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A B S T R A C T   

Prostate cancer is the second most frequently diagnosed cancer among men worldwide, with the estimated sixth 
leading cause of cancer death. Despite major advancements in clinical biology and imaging, digital rectal ex-
amination (DRE), prostate-specific antigen (PSA), and biopsies indication remain the keystone for screening. 
Several kits are used to detect genomic changes and non-coding RNAs in the sample. However, its indication 
remains controversial for screening purposes. There is an urged need for non-invasive biomarkers to implement 
precision medicine. Recent research shows that miRNAs have an important role in the diagnostic, prognostic, and 
therapeutic agents as non-invasive biomarkers. Though prostate cancer data remains controversial in other 
cancer types, such as breast cancer, miR-21 expression is upregulated. Here, we reported a prolonged revision of 
miRNAs as prostate cancer prognostic, diagnostic, and predictive tools, including data on androgen receptor (AR) 
signaling, epithelial-mesenchymal transition (EMT) process, and cancer stem cells (CSCs) regulation. The com-
bined utilization of miRNAs with other tests will help patients and clinicians to select the most appropriate 
personalized treatment and to avoid overdiagnosis and unnecessary biopsies. Future clinical applications of our 
reported novel miRNAs have a substantial role in the primary diagnosis of prostate cancer to help treatment 
decisions.   

Introduction 

Prostate cancer is recognized as a major health concern in men. 
Prostate cancer is frequently diagnosed with a secondary malignancy in 
men and is the sixth leading cause of cancer-related mortality in men 
worldwide.1,414,259 incident cases were reported, with 375,304 deaths 
in 2020 [1, 2]. Prostate cancer is asymptomatic in early stages but may 
produce symptoms of frequent urination, nocturia, hematuria, urinary 
retention, and urination with pain in the pelvis at later stages. Cancer 
stages and grades can evaluate the status of prostate cancer. The Gleason 
scoring system stratifies prostate cancer risk from low to high Gleason 
scores based on micrographs related to apparent diffusion coefficient 
(ADC) in prostate cancer patients [3]. The bottleneck in diagnosing 
prostate cancer based on histopathological examination is high diver-
sification. The invasive methods used in diagnosing prostate cancer have 
provoked scientists to unearth non-invasive procedures with more ac-
curacy. Currently, urine and blood-based biomarkers are also used to 

detect prostate cancer. Digital Rectal Examination (DRE), Prostate 
Specific Antigen (PSA), and Transrectal Ultrasound Scan (TRUS) are 
commonly used diagnostic tools for prostate cancer detection. When 
PSA and DRE are found at a normal level, patients’ chances of missing 
cancer are only about 10% [4]. However, this clinical test has some 
limitations in its implementation. PSA, DRE, and TRUS lack specificity 
and cannot distinguish benign from malignant prostate cancer. Pro-
spective studies reported improved sensitivity of computer-assisted 
image analysis in diagnosing prostate cancer that was uncertain in 
previous biopsies. Despite these biomarkers’ presence, the diagnosis of 
prostate cancer is still undisclosed due to the absence of optimal stan-
dard methods and non-specificity. There is still a dire need to develop 
mature non-invasive, novel biomarkers with greater sensitivity and 
specificity. Prostate cancer progresses very slowly, and chances of re-
covery are much high. It is reported that miRNAs are involved in 
carcinogenesis and show promising results in prostate cancer diagnosis. 
miRNAs are a rapidly emerging area of a current cancer diagnosis [5]. 
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This review will focus mainly on miRNA-based biomarkers with high 
specificity and sensitivity in diagnosing prostate cancer. 

The dilemma of prostate cancer diagnosis 

Prostate cancer is one of the cancers that has received durable in-
terest due to its widespread in Western countries and scientific devel-
opment in diagnosis and treatment. In recent decades, the mortality rate 
reduction from prostate cancer was associated with an increase in 
detection in the early stages of cancer and a decline in the proportion of 
cases in the advanced stages. These epidemiologic changes were linked 
to introducing the prostate-specific antigen (PSA) and its wide use in the 
detection, diagnosis, and follow-up of prostate cancer cases. 

The prostate-specific antigen is a glycoprotein expressed in both 
cancerous and normal prostatic columnar epithelial cells, and hence it is 
tissue-specific and not pathology sensitive. PSA is an expression in the 
normal prostatic cells even more than in the cancerous prostatic cells; 
interestingly, in malignancy, due to the disruption of the basal cell layer 
and basement membrane, more PSA escapes into the circulation and can 
be measured in the serum in high concentration. 

PSA test has been used as a screening tool to diagnose prostate cancer 
in the early curable stage before it reaches the advanced incurable stage. 
Based on this hypothesis, screening programs in many countries were 
established. In 2018, Dragan Ilic reported that three randomized clinical 
trials, including Cluster Randomized Trial (CAP 2018), The Prostate, 
Lung, Colorectal, and Ovarian (PLCO 2017), European Randomized 
Study of Screening for prostate cancer (ERSPC 2014), have shown that 
PSA screening results in an increase in detection of localized prostate 
cancer (stage I and stage II) at the expense of advanced stage (stage III 
and stage IV). Surprisingly, screening had no impact on overall mortality 
and prostate cancer-specific mortality in those three randomized clinical 
trials. 

A screening test should be accurate with a high negative predictive 
value, feasible, acceptable by the community, and reasonable cost. Aside 
from cancer, the PSA level can be raised in many other prostatic pa-
thologies, including benign hypertrophy, inflammation, and senility; 
this makes PSA’s sensitivity contaminated by the other non-cancerous 
causes. Moreover, PSA can detect cancers that are non-lethal or clini-
cally insignificant; such lesions were detected in autopsy series and 
found to have no impact on survival due to their low aggressiveness. The 
prostate Testing for Cancer and Treatment (ProtecT) trial has compared 
the effect of three treatment modalities, i.e., radiotherapy, active 
monitoring, and surgery for localized low stage prostate cancer, and 
revealed a significant reduction in progression to metastatic stage within 
10 years follow up after treatment, but these treatments failed to extend 
overall survival when compared to no treatment; thus, this study denied 
any survival benefit due to early treatment [6]. 

Overdiagnosis with clinically insignificant prostate cancer was 
encountered during screening programs and led to the dilemma of un-
necessary biopsy and unnecessary treatment and may jeopardize the 
patient’s life due to complications related to these pointless in-
terventions. Complications were observed in PLCO and CAP trials due to 
biopsy. During the PLCO study, 75 biopsy-associated complications 
were observed, while three complications were reported in the CAP 
study. Approximately one-third of men with an increasing PSA level 
have prostate cancer, while the remaining two-thirds can have false- 
positive results. We may conclude that prostate cancer screening with 
PSA may be dangerous rather than useful [7]. 

Conventional biomarkers 

Transrectal biopsy (TRB) was an important digitally directed-biopsy 
diagnostic test for prostate cancer in the 1970s. Nevertheless, it is not an 
efficient technique due to 15–46% false-negative results, and the tissue- 
undegrading rate is up to 38% [8]. In comparison to TRB, Transperineal 
biopsy (TPB)  has many pros over TRB as it is clean, patient-centered, 

and no other broader spectrum antibody prophylaxis is required [9]. 
Digital Rectal Exam (DRE) and Prostate-specific Antigen (PSA) is used to 
detect prostate cancer that shows no symptoms previously and provides 
an efficient result for prostate cancer screening. DRE is used to detect the 
lumpy or hard areas known as nodules. At the same time, PSA is used to 
find abnormalities or mutations that might be suggested in the presence 
of prostate cancer. Neither of them is initially satisfied with the diag-
nostic ability as many men with elevated PSA levels have no prostate 
cancer symptoms, and those who have prostate cancer at the severe 
stage can be found with a normal level of PSA. Different factors can 
increase PSA levels like benign prostate hyperplasia (BPH), sexual ac-
tivities, or prostate infection. Also, digital examination described the 
data only from the prostate glands’ backside and reduced our access to 
analysis properly. More than 60% of patients with prostate cancer are 
identified as asymptomatic [10].  PSA’s normal level in the human body 
is about considered safe is 2.6 to 4 ng/ml. People with a high PSA level 
go for a TRB-guided biopsies examination. PSA protein travels through 
the human body in two ways. The first is that it may be docked with 
another protein or move freely in the blood. The fPSA to tPSA ratio used 
in men is between 4 and 10.0 ng/ml with a normal PSA level [11]. 

Blood-based biomarkers 

Prostate Health Index(Phi) is a mathematical expression used to 
improve PSA clinical performance. It is a novel approach that uses men’s 
serum to determine the risk of prostate cancer. The phi report result can 
be calculated using the formula ([− 2]proPSA/fPSA tPSA), which 
improved prostate cancer detection [12]. Phi is more specific and clin-
ically significant than total/free PSA in diagnosing prostate cancer; a 
study has found [13]. 4Kscore test is used after an abnormal result of a 
prostate-specific antigen/digital rectal exam to check prostate cancer’s 
aggressiveness by using four prostate-specific biomarkers. 4Kscore is 
another test used to assess cancer risk and categorize its stages. 4Kscore 
test utilizes four kallikrein peptides: fPSA, tPSA, intact PSA, and hK2; in 
an algorithm to assess the individual risk level percentage (< 1% to >
95%). Among studies in 171 patients, a higher 4Kscore test score was 
strongly associated with a higher risk of prostate biopsy with a proba-
bility (P < 0.001) of detecting cancer [14]. A recent statistical 
meta-analysis study of 4Kscore evaluated the predictive accuracy of 8% 
to 10%, and unnecessary biopsies could be avoided by approximately 
48% to 56% [15]. Circulating tumor cells initiate the metastatic proc-
ess’s progression with solid tumor cells. These cells circulate throughout 
the body with blood and are present in the bone marrow of prostate 
cancer patients [16]. The CellSearchTM kit (Janssen Diagnostics, USA) 
is an FDA-approved test and is an independent predictor of metastatic 
progression of prostate cancer [17]. A recent study reported that a panel 
of novel serum proteins is present in over 500 patients of prostate can-
cer. The combination of these three serum proteins, FLNA, FLNB, and 
KRT19 with PSA, increased the overall efficiency of prostate cancer as 
compared to PSA alone (AUC of PSA alone, 0.58; AUC of PSA with panel 
protein, 0.64). The Prediction probability of high-risk disease was (AUC 
of PSA alone, 0.71; AUC of PSA with FLNB, 0.81), and the prediction of 
benign prostatic hyperplasia vs cancer was (AUC of PSA alone, 0.58; 
AUC of PSA with FLNA, KRT19, 0.70) [18]. 

Urine-based biomarkers 

Transcriptome analysis of the Prostate Cancer Antigen 3 (PCA3) gene 
shows that it is long non-coding RNA(lncRNA). The expression of PCA3 
in prostate tissue was identified by using the differential display (DD3) 
and prostate cancer gene expression marker 1 (PCGEM1) [19]. One 
study showed that research was conducted on 233 men, with 226 men 
having RNA yield in their urine samples. PCA3 level is determined by 
using transcription-mediated amplification. PCA3 score of 35 was 
associated with a specificity of 58% to 76%, sensitivity of 58% to 82%, 
negative predicted value (NPV) of 87%, and positive predicted value 
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(PPV) of 67% to 69%. This high specificity result suggested that the 
PCA3 assay could have an important role in the diagnosis of prostate 
cancer [20]. Multiplex biomarkers are also used in the diagnosis of 
prostate cancer. Some multiplex biomarkers are discussed. 
TMPRSS2-ERG Fusion and PCA3 have high specificity but low sensi-
tivity. However, its combination with other biomarker tests has been 
reported to have high specificity and sensitivity of 90% and 80%, 
respectively, in diagnosed prostate cancer [21]. This chromosomal 
rearrangement TMPRSS2-ERG fusion occurs in approximately 50% of 
prostate cancer, but prostate cancer regulation remains unclear [22]. 
SelectMDx is another multiplex non-invasive urine biomarker in which 
expression of two cancer-related mRNAs, Homeobox protein HOX-C6 
(cell proliferation gene) and distal-less homeobox 1, DLX1 (progres-
sion gene), is measured. HOXC6 and DLX1 miRNA levels showed the 
best predictor for high-grade prostate cancer with an AUC of 0.90 (95% 
confidence interval, 0.85–0.95 [CI]). Like other traditional clinical tests, 
this liquid biopsy assay could reduce the number of high risks score 
unnecessary biopsies [23]. ExoDx prostate (IntelliScore) is a 
non-invasive test to detect high-grade prostate cancer (HGPC). ExoDx 
prostate (IntelliScore) value greater than > 15.6 shows a high-risk 
prostate cancer condition, and the intervention is to proceed with bi-
opsy for further analysis. EPI test result influences the intervention 
because it may be proceeded with biopsy or without [24, 25]. 

Tissue-based biomarkers 

ConfirmMDx test was created to detect prostate cancer using an 
epigenetic assay of methylation of genes associated with prostate cancer. 
Intended outcomes can predict which patients have cancer occur biopsy 
and have a true negative biopsy and prevent a biopsy of unaffected 
people. This test measures the methylation level of three genes 
(Adenomatous Polyposis Coli, APC), Ras association domain family 
member 2 (RASSF2), and Glutathione S-Transferase Pi 1 (GSTP1)) 
associated with prostate cancer. Detection of DNA methylation in high- 
grade risk cancer is the most significant predictor of negative biopsies 
with an NPV of ~96% [26]. Oncotype DX GPS test analyses showed the 
overall aggressiveness of the disease by predicting prostate cancer gene 
activity. At the time of diagnosis, Oncotype DX GPS is the only assay 
used for low-risk cancer to make favorable decisions about treatment 
and provides a Genomic Prostate Score (GPS scale 0–100). Oncotype DX 
GPS test measures miRNA expression of 17 genes responsible for tumor 
cell growth and survival. A population of 259 shows a strong association 
between GPS and Prostate cancer-specific death (PCD) and metastasis. 
No patient with a value of GPS 〈 20 developed PCD or metastasis [27]. 
Decipher® Prostate Test is also a genomic test used to identify a group of 
22 mRNAs by measuring the expression of associated genes. A case 
cohort was designed to generate RNA expression of relative genes by 
using 1010 patients’ samples after radical prostatectomy. These patients 
had already preoperative PSA levels〉 20 ng/ml and Gleason 8 or greater. 
A 20% random sampling was taken as a subcohort to analyze patients 
with metastasis. 22-marker genomic classifier score was generated with 
available genomic data of 219 patients (AUC = 0.79). The genomic 
classifier was a predominant predictor of metastasis after redial pros-
tatectomy and had a cumulative incidence of 2.4%, 6.0%, and 22.5%, 
with low, intermediate, and high scores, respectively (p <0.001).  This 
study showed that genomic information could identify adverse patho-
logical features of patients with metastasis risks [28]. ProMark (Meta-
mark, Cambridge, USA) is a proteomic prognostic test for prostate 
cancer, predicting the overall aggressiveness in a patient with Gleason 
scores of 3 + 3 and 3 + 4. This test uses quantitative, automated image 
reorganization technology and multiplex immunofluorescence assay on 
Formalin-Fixed Paraffin-Embedded (FFPE) tissues to generate a 
personalized score. ProMark evaluates eight proteins panel that provides 
a score of 0 to 1 that predict AP [29]. A predictive value of risk assess-
ment was studied in 381 patients with a biomarker favorable risk score 
of ≤ 0.33 and for unfavorable > 0.80 that were defined on 

"false-positive" and "false negative" rates of 5% and 10% [30]. Some 
serum, urine, tissue based diagnostic biomarkers approved by FDA and 
CLIA have been summarized in Table 1. 

miRNAs-based biomarkers 

MicroRNAs (miRNAs) are short non-coding RNA transcripts of 17–25 
nucleotides first discovered in 1993. miRNAs are known to regulate gene 
expression. miRNAs have an important role in cell-cell signaling, cell 
cycle, hormones, and apoptosis – both normal and diseased condition 
[37, 38]. About 2000 miRNAs in humans have been sequenced that 
collectively regulate the genome [39]. miRNAs are found in various 
biofluids, such as blood, urine, tears, saliva, and semen [40]. 

RNA polymerase II transcribes miRNA into ⁓ 80 nucleotides long 
pre-miRNA in the nucleus, further cleaving by Drosha RNase III and 
DiGeorge Syndrome Critical Region 8 (DGCR8) into shorter fragments 
known as pre-miRNAs [41]. The mobility of pre-miRNA from the nu-
cleus into the cytoplasm is triggered by Exportin 5. Dicer (RNase) 
cleaves pre-miRNA into small 22-bp long dsRNA in the cytoplasm [42, 
43]. One strand is integrated into RNA induced silencing complex (RISC) 
and usually targets the 3′ UTRs of mRNA [44, 45]. The targeted mRNA is 
degenerated and results in gene silencing [46]. Under both physiological 
and pathological conditions, various kinds of cells excrete miRNAs. 
Changes in the expression profile of miRNA are used as a potential in-
dicator of a pathological condition. Due to the susceptibility of extra-
cellular miRNAs to proteases, these are excreted out in protective ways 
via exosomes [47] and may bind with Argonaute 2 complex [48] or with 
high-density lipoprotein (HDL). However, the major proportion of 
miRNA is in the form of exosomes or binds with protein remains 
debatable due to variation in isolation method [49]. miRNA biogenesis 
is illustrated in Fig. 1. 

Regulatory role of miRNAs in prostate cancer 

MicroRNAs play an important role in gene expression by repressing 
transcription and translation[38]. On the other hand, miRNA has a dark 
side in that the abnormal expression of miRNA is associated with several 
ailments such as prostate cancer. Different signaling pathways involved 
in prostate cancer development are evasion of apoptosis, angiogenesis, 
cell growth, and cell differentiation. miRNAs interfere with the cell cycle 
and apoptosis by targeting cyclin proteins and pro-apoptotic genes [50]. 
Recent studies have reported that miRNAs have dual functions _ onco-
miR and tsmiR _ in tumor development. miRNA contributes to cancer 
development by upregulating the expression of oncogenes and down-
regulating the tumor suppressor genes [51, 52]. miR-204–5p , 
miR-329–3p ,miR-127–3p are tumor suppressor miRNAs [53–55] while 
miR-454–3p ,miR-20a-5p and miR-32–5p are oncomiR [56]. Urologists 
have found that the expression profile of miRNA has revolutionized the 
diagnosis of prostate cancer with more specificity. miRNA expression 
profile enlightens the developmental lineage, cancer stage, cancer 
grade, and history behind cancer [57]. Previous studies have reported 
that the expression of miR-21 and miR-75 has risen in prostate cancer 
patients at early stages [58], while an aggressive state is heralded by 
increasing expression of miRNA-1246 [59]. miRNA contributes to 
prostate cancer development by controlling the genes involved in the 
androgen receptor signaling (AR) pathway, ectopic expression of pro-
teins involved in the cell cycle and apoptosis, epithelial-mesenchymal 
transition (EMT), and Cancer stem cells (CSCs) metastasis -mostly the 
hallmarks of cancer described in Table 2. The salient mitogenic growth 
factor for prostate gland development is the androgen receptor (AR). 
Proteins act as a checkpoint and inhibitors in the cell cycle, and 
pro-apoptotic genes are silenced by miRNA [60, 61]. Epithelial cells 
acquire mesenchymal cells’ properties during the EMT process and then 
contribute to invasion and metastasis [62, 63]. 
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Androgen receptor signaling 
Androgen receptor (AR) signaling plays an important role in prostate 

cancer’s function, development, and hemostasis [64]. Androgen 

receptor is a type of nuclear receptor that can be activated upon binding 
of any androgenic hormone such as testosterone. The growth of normal 
prostate androgen promotes differentiation and survival. However, in 

Table 1 
Current approved blood, urine, and tissue-based biomarkers in prostate cancer.  

Test Molecular Markers Rationale of the Signature Approved as References 

Serum-based Biomarkers 
Prostate Serum Antigen (tPSA) PSA Primarily to screen for prostate cancer by 

determining specific antigens in blood 
FDA* [31] 

PHI (Beckman Coulter Inc., Brea, CA, 
USA) 

Total PSA, fPSA, proPSA Reduced numbers of unnecessary 
biopsies 

FDA [32] 

4 K score (OPKO lab, Miami, FL, USA) Total PSA, fPSA, intact PSA, hK2 Risk of aggressiveness of prostate cancer FDA, CLIA^- 
approved 

[33] 

Urine-based Biomarkers 
PROSTATE CANCER3 (Progensa) 

Hologic, Marlborough, MA, USA 
PROSTATE CANCER3 Determine the risk of prostate cancer FDA [33] 

ExoDX Prostate (Intelliscore) Exosome 
Diagnostics Inc., Waltham, MA, USA 

Exosomal RNA (PROSTATE CANCER3, ERG, SPDEF) Detection of high-grade prostate cancer 
(HGPC) 

CLIA- 
approved 

[33] 

Mi-Prostate Score (Michigan Medicine, 
Detroit, MI, USA) 

PROSTATE CANCER3 and TMPRSS2-ERG mRNA, Serum 
PSA 

Screen prostate cancer without its 
symptoms (Two biomarkers) 

CLIA- 
approved 

[33] 

TMPRSS2: ERG fusion gene TMPRSS2: ERG mRNA in relation to PSA mRNA Rebiopsy FDA [33] 
SelectMDx (MDx Health, Irvine, CA, 

USA) 
HOXC6, DLX1, KLK3 mRNA levels Urine sample to measure expression of 

two genes 
CLIA- 
approved 

[33] 

Tissue-based Biomarkers 
ConfirmMDx (MDxHealth, Irvine, CA, 

USA) 
DNA hypermethylation (GSTP1; APC; RASSF1) Epigenetic assay of methylation of genes 

involved in prostate cancer 
CLIA- 
approved 

[34] 

Oncotype Dx (Genomic Health, 
Redwood City, CA, USA) 

mRNA expression; 17 gene Predicting adverse pathology CLIA- 
approved 

[35] 

Decipher (GenomeDx Biosciences, San 
Diego, CA, USA) 

mRNA expression;22 genes (cell proliferation, migration, 
tumor motility, androgen signaling, and immune system 
evasion) 

Predicting metastasis CLIA- 
approved 

[35] 

ProMark (Metamark, Cambridge, MA, 
USA) 

Protein biomarker test (8 proteins) Aggressiveness of prostate cancer CLIA- 
approved 

[36] 

Prolaris (Myriad Genetics (Salt Lake 
City, UT) 

Multi-gene expression assay (Cell cycle progression) Aggressiveness of prostate cancer FDA [35] 

*Food and Drug Administration (FDA), ^Clinical Laboratory Improvement Amendments (CLIA). 

Fig. 1. miRNA biogenesis.  
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Table 2 
Role of miRNAs in PCa and regulation of gene expressions in different biological pathways.  

miRNAs Up (↑)/Down 
(↓) 

Sample Types Target Genes Other Biological Process Outcome References 

Part I: miRNAs involved in triggering of cell cycle 
miR-1 ↓ Tumor tissue E2F5, CDK14, SLUG EMT Risk/ Prognostic [87] 
let-7a ↓ Tumor tissue/ 

Serum 
E2F2, CCND2 Inhibit abnormal cellular proliferation Diagnostic/ 

Prognostic 
[88] 

miR‑15/ 3p ↓ Tumor tissue TMEM97 Invasion Diagnostic [89] 
miR-15a/16–1 ↓ Tumor tissue, 

Serum, Exosomes 
CCND1, WNT3A, BCL2 Apoptosis/ Cell survival, Proliferation Diagnostic [90] 

miR-21 ↑ Tumor tissue, 
Serum, Exosomes 

PTEN, PDCD4, P57Kip2 PCa progression, Apoptosis, AR signaling Diagnostic/ 
Prognostic 

[90] 

miR-24 ↓↑ Tumor tissue, Serum CDKN1B, CDKN2A, FAF1 Reduced apoptosis Prognostic [91, 92] 
miR-31 ↓  AR, E2F1, E2F2, EXO1, 

FOXM1, MCM2 
AR signaling Prognostic [93] 

miR-32 ↑ Tumor tissue BTG2 Reduced Apoptosis Diagnostic [94] 
miR-34b ↓ Tumor tissue AKT Inhibited cell proliferation, Colony 

formation 
Diagnostic [95] 

miR-96 ↑ Tumor tissue FOXO1, MTSS1 Metastasis Diagnostic / 
Prognostic 

[96] 

miR-99a ↓ Tumor tissue NCAPG, SMARCA5, FGFR3, 
IGF1R 

Cell proliferation Diagnostic [97] 

miR‑100 ↓ Tumor tissue MIR-100 EMT Therapeutic [98, 99] 
miR-182 ↑ Tumor tissue ARRDC3, FOXO1 AR signaling, Metastasis Diagnostic, 

Therapeutic 
[100] 

miR-221/222 ↑ Tumor tissue, Serum p27KIP1/ CDKN1B Repression of cell cycle inhibitors increases 
cell growth 

Diagnostic [101] 

miR-449 ↓ Tumor tissue HDAC-1 – Diagnostic [102] 
Part II: miRNAs involved in epithelial-mesenchymal transition (EMT) 
miR-1 ↓ Tumor tissue E2F5, CDK14, SLUG Cell cycle Risk/ Prognostic [87] 
miR‑100 ↓ Tumor tissue MIR-100 Cell cycle Therapeutic [98, 99] 
miR-200 Family ↓ Tumor tissue, 

Serum, Exosomes 
ZEB1, ZEB2, PDGF-D, SLUG – Diagnostic/ 

Prognostic 
[103] 

miR-375 ↑ Serum, Urine, 
Exosomes 

SEC23A, YAP1 Cell proliferation, Stimulates cell 
proliferation 

Prognostic/ 
Therapeutic 

[104] 

miR-940 ↓ Tumor tissue MIEN1 – Diagnostic/ 
Prognostic 

[105] 

Part III: miRNAs involved in apoptosis 
miR-15a/16–1 ↓ Tumor tissue, 

Serum, Exosomes 
CCND1, WNT3A, BCL2 Cell cycle/ Cell survival, Proliferation Diagnostic [90] 

miR‑18a ↑ Tumor tissue STK4 Cell survival, Proliferation Prognostic/ 
Therapeutic 

[106, 107] 

miR-21 ↑ Tumor tissue, 
Serum, Exosomes 

PTEN, PDCD4, P57Kip2 PCa progression/ Cell cycle, AR signaling Diagnostic/ 
Prognostic 

[90] 

miR-24 ↓↑ Tumor tissue, Serum CDKN1B, CDKN2A, FAF1 Reduced apoptosis/ Cell cycle Prognostic [91, 92] 
miR-125b ↓ Tumor tissue P53, BBC3, BAK1 Loss of cell cycle checkpoint results in 

increased cell growth 
Therapeutic [108] 

miR-133b ↓ Tumor tissue FAIM Tumorigenesis Diagnostic [109] 
miR-185 ↓ Tumor tissue BRD8 ISO2, SREBP-1, 

SREBP-2 
AR signaling, Inhibited tumorigenicity Therapeutic [110] 

miR-205 ↓ Tumor tissue, Urine c-SRC, BCL2, AR, ZEB2, 
PKCε 

Cell proliferation, AR signaling, EMT Risk/ Diagnostic [111] 

Part IV: miRNAs involved in cell proliferation 
let-7a ↓ Tumor tissue/ 

Serum 
E2F2, CCND2 Inhibit abnormal cellular proliferation/ 

Cell cycle 
Diagnostic/ 
Prognostic 

[88] 

let‑7b ↓ Tumor tissue HMGA1 Tumor suppressor Prognostic [106] 
let-7c ↓ Tumor tissue, 

Plasma 
C-MYC AR signaling/ PCa proliferation Prognostic/ 

Diagnostic 
[112] 

miR‑17 ↑ Tumor tissue STAT3, BCL2 Inhibited LNCaP cell proliferation/ 
Induced cell apoptosis 

Prognostic/ 
Diagnostic 

[113] 

miR‑18a ↑ Tumor tissue STK4 Apoptosis/ Cell survival Prognostic/ 
Therapeutic 

[106, 107] 

miR-21 ↑ Tumor tissue, 
Serum, Exosomes 

PTEN, PDCD4, P57Kip2 PCa progression/ Cell cycle, Apoptosis, AR 
signaling 

Diagnostic/ 
Prognostic 

[90] 

miR-27a ↑ Tumor tissue ABCA1, PDS5B – Diagnostic/ 
Prognostic 

[114] 

miR‑27b ↓↑ Tumor tissue PI3K, AKT, p21 PCa progression Diagnostic/ 
Prognostic 

[94] [115], 

miR-34b ↓ Tumor tissue AKT Cell cycle, Inhibited cell proliferation, 
Colony formation 

Diagnostic [95] 

miR‑92a ↑ Tumor tissue, 
Serum, Exosomes 

E2F2, RRM2, PKMYT1 Tumor progression Prognostic, 
Therapeutic 

[116, 94, 
117] 

miR‑93 ↑ Tumor tissue, Serum TGFВR2, ITGB8, and LATS2 Invasion Prognostic, 
Therapeutic 

[118] 

miR‑95 ↑ Tumor tissue, 
Exosomes 

JUNB Tumor progression Therapeutic [94, 119] 

(continued on next page) 
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Table 2 (continued ) 

miRNAs Up (↑)/Down 
(↓) 

Sample Types Target Genes Other Biological Process Outcome References 

miR-99a ↓ Tumor tissue NCAPG, SMARCA5, FGFR3, 
IGF1R 

Cell cycle Diagnostic [97] 

miR‑103 ↑ Tumor tissue, 
Serum, Exosomes 

GAS5 Tumor progression and growth Therapeutic [94, 120] 

miR‑106a/ 
miR‑106b 

↑ Tumor tissue LARP4B Initiation of PCa Therapeutic [121] 

miR‑107 ↑ Urine, Serum, 
Exosomes 

CCNE1 – Diagnostic / 
Prognostic 

[116] 

miR-125b ↓ Tumor tissue P53, BBC3, BAK1 Loss of cell cycle checkpoint results in 
increased cell growth /Apoptosis 

Therapeutic [108] 

miR-126 ↓ Tumor tissue ADAM9 Metastasis Diagnostic, 
Therapeutic 

[122] 

miR‑148a ↓ Tumor tissue CAND1 Growth-promoting effect Therapeutic [123, 124] 
miR‑149–5p ↑ Tumor tissue SOX2, NANOG, Oct4 – Diagnostic [124, 125] 
miR‑155 ↑↓ Tumor tissue ANX7 – Prognostic [94, 126] 
miR‑181b ↑↓ Tumor tissue DAX-1 Progression of PCa Diagnostic [106, 127] 
miR‑195 ↓ Tumor tissue PRR11 Inhibit angiogenesis Therapeutic [98, 128] 
miR‑199a-3p ↓ Tumor tissue SMAD1 Suppress proliferation Diagnostic, 

Therapeutic 
[129] 

miR-221/222 ↑ Tumor tissue, Serum p27KIP1/ CDKN1B Repression of cell cycle inhibitors increases 
cell growth 

Diagnostic [101] 

miR-203 ↓ Tumor tissue MAP2K1, RAP1A Inhibiting metastasis Prognostic [130] 
miR-205 ↓ Tumor tissue, Urine c-SRC, BCL2, AR, ZEB2, 

PKCε 
Apoptosis, AR signaling, EMT Risk/ Diagnostic [111] 

miR‑224 ↓ Tumor tissue TRIB1 Invasion, Metastasis Prognostic [131] 
miR-375 ↑ Serum, Urine, 

Exosomes 
SEC23A, YAP1 EMT, Stimulates cell proliferation Prognostic/ 

Therapeutic 
[104] 

miR‑429 ↑ Tumor tissue, Serum p27KIP1 Oncogenesis Prognostic [132] 
miR‑455 ↓ Tumor tissue CCR5 Suppress progression Therapeutic [133] 
Part V: miRNAs involved in tumor suppression 
let‑7b ↓ Tumor tissue HMGA1 – Prognostic [106] 
miR‑20a ↑ Tumor tissue, 

Plasma, Exosomes 
RRM2, PKMYT1 - Therapeutic [94, 117] 

miR‑22 ↓ Tumor tissue LAMC1 – Diagnostic [94, 134] 
miR‑23b ↓ Tumor tissue, 

Plasma 
MAPK – Prognostic [135] 

miR‑29a ↓ Tumor tissue MCL1 – Diagnostic [94] [134], 
miR-185 ↓ Tumor tissue BRD8 ISO2, SREBP-1, 

SREBP-2 
AR signaling, Apoptosis, Inhibited 
tumorigenicity 

Therapeutic [110] 

miR‑199a-3p ↓ Tumor tissue SMAD1 Suppress proliferation Diagnostic, 
Therapeutic 

[129] 

Part VI: miRNAs involved in androgen receptor (AR) signaling 
miR-124 ↓ Tumor tissue AR – Diagnostic [136] 
miR-143/145 ↓ Tumor tissue PROM1, CD44, OCT4, C- 

MYC, KLF4, ZEB2, AR 
CSCs, EMT, and AR signaling Inhibit bone 
invasion and tumorigenicity 

Diagnostic [86] 

miR-182 ↑ Tumor tissue ARRDC3, FOXO1 Metastasis, Cell cycle Diagnostic, 
Therapeutic 

[100] 

miR-185 ↓ Tumor tissue BRD8 ISO2, SREBP-1, 
SREBP-2 

Apoptosis, Inhibited tumorigenicity Therapeutic [110] 

miR-205 ↓ Tumor tissue, Urine c-SRC, BCL2, AR, ZEB2, 
PKCε 

Cell proliferation, Apoptosis, EMT Risk/ Diagnostic [111] 

Part VII: miRNAs involved in metastasis 
miR-26a ↓ Tumor tissue LIN28B, ZCCHC11 – Diagnostic/ 

Prognostic 
[91] 

miR-34a ↓ Tumor tissue CD44, STMN1 Cancer stem cells (CSCs) Prognostic, 
Therapeutic agent 

[85, 137] 

miR-96 ↑ Tumor tissue FOXO1, MTSS1 Cell cycle Diagnostic / 
Prognostic 

[96] 

miR-126 ↓ Tumor tissue ADAM9 Proliferation Diagnostic, 
Therapeutic 

[122] 

miR‑130a ↓ Tumor tissue DEPDC1, SEC23B – Therapeutic [124, 138] 
miR-141 ↑↓ Tumor tissue, 

Serum, Exosomes 
NR0B2, CD44, EZH2, Rho 
GTPases 

Transcriptional activity in LNCaP cells/, 
CSCs 

Diagnostic [90, 139] 

miR‑150 ↓ Tumor tissue TRPM4 Inhibition of PCa metastasis Diagnostic, 
Therapeutic 

[106, 140] 

miR-182 ↑ Tumor tissue ARRDC3, FOXO1 AR signaling, Cell cycle Diagnostic, 
Therapeutic 

[100] 

miR-203 ↓ Tumor tissue MAP2K1, RAP1A Cell proliferation, Inhibiting metastasis Prognostic [130] 
miR‑224 ↓ Tumor tissue TRIB1 Cell proliferation, invasion Prognostic [131] 
miR-409–3p/5p ↑ Tumor tissue RSU1, STAG2, NPRL2 Increase in invasion Therapeutic [141] 
Part VIII: miRNAs involved in cancer stem cells (CSCs) regulation 
miR-34a ↓ Tumor tissue CD44, STMN1 Metastasis Prognostic, 

Therapeutic agent 
[85, 137] 

miR-141 ↑↓ Tumor tissue, 
Serum, Exosomes 

NR0B2, CD44, EZH2, Rho 
GTPases 

Transcriptional activity in LNCaP cells/, 
Metastasis 

Diagnostic [90, 139] 

(continued on next page) 
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prostate cancer AR act as an inducer for uncontrolled cell growth [65]. 
The mechanism is still poorly understood but many studies showed that 
AR is repressed by miRNAs. Some findings represent that miRNAs 
interaction with 3′UTR of the AR gene is quite important in the forma-
tion of AR protein [66]. Another study revealed that some miRNAs like 
miR-30b-3p and miR-30d-5p direct regulate the transcriptional activ-
ities of AR which were identified through an AR-responsive promoter, a 
bioluminescent cell viability reporter assay, and protein lysate micro-
array (LMA) quantification of AR and PSA protein levels. As a result, 
miR-30b-3p and miR-30d-5p were significantly involved in the direct 
suppression of AR and PCa cell proliferation [67]. AR signaling is 
directly implicated in the progression and tumorigenesis of the prostate. 
In the same way, miR-346, miR-361–3p, and miR-197 inhibitors are also 
involved in a remarkable inhibition of AR transcriptional activity, 
increased apoptosis, repressing EMT, and cell proliferation [68]. 
Androgen deprivation therapy (ADT) is considered the first line of de-
fense in prostate cancer patients with benign and malignant states. Many 
miRNAs involved in AR signaling initiate the progression of a 
pre-existing disease or the appearance of new metastasis in other parts of 
the body despite the prostate [69]. At the initial stage, prostate cancer 
requires a normal testosterone level for progression. However, at the 
Castration-resistant prostate cancer (CRPC) stage, it usually does not 
need prostate cancer, even growing at a deficient level of testosterone, 
which can be reduced by hormone therapy. So, AR signaling is directly 
involved in the emergence of CRPC [69]. The development of prostate 
cancer is linked with anomalous behavior of AR. AR activity may 
exacerbate due to mutation, hyperexpression, differential splicing 
[70–73], crosstalk between growth factors, and altered expression of 
coactivators and corepressors [74, 75]. Thus, miRNAs based therapeutic 
strategies can inhibit AR function and androgen-dependent cell growth. 

Cell cycle and apoptosis 
Recent evidence shows that miRNAs have demonstrated more than 

one-third of genes for their expression in humans involved in prolifer-
ation, invasion, tumorigenesis, differentiation, and apoptosis [76]. 
Several cluster miRNAs were concerned with the deregulation of the cell 
cycle, including miR-15a/16 and miR-221/222, miR-221–5p, 
miR-1266, miR-185 miR-30c, let-7a, miR-24 and miR-31. Proteins act as 
a checkpoint, and miRNAs silence inhibitors in the cell cycle and pro-
apoptotic genes. Notably, an investigation reported that miR-1266, 
miR-185, and miR-30c are downregulated in prostate cancer, strongly 
associated with BCL2 and BCL2L1 genes (Anti-apoptotic genes) upre-
gulation that can suppress the proliferation of tumor cells [77]. Simi-
larly, miR-15a and miR-16 present in chromosomal region 13q14 are 
also responsible for deregulating the expression of WNT3A and BCL2 
genes. These genes are involved in apoptosis resistance and cell prolif-
eration [78]. 

Epithelial-mesenchymal transition (EMT) process 
During EMT, the inclination of cancer cells can regulate the meta-

static process, treatment resistance, and its progression. Epithelial cells 
lose their potency of cell-cell adhesion and polarity to attain mesen-
chymal properties to promote invasion. Transcriptional profile analysis 
revealed that mesenchymal-to-epithelial reverting transition [79] is 
enhanced in metastatic castrate-resistant prostate cancer (mCRPC) 
clinical samples that were performed with the help of reversible models 

of EMT [80]. The EMT is a complex and trans-differentiation process 
that underlies the alteration of epithelial cell phenotype to mesenchymal 
cells in a more motile state. Several signaling pathways and membrane 
proteins like Cadherin, TGF-β, and exocysts are involved in cancer 
development by EMT [54]. 

MicroRNAs play a significant role and have been reported to influ-
ence prostate cancer in the EMT process. MiRNAs controlled the prostate 
cancer EMT by multiple mechanisms by regulating key signaling path-
ways or repressing single or multiple EMT transcriptional factors (EMT- 
TFs) [81]. EMT pathway also facilitates tissue remodeling during em-
bryo development. Five members of the miRNA-200 family, including 
miR-200a, miR-200b, miR-200c, miR-141, and miR-429, were down-
regulated during the EMT pathway. Enforced expression of miRNA-200 
can induce EMT to target ZEB1 and SIP1 [82]. 

Cancer stem cells (CSCs) regulation 
CSCs are a family of cancer cells with stem-like properties that can 

differentiate, renew, and tolerate treatments such as antimitotic agents. 
A better understanding of CSCs immunological properties can help 
induce novel immunologic approaches targeting CSCs to reduce tumor 
diseases [83]. MicroRNAs regulate both CSCs and normal stem cells, but 
miRNAs dysregulate the process of tumorigenesis [84]. MiR-34a (a p53 
target) acts as a key negative regulator of CD44+ in prostate cancer cells 
and establishes a strong therapeutic agent against prostate CSCs [85]. 
Furthermore, miR143 and miR-145 suppressed colony formation of PC-3 
cells from prostate cancer bone metastasis by inhibiting CSCs properties 
of PC-3 cancer [86]. 

Interplay between exosomes and prostate cancer 

MicroRNAs are released in the form of exosomes by both normal and 
cancerous cells present in biofluids. Exosomes are small extracellular 
vesicles of 40–100 nm in size derived from the plasma membrane of the 
parent cell containing DNA, mRNA, miRNAs [144], proteins, and en-
zymes. Exosomes act as a carrier in cellular communication. These 
membrane vesicles transfer their cargoes (DNA, miRNA, and proteins) 
into distant recipient cells. Tumor cells produce more exosome volume 
than normal cells [145–148]. Exosomes make the recipient cell retain a 
cancerous phenotype by modulating biological pathways. Exosomes 
enable the cells to evade apoptosis by inhibiting pro-apoptotic genes and 
undergo cell division without checkpoints [149]. In 2014, it was re-
ported that prostate tumor cells escape from immune control because 
exosomes downregulate the expression of receptors present on immune 
cells. Exosomes derived from prostate tumor cells possess an NKG2D 
ligand that suppresses the expression of NKG2D receptors present on NK 
cells and T-helper cells [150]. In the PC3 cell line, exosomes transfer its 
protein part integrin β4 into prostate tumor cells, promoting metastasis 
and invasion [151]. Exosomes increase invasion and metastasis in can-
cer cells by triggering epithelial-mesenchymal transition (EMT). 

Exosomes released from prostate cells under hypoxia consist of more 
biomolecules that allow the cancer cells to undergo metastasis and in-
vasion [152, 153]. Genetic contents and proteins present within exo-
somes are responsible for developing drug resistance in cancer cells 
[63]. The miRNA biomarkers play an important role in non-invasive 
biomarkers for cancer. Standardized and well-established parameters 
are required for miRNA to detect cancer reoccurrence and stages [154]. 

Table 2 (continued ) 

miRNAs Up (↑)/Down 
(↓) 

Sample Types Target Genes Other Biological Process Outcome References 

miR-143/145 ↓ Tumor tissue PROM1, CD44, OCT4, C- 
MYC, KLF4, ZEB2, AR 

EMT, and AR signaling Inhibit bone 
invasion and tumorigenicity 

Diagnostic [86] 

miR-320 ↓ Tumor tissue CTNNB1 – Therapeutic [142] 
miR‑574 ↑↓ Tumor tissue, 

Serum, Urine 
REL Recurrence of prostate cancer, Prognostic/ 

Therapeutic 
[143]  

M. Bilal et al.                                                                                                                                                                                                                                    



Translational Oncology 26 (2022) 101542

8

MicroRNAs are virtually linked with about 60% of protein-coding genes 
that may be regulated by miRNA activity, and all biochemical processes 
also include cancer progression. Several methods and protocols can 
detect the presence of miRNAs in the sample. Here, we just describe a 
schematic representation Fig. 2. 

Exosomal miRNAs expressions in urine and blood for prostate 
cancer diagnosis 

MicroRNAs present within exosomes has shown promising results in 
the diagnosis of prostate cancer with the ability to distinguish prostate 
cancer from benign prostatic hyperplasia (BPH). Exosomes are extracted 
from blood (plasma/serum) and urine. Exosomes are isolated from urine 
in prostate cancer because of their characteristic resemblance to uro-
logical cancer. 

The expression profile of miRNA in prostate cancer patients is 
different as compared to control, and this attribute makes miRNA to be 
used as a diagnostic marker. The expression of miR-196a-5p and miR- 
501–3p was examined by sequestering exosomes from urine samples of a 
prostate cancer patient by ultracentrifugation. The sample was taken 
from prostate cancer patients (n = 20) and healthy individuals (n = 9). 
Studies have shown a significant decrease in the expression of miR- 
196a-5p and miR-501–3p in prostate cancer patients [155, 156]. Wani 
et al. reported  miR-2909 in urine samples as a diagnostic tool because 
their level was found to rise in prostate cancer samples (n = 90) as 
compared to control subjects BPH (n = 10), healthy individuals (n = 50) 
[157]. The expression profile of miR-21, miR-574, and miR-141 is used 
to diagnose prostate carcinoma sequestered from urine exosomes using a 
lectin-based agglutination method. Increased expression of miR-21, 
miR-574, and miR-141 was observed in the initial stages of prostate 
cancer in prostate cancer patients (n = 35). These miRNAs are unique to 
catching prostate cancer at earlier stages [158]. Recent studies have 
shown that miR-21, miR-375, and let-7c are overexpressed in prostate 
cancer cells and associated with tumor progression and can be used as a 
model indicator in the diagnosis of prostate cancer. The expression of 
miR-21, miR-375, let-7c was analyzed in prostate cancer patient (n =

52) and control subjects(n = 10).Urinary exosomes were extracted by 
ultracentrifugation [159]. Some miRNAs as diagnostic biomarkers are 
isolated from plasma and serum. Upregulation of miR-1246 in 
high-grade cancer makes it a highly specific biomarker. This biomarker 
can distinguish indolent from a lethal state with a positive predictive 
value. Serum was used to extract miR-1246 [59]. miR-141 functions as a 
tumor suppressor in several cancers, such as pancreatic 
cancer-promoting prostate cancer [160]. The level of miR-141 is being 
increased in serum with prostate cancer but remains unchanged in 
healthy patients. miR-141 is known to be associated with metastasis. 
The expression of miR-141 was evaluated in the discovery cohort, 
consisting of a prostate cancer patient (n = 20), a control group of BPH 
patients (n = 20), and healthy donors (n = 20) [63, 161]. miR-1290 and 
miR-375 both are used as predictive biomarkers in patients with 
Castration-resistant prostate cancer (CRPC) [162]. 

miRNAs used as clinical, diagnostic, and predictive biomarkers 

MicroRNAs are directly involved in the pathogenesis of cancer. Due 
to this, miRNAs have a potential role as a diagnostic, predictive, prog-
nostic, pharmacogenomic, and therapeutic biomarkers for both meta-
static and primary cancers [163], as mentioned in Fig. 3. The use of 
miRNA is advantageous because it can be extracted from small volume 
samples and formalin-fixed tissues. miRNA present within exosomes has 
shown promising results in the diagnosis of prostate cancer with the 
ability to distinguish prostate cancer from benign prostatic hyperplasia 
(BPH). Exosomes are extracted from blood (plasma/ serum) and urine. 
Overall, different expression patterns and estimation profiles may help 
improve the management of prostate cancer. Besides this, miRNAs can 
be detected in different body fluids like serum and urine. 

Gleason score, PSA level, and clinical stage provide current param-
eters for the diagnosis of prostate cancer, but beyond these parameters, 
miRNAs have essential information. The combination of both will 
improve clinicopathological parameters for diagnostic and prognostic 
effectiveness. Moreover, previous data suggest that some miRNAs 
groups have a potential role in diagnosis. A study among 20 patients 

Fig. 2. Schematic representation of methodology to detect the diagnostic significance of miRNAs and in silico prediction of target genes and pathways analysis using 
web base tool and functional and expression analysis of miRNA using TCGA data. 
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with a mean PSA of 21.3 ng/ml and a mean age of 68.6 years, which 
included eight healthy person controls, shows a group of miRNAs (miR- 
106b, miR-141–3p, miR-21, and miR-375). These miRNAs extracted 
from serum and were quantified by qRT-PCR with relative expression 
were increased in prostate cancer respective to healthy control [164]. 
These biomarkers can reduce the limitations of currently available 
diagnostic methods. Similarly, another study shows that the level of 
miR-141 increases in serum with prostate cancer but remains unchanged 
in healthy patients. miR-141 is known to be associated with metastasis 
[161]. 

Diagnostic tests concerned with miRNA, miRview™mets was the 
first test used to find the exact source of tumor cells based on miRNAs. In 
the first generation, this test studies a panel of 48-miRNAs in tissue 
measured by qPCR, which differentiated 25 different types of tumors. In 
the second generation, miRview mets2  test increases the number to 64- 
miRNA panels with 49 types of tumors [165]. However, until now, there 
is no diagnostic or prognostic test discovered that is only based on the 
detection of miRNA in body fluid. 

Besides diagnostic, several studies on miRNAs expression in cancer 
tissue signatures have shown that it has been strongly associated with 
prognosis. Cuzick et al. studied the prognostic value of miRNAs 
expression from 31-genes involved in cell cycle progression with qRT- 
PCR. This study provides strong evidence between cell cycle progres-
sion and PSA level as a predictive prognostic marker that could have 
been used for finding treatment for patients [166]. miR-1290 and 
miR-375 are both used as predictive biomarkers in patients with 
Castration-resistant prostate cancer (CRPC) [162]. Moreover, Penney 
et al. assessed that expression of a 157-gene signature might improve our 
understanding of the tumor’s de-differentiation process. It can predict 
Gleason score and relative lethality risk for guiding therapy decisions to 
improve results and reduce overtreatment [167]. Both miR 182–5p and 
miR-375–3p in plasma of patients were also found to be prognostic and 
screening biomarkers for prostate cancer [168]. 

Discussion 

In recent years, liquid biopsy has gained a lot of attention for 
investigation of circulating tumor DNA, RNA, or microRNAs (miRNAs) 
in minimal invasive tests. miRNAs also have capability to overcome 
therapy resistance problem in PCa by targeting androgen receptors. For 
example, drug resistance that target AR ligand binding domain (LBD) is 
becoming a big clinical problem. So, novel therapeutics such as based on 
miRNAs that target AR gene regulation and suppress AR through non- 
LBD-mediated mechanisms will be important [68]. The important 
thing is the identification of specific miRNA that trigger a specific 
tumor-driving pathway. 

Recent studies have reported that miRNAs have dual func-
tions–oncomiR and tsmiR in tumor development. miRNA contributes to 
cancer development by upregulating the expression of oncogenes and 
downregulating the tumor suppressor genes. Despite the potential role 
of miRNAs in diagnostics, prognostics, and therapeutics as biomarkers 
for identification, disease monitoring progression, and therapy response 
for many human pathological conditions, there is still a lack of meth-
odology for detecting miRNAs. Many factors are involved in the human 
body that can enhance the level of miRNA. Hemolysis, cell blood 
contamination, and platelet activation can also change the level of 
miRNAs in blood serum [169]. RNA extraction and storage are other 
significant issues that can directly influence quality. Many protocols 
have been proposed for miRNAs extraction in human diseases, but huge 
variations can impact RNA quality. 

The first  miRNA-based therapy  to be used in clinical trials was 
MRX34, synthesized after the modification of miR-34a that is respon-
sible to regulate the 24 identified oncogenes involving AR [170]. 
SMARTICLES liposome technology was used to deliver MRX34 in phase I 
of the clinical trial (NCT01829971), which provided a piece of attractive 
evidence for the treatment of cancer by using miRNA but was unsuc-
cessful due to major side effects [171]. Contrarily, the FDA approved 
long non-coding RNA (lncRNA) PCA3 test to be used as a diagnostic 
marker in urine. However, its application for evaluating androgen 
deprivation therapy (ADT) response in advanced PCa is limited. Other 

Fig. 3. Diagnostic and Prognostic biomarkers for prostate cancer management.  
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lncRNAs, like PCAT18 and SChLAP1, can be used as biomarkers for the 
identification of metastatic PCa. 

Antisense oligonucleotides (ASOs) are another therapeutic approach 
that can silence genes by degrading target RNAs with RNase H. Phase II 
and III clinical studies for the treatment of PCa in humans had tested 
Bcl-2 mRNA (NCT00085228) and Clusterin mRNA (NCT01188187), but 
both failed due to serious adverse effects or lack of a meaningful survival 
benefit [65]. 

Lastly, data analysis is an essential step for studying identified groups 
of miRNAs. Normalization is one of the most provocative aspects of 
analysis and has no universal endogenous control. We should need 
further validation research on potential biomarkers. We are hopeful that 
advancements in science and technology could overcome these issues. 

Conclusion 

MicroRNAs contribute to prostate cancer development by controlling 
the genes involved in biological processes, ectopic expression of proteins 
involved in the cell cycle, and apoptosis. Deregulation of miRNAs pro-
motes cancer progression, and this feature makes miRNA a useful 
diagnostic biomarker. The efficient prostate cancer screening should be 
sensitive enough to diagnose even asymptomatic cancer. Conventional 
detection can decrease cancer mortality with a lack of specificity and 
sensitivity. The heterogenic nature of cancer makes the detection diffi-
cult by tissue biopsy. Exosomes are the potential source of miRNA and 
provide a very informative platform to understand tumors’ genetics. 
miRNA-based biomarkers are non-invasive and require a small sample 
volume and can differentiate indolent from aggressiveness. 

The inconsistency was observed among researchers’ results due to 
the lack of standard isolation methods for exosome isolation and dif-
ferences in body fluids. There is a need to establish standard protocols 
and techniques to take advantage of miRNA’s diagnostic and prognostic 
importance in reducing the prostate cancer burden worldwide. Despite 
these challenges, miRNA is a useful biomarker that has opened the way 
to diagnose prostate cancer. 
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