −0.8 (−6.6 to 5.0)

Acne 11.4 11.7 1.1 (−5.1 to 7.2)

Menarche 13.0 13.0 −0.6 (−4.3 to 3.1)

Combined estimate 12.6 12.6 0.8 (−2.7 to 4.4)

CHD indicates congenital heart defects; and ref., reference cohort.
*Crude mean age at pubertal milestones in boys and girls not exposed to CHD (reference group).
†Crude mean age at pubertal milestones in boys and girls exposed to CHD.
‡Adjusted for maternal age at menarche, maternal smoking during pregnancy, maternal body mass index before pregnancy, and socioeconomic status.
§n=7685.
||n=8095.
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an increased risk of later onset of menarche, and, poten-
tially, other pubertal milestones as well.

Methodological Considerations
The main strength of this cohort study was the lon-
gitudinal design with information on several pubertal 
milestones collected every 6 months throughout pu-
berty. This approach reduced the risk of recall bias. 
With detailed information on several maternal demo-
graphic, health, and lifestyle factors obtained during 
pregnancy, we had the ability to adjust for important 
potential confounders.

As gestational age may be related to pubertal tim-
ing, we performed a subanalysis restricting the study 
population to children born at term and found similar 
results to the main analyses. However, interpretation 
must be done with caution as gestational age may act 
as an intermediate factor in the path between CHD 
and puberty. In addition, conditioning on gestational 
age poses a risk of collider stratification bias, that 

is, introducing bias in case of unmeasured common 
causes of the intermediate and puberty.59

The Puberty Cohort had a participation rate of 70%.60 
The prevalence of CHD in the Puberty Cohort is compa-
rable with the prevalence worldwide,61,62 and participa-
tion in the Puberty Cohort was found to be independent 
of pubertal timing in an earlier study.63 As such, the risk 
of selection bias is considered limited. Selection weights 
were applied to further reduce potential selection bias. 
As recruitment into the cohort were performed by email 
or letter, the group of CHD children might only represent 
the healthier CHD population with mental resources to 
participate in such a cohort. The finding of normal child-
hood BMI in the group of CHD children support these 
speculations. In addition to the risk of live- birth bias, 
caution is therefore needed when extrapolating our re-
sults to the general CHD population.

We identified patients with CHD using the DNPR, 
and to improve the positive predictive value of the in-
formation used, only patients diagnosed at a university 

Figure 3. Adjusted mean differences in age at attaining different pubertal milestones in boys and girls 
according to subgroups of congenital heart defects, Puberty Cohort, Denmark, 2012 to 2018.
B1– B5 indicates Tanner stages of breast development; CHD, congenital heart disease; G1– G5, Tanner stages of 
genital development; and PH1– PH5 Tanner stages of pubic hair development.
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hospital were included. Based on a previous validation 
study on the DNPR, this strategy reduces the risk of 
misclassification of simple CHD diagnoses in partic-
ular, although some of the milder cases may be ex-
cluded.64 Any potential misclassification is expected 
to be independent of future pubertal development. 
Information on pubertal milestones was obtained 
from self- reported questionnaires. A study within the 
Puberty Cohort compared the self- assessed Tanner 
stages with clinical examination and found fair to mod-
erate agreement for most pubertal milestones with no 
systematic under-  or overestimation.65,66

Although the Puberty Cohort is one of the largest 
of its kind worldwide, only 137 children diagnosed 
with CHD were included. We consequently lacked 
power to differentiate into smaller subgroups of CHD 
and to investigate the potential effect of surgical re-
pair. Unfortunately, we did not have the possibility to 
assess participants’ medical records. Thus, we were 
therefore unable to obtain information on New York 
Heart Association Functional Classification, ventricular 
function, B- natriuretic peptide levels, and heart- related 
complications. The Puberty Cohort primarily consist 
of White people, reflecting the Danish population, and 

Table 3. Mean Age and Adjusted Mean Monthly Differences in Age at Attaining Pubertal Milestones in Boys and Girls 
According to Simple or Complex CHDs, Puberty Cohort, Denmark, 2012 to 2018

No CHD (ref.) Simple CHD Complex CHD

Pubertal milestones Mean age (y)* Mean age (y)†

Adjusted mean 
monthly age 
difference from ref. 
(95% CI)‡ Mean age (y)†

Adjusted mean 
monthly age difference 
from ref. (95% CI)‡

Boys§

Tanner genital stage 2 10.9 11.0 1.0 (−7.9 to 9.9) 11.5 4.8 (−6.9 to 16.5)

Tanner genital stage 3 12.5 12.9 3.5 (−3.1 to 10.0) 13.1 5.7 (−3.8 to 15.2)

Tanner genital stage 4 13.7 14.1 4.5 (−1.7 to 10.0) 13.7 −1.5 (−11.2 to 8.1)

Tanner genital stage 5 15.8 15.8 −2.0 (−9.0 to 5.0) 15.7 0.2 (−17.7 to 18.1)

Tanner pubic hair stage 2 11.3 11.4 1.2 (−4.4 to 6.7) 11.5 −0.1 (−12.0 to 11.7)

Tanner pubic hair stage 3 12.7 13.2 3.3 (−1.3 to 7.9) 13.0 1.1 (−8.6 to 10.7)

Tanner pubic hair stage 4 13.5 13.8 2.5 (−2.9 to 7.8) 13.4 −1.8 (−8.7 to 5.1)

Tanner pubic hair stage 5 14.8 15.4 7.9 (−1.1 to 16.9) 14.6 −1.7 (−14.8 to 11.4)

Axillary hair 13.3 13.7 1.7 (−3.5 to 7.0) 13.1 −11.9 (−29.8 to 6.1)

Acne 12.2 12.4 0.8 (−6.8 to 8.6) 12.3 0.8 (−9.5 to 11.2)

Voice break 13.0 13.1 0.2 (−7.2 to 7.7) 12.7 −8.9 (−20.9 to 3.0)

First ejaculation 13.3 13.4 −0.2 (−5.1 to 4.8) 13.6 −1.2 (−19.6 to 17.2)

Combined estimate 13.1 13.4 2.0 (−2.6 to 6.6) 13.2 −1.3 (−10.9 to 8.2)

Girls||

Tanner breast stage 2 9.8 10.0 4.6 (−3.0 to 12.2) 9.3 −13.2 (−29.0 to 2.6)

Tanner breast stage 3 11.6 11.4 0.2 (−4.9 to 5.4) 11.7 −0.4 (−8.1 to 7.3)

Tanner breast stage 4 13.0 13.0 1.2 (−3.9 to 20.3) 13.5 4.2 (−11.9 to 20.3)

Tanner breast stage 5 16.0 16.0 4.2 (−7.6 to 16.0) 13.7 −0.6 (−23.4 to 22.4)

Tanner pubic hair stage 2 11.2 11.2 2.3 (−3.0 to 7.6) 11.4 4.1 (−3.2 to 11.5)

Tanner pubic hair stage 3 12.5 12.3 −0,6 (−5.7 to 4.6) 12.9 3.7 (−7.2 to 14.7)

Tanner pubic hair stage 4 13.5 13.5 4.7 (−3.0 to 12.4) 14.2 7.8 (−3.4 to 19.0)

Tanner pubic hair stage 5 15.5 15.3 2.4 (−5.5 to 10.3) 15.8 2.3 (−16.0 to 20.5)

Axillary hair 11.9 11.6 −1.1 (−9.1 to 6.9) 12.5 5.0 (−6.0 to 16.1)

Acne 11.4 11.6 1.9 (−6.1 to 10.0) 12.1 6.8 (−5.5 to 19.1)

Menarche 13.0 12.7 −1.2 (−6.0 to 3.5) 13.7 3.0 (−4.6 to 10.5)

Combined estimate 12.6 12.5 1.2 (−3.3 to 5.8) 13.2 3.0 (−6,5 to 12.5)

CHD indicates congenital heart defects; and ref., reference cohort.
*Crude mean age at pubertal milestones in boys and girls not exposed to CHD (reference group).
†Crude mean age at pubertal milestones in boys and girls exposed to CHD.
‡Adjusted for maternal age at menarche, maternal smoking during pregnancy, maternal body mass index before pregnancy, and socioeconomic status.
§n=7685.
||n=8095.
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ethnicity- based differences were therefore not evalu-
ated in the present study.

CONCLUSIONS
This is the first nationwide cohort study to investigate 
pubertal development in children with CHD, includ-
ing simple defects and various pubertal milestones. 
Overall, we found no difference in pubertal timing be-
tween children born with CHD and children born with-
out. For the complex CHD, we were not able to rule out 
a later pubertal development. However, the findings for 
children with simple CHD are encouraging information 
to patients and their parents. Although such findings 
need to be explored in larger longitudinal studies, it 
adds to the limited knowledge on pubertal develop-
ment in children with CHD.
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Supplemental Material 



Data S1.  

 

Information on the derivation of selection weights. 

 

Despite a participation rate of 70% of the 22,439 children invited for participation in the Puberty 

Cohort, selection weights were used to account for potential underlying selective mechanisms (47). 

Weights were derived using a logistic regression model predicting the individuals’ probability for 

participation. This was done for each sex separately. The models included the primary exposure 

variable (congenital heart defect: yes, no) and the potential confounding factors as explanatory 

variables for participation. These factors were highest social status of parents, maternal pre-

pregnancy BMI (as second-order polynomial), maternal age at menarche, maternal age at delivery 

(as second-order polynomial), maternal smoking in first trimester, maternal pregestational diabetes, 

preterm birth, and birthweight. The probability for participation were transformed into selection 

weights by taking the inverse of the probability. By reweighting the 15,819 participating children, 

the resulting pseudopopulation was representative of the 22,439 invited children, if our assumptions 

of the potential selective mechanisms were correct.  

 

Data S2. 

 

The logistic regression model used for the derivation of selections weight for boys in the 

Puberty Cohort: 

Logit participation_boys i. SES c.pre_BMI#pre_BMI i.mat_AAM i.birth_before_week37 

c.mat_age#mat_age i.smoking_1trim c.weight#weight i.preges_diabetes i.CHD if sex==1 

 

 

Data S3.  

 

The logistic regression model used for the derivation of selections weight for girls in the 

Puberty Cohort: 

Logit participation_girls i. SES c.pre_BMI#pre_BMI i.mat_AAM i.birth_before_week37 

c.mat_age#mat_age i.smoking_1trim c.weight#weight i.preges_diabetes i.CHD if sex==2 

 

 

 

 

 

 

 



Table S1. Categorization of congenital heart defects (CHD) into simple and complex 

subgroups, 11 subtypes, diagnostic ICD-10 codes, and the number of individuals included. 

 

 

Severity Subtypes ICD-10 codes n = 

Simple CHD Ventricular septal defect Q21.0 30 

 Atrial septal defect  Q21.1 24 

 Coarctatio of the aorta Q25.1 5 

 Pulmonary valve disease Q22.1, Q25.6 7 

 Aortic valve disease Q23.0, Q23.1, Q23.1A 11 

 Mitral valve disease Q23.3, Q23.8 8 

 Patent ductus arteriosus* Q25.0 11 

 Simple miscellaneous Q21.9, Q24.8, Q24.9, Q26.4 15 

Complex CHD TGA, TOF, and PA Q20.1, Q20.3, Q21.3, Q22.0 10 

 Atrioventricular septal defect Q21.2 5 

 Complex miscellaneous Q20.0, Q20.8, Q20.9, Q25.2, 11 

  Q25.4, Q25.5, Q25.9, Q26.2,  

    Q26.8   
ICD-10 = International Classification of Diseases, Tenth Revision, CHD = congenital heart defect, TGA = 

transposition of the great arteries, TOF = Tetralogy of Fallot, PA = pulmonary atresia  

*Only included if born after gestational week 37   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Output from the logistic regression model for boys. 

  

Boys: Coefficient Standard error 95% Conf. Inferval 

SES    

2 -0.41 0.04 -0.50; -0.33 

3 -0.66 0.12 -0.89; -0.43 

pre_BMI^2 -4.60e-04 8.05e-05 -6.18e-04; -3.02e-04 

mat_AAM    

Same time as peers 0.02 0.05 -0.07; 0.12 

Later than peers 0.10 0.07 -0.03; 0.23 

birth_bef_week37 0.17 0.09 0.00; 0.34 

mat_age 2.33e-04 7.85e-05 7.96e-05; 3.87e-04 

smoking -0.37 0.04 -0.45; -0.28 

birthweight^2 1.76e-08 5.45e-09 6.88e-09; 2.83e-08 

pregest_diabetes 0.02 0.13 -0.22; 0.27 

CHD -0.45 0.19 -0.82; -0.07 

_cons  0.85 0.12 0.61; 1.09 

 

 



Table S3. Predicted probability of participation among boys. 

 

Variable Obs Mean Std. Dev. 

participation_boys 7,436 0.684 0.077 

 

 

Based on this model, the predicted probability of participation in the Puberty Cohort among all boys 

invited was 68.4 %. 

 

 

 

 



Table S4. Output from the logistic regression model for girls.  

 

 

Girls: Coefficient Standard error 95% Conf. Inferval 

SES    

2 -0.41 0.05 -0.50; -0.31 

3 -.4374545 .1288801 -0.69; -0.18 

pre_BMI^2 -4.88e-04 8.55e-05 -6.55e-04; -3.20e-04 

mat_AAM    

Same time as peers 0.04 .05 -0.06; 0.15 

Later than peers  0.00 0.07  -0.14; 0.14 

birth_bef_week37 -0.05 0.09 -0.23; 0.14 

mat_age^2 2.90e-04 8.52e-05 1.23e-04; 4.60e-04 

smoking  -0.37 0.05 -0.46; -0.27 

birth weight^2 2.48e-08 6.56e-09 1.20e-08; 3.77e-08 

pregest_diabetes -0.30 0.13 -0.43; 0.43 

CHD 0.00 0.22 -0.41; 0.45 

_cons  1.09 0.14 0.83; 1.36 

 

 



Table S5. Predicted probability of participation among girls. 

 

Variable Obs Mean Std. Dev. 

participation_girls 7,857 0.748 0.070 

 

 

Based on this model, the predicted probability of participation in the Puberty Cohort among all girls 

invited was 74.8 %. 

 

 

 

 



Table S6. Mean age and adjusted mean monthly differences in age at attaining pubertal 

milestones in boys and girls born at term according to congenital heart defects, Puberty 

Cohort, Denmark, 2012-2018.  

No CHD (ref.)  CHD 

Pubertal Milestones Mean age (years)* Mean age (years)† 

Adjusted mean monthly 

age difference from ref. 

(95% CI)‡ 

Boys§ 

  Tanner genital stage 2 10.9 11.1 0.7 (-8.2; 9.5) 

  Tanner genital stage 3 12.5 12.8 3.1 (-3.6; 9.3) 

  Tanner genital stage 4 13.7 14.0 3.3 (-2.9; 9.5) 

  Tanner genital stage 5 15.8 15.8 -1.6 (-8.6; 5.6)

  Tanner pubic hair stage 2 11.3 11.4 1.0 (-4.4; 6.5)

  Tanner pubic hair stage 3 12.7 13.0 2.1 (-2.5; 6.7)

  Tanner pubic hair stage 4 13.5 13.7 1.6 (-3.6; 6.8)

  Tanner pubic hair stage 5 14.8 15.2 6.4 (-2.4; 15.2)

  Axillary hair 13.3 13.5 -1.2 (-6.9; 4.5)

  Acne 12.2 12.3 0.3 (-7.4; 7.9)

  Voice break 13.0 13.0 -1.3 (-8.8; 6.2)

  First ejaculation 13.3 13.3 -1.1 (-6.0; 3.9)

  Combined estimate 13.1 13.3 1.1 (-3.5; 5.6) 

Girls|| 

  Tanner breast stage 2 9.8 10.0 2.4 (-4.0; 8.7) 

  Tanner breast stage 3 11.6 11.5 -2.0 (-6.5; 2.4)

  Tanner breast stage 4 13.0 13.1 1.7 (-3.0; 6.4)

  Tanner breast stage 5 16.0 16.1 0.9 (-8.9; 10.6)

  Tanner pubic hair stage 2 11.2 11.3 1.6 (-2.3; 5.5)

  Tanner pubic hair stage 3 12.5 12.4 0.0 (-4.0; 4.0)

  Tanner pubic hair stage 4 13.5 13.6 4.0 (-1.9; 9.9)

  Tanner pubic hair stage 5 15.5 15.4 2.2 (-4.5; 9.6)

  Axillary hair 11.9 11.8 -0.8 (-6.6; 5.0)

  Acne 11.4 11.7 1.1 (-5.1; 7.2)

  Menarche 13.0 13.0 -0.6 (-4.3; 3.1)

  Combined estimate 12.6 12.6 0.8 (-2.7; 4.4)

CHD = congenital heart defects, ref. = reference cohort, CI = confidence interval 
*Crude mean age at pubertal milestones in boys and girls not exposed to congenital heart defects (reference group)

†Crude mean age at pubertal milestones in boys and girls exposed to congenital heart defects 

‡Adjusted for maternal age at menarche, maternal smoking during pregnancy, maternal body mass index before pregnancy, and 

 socioeconomic status 

§ n = 7,038

||n = 7,551  


