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While at least 8 million tons of plastic litter are ending up in our oceans every year and research on
marine litter detection is increasing, the spectral properties of wet as well as submerged plastics in
natural marine environments are still largely unknown. Scientific evidence-based knowledge about
these spectral characteristics has relevance especially to the research and development of future
remote sensing technologies for plastic litter detection. In an effort to bridge this gap, we present
one of the first studies about the hyperspectral reflectances of virgin and naturally weathered

plastics submerged in water at varying suspended sediment concentrations and depth. We also
conducted further analyses on the different polymer types such as Polyethylene terephthalate (PET),
Polypropylene (PP), Polyester (PEST) and Low-density polyethylene (PE-LD) to better understand the
effect of water absorption on their spectral reflectance. Results show the importance of using spectral
wavebands in both the visible and shortwave infrared (SWIR) spectrum for litter detection, especially
when plastics are wet or slightly submerged which is often the case in natural aquatic environments.
Finally, we demonstrate in an example how to use the open access data set driven from this research
as a reference for the development of marine litter detection algorithms.

Plastic material offers numerous properties such as lightweight, resilience, resistance to corrosion, color, and
ease of processing, which makes them attractive for many applications'~. Manufacturing of plastic materials at
low costs has been found to be a major source of the plastic waste as most of the consumer goods are packaged
in single use plastics. However, these plastics are not biodegradable, and their durability and strength makes
them a serious environmental contaminant®>. A large amount of this plastic waste finally ends up in the aquatic
environment. It is estimated that more than 150 million tons of plastics have accumulated in the world’s oceans,
while 4.6-12.7 million tons® are added every year; costing over 2 trillion US dollars’. Given the size of the aquatic
environment, there is little scientific evidence-based information available on the distribution, types and sources
of this marine plastic debris. Marine plastics are mainly monitored by visual surveys from ships, using plankton
Neuston net trawls, as well as ingested counts found in marine biota®. For example, the JRC exploratory project
RIMMEL acquired information about litter, mainly plastic waste, entering the European Seas through river
systems using data collected by visual observations over a period of 1 year’. The visual survey revealed plastic
specimens identified were mostly single use bottles and carry bags, 7 of these materials observed were among
the top ten items found in global litter.

Optical sensors on satellites, aircrafts, unmanned aerial systems, drones and handheld devices can contribute
to the monitoring of slightly submerged and floating marine plastics'®~'2. These remote sensing technologies
have capabilities to generate standardized objective repeated plastic relevant measurements over large geo-spatial
areas at sustainable operational costs. It is however limited to the monitoring of aggregated marine plastics,
and should be seen as complementary to ship-borne net trawl and visual surveys. Already, several airborne
surveys looking for marine plastics have been realized with mainly visual interpretation of the true color RGB
or SWIR hyperspectral imagery'*-'%. Over the Great Pacific Garbage patch, very high geo-spatial resolution
RGB and SWIR imagery was collected at the same time as trained human observers manually counted visible
litter typically diameter above 0.5 m'*'°. There are challenges with visual detection that include observer bias'’,
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misidentification of particles similar to organic matter, or under detection of particles that are too small to be
detected by the human eye'®. Ideally, automated detection approaches could be explored as they might have the
potential to improve monitoring of the marine plastic litter.

Knowledge about diagnostic spectral features of virgin or weathered plastics is vital as the demand is increas-
ing for remote sensing technologies relevant to monitoring of marine litter. The waste management and recycling
industry has been at the forefront of sensor development, they have robust tailor-made sensors that automatically
classify plastic by polymer type, colour and even shapes'®-?2. The chemical composition of the plastic polymers is
derived from the spectral measurements in the SWIR (1000-2500 nm) to MWIR (2500-5000 nm) spectrum?-
as well as LWIR (6000-14,500 nm)?*. However, identifying plastic materials in the ocean, in waterways and
harbors is much more challenging than in a controlled industrial environment (e.g. on a conveyor belt). The
plastics can be floating on the surface, but can be wet and can be partly or fully submerged. Furthermore, there
are features at the sea surface such as whitecaps, sea foam and bubbles generated by wind and waves which can
mask the spectral signature from the plastics*”?%. The water is absorbing strongly the light in the NIR and SWIR
and other water constituents such as suspended particulate matter alter the reflected signal?***. Moreover, there
is also a contribution from the atmosphere which also alters the signal received at the sensor. Finally, water and
small individual plastics can be in same pixel complicating the detection. Garaba and Dierssen®! performed some
experiments on harvested plastic samples taken to the laboratory (items such as buoys, bottle caps, containers,
ropes and nets) and on virgin pellets (PVC, PA 6.6 and PA 6, LDPE, PET, PP, PS, FEP, ABS, Merlon, PMMA).
The study revealed the presence of diagnostic absorption features in the NIR-SWIR spectrum centred around
931 nm, 1045 nm, 1215 nm, 1417 nm, 1537 nm, 1732 nm, 2046 nm and 2313 nm. They reported a decrease in
reflectance magnitude after the dry plastics were dampened.

In this paper, we further contribute to the scientific evidence-based about marine plastic litter by analyzing
the spectral reflectance in the 350 to 2500 nm spectral range of samples measured in a controlled environment
simulating clear to turbid waters. The experimental setup in this study was suitable for investigating spectral
reflectance changes as a function of the water depth and concentration of suspended material. Furthermore,
appropriate or diagnostic spectral wavebands relevant for the detection and distinguishing plastics from other
optically active material in coastal and estuarine environments were evaluated.

Results

In this section, we analyze the spectral reflectance from the experiments in the VITO calibration facility and a
water tank; We also demonstrate how this spectral database of plastics can be used to evaluate marine plastic
detection algorithms. Here we present an example of a Sentinel-2 based detection algorithm.

Dry virgin and marine-harvested plastic samples. The virgin plastics included several samples with
known polymeric composition: crushed polyethylene terephthalate (PET) bottles, blue and orange polypro-
pylene (PP) rope, white polyester rope and low-density polyethylene (PE-LD) cup. Their spectral reflectance is
shown in (Fig. 1) and the main absorption features in (Table 1). The spectral shape of reflectances in the visible
spectrum was consistent with the apparent colour of the plastics. Although having the same polymer composi-
tion, the blue and orange rope had different spectral shapes in the visible. To retrieve information about the
polymer composition, we have to inspect the SWIR spectral region (1000 nm to 2500 nm). Despite the fact that
absolute SWIR reflectance differs, both orange and blue PP ropes show clear absorption features at 1192, 1394
and 1730 in Fig. la. PET bottles both crushed and non-crushed ones have a strong feature at 1660 nm and a small
feature at 1130 nm. Features around 1730 nm and 1660 nm have been reported before*® and are often used to
discriminate between different polymers.

Litter obtained from the Port of Antwerp had variable spectral shapes and magnitude (Fig. 2). The measured
reflectance was as high as 0.6 in the SWIR (e.g. Expanded polystyrene) and as low as 0.1 (transparent foil and
grey cloth). Several samples have a similar shape in the VIS part of the spectral because of their greyish color. In
the SWIR, several samples show prominent absorption features (e.g. around 1729 nm, 1213 nm and 1420 nm),
others, such as the grey cloth and the transparent foil, have a much flatter reflectance spectrum. The transparent
foil has extremely low reflectance and exhibits a sinusoidal pattern due to thin film interference. Hence, discrimi-
nation of different plastics based on their absorption features might be complex as it is also likely dependent on
the thickness of the plastic material and degree of weathering. Goddijn-Murphy et al.** also showed decreases
in reflectance and depths of the absorption bands with increasing transparency of plastic. They considered dif-
ferent buoyant plastics including (1) white, opaque EPS building foam, (2) white semi-transparent HDPE milk
bottles, and (3) clear transparent PET soft drink bottles.

Wet plastics. Dry virgin samples have been wetted to analyze the effect of wetness on the spectral responses.
Figure 3a illustrates spectral measurements for the wet and dry blue placemat; the pure water absorption
coeficient®®* is added as a reference. In the visible wavelength range, wetness does not have pronounced effects
on the spectral reflectance because pure water absorption is still relatively low. For the plastic bag in Fig. 3b, dif-
ferences in the visible range can be explained by the non-uniform surface of the bag, measuring slightly different
areas of the bag in wet and dry conditions. In the NIR and SWIR, the effect is much more apparent and reflec-
tance is clearly lower when plastics are wettened. The percentage reduction follows the shape of the pure water
absorption coefficient. The effect of wettening is stronger at longer wavelengths and prominent peaks in the pure
water absorption also influence the wet plastic reflectance signal. Table 2 shows the reduction percentage from
dry to wet for different plastic samples.

Garaba and Dierssen!! reported a reduction percentage on average by 56 & 23%; they found it increases
with wavelength from 12% in the UV to almost 90% in the SWIR. We see the same pattern in Table 2, but at
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Figure 1. Spectral reflectance of dry virgin (a) unrolled Polypropylene (PP) ropes, a Low-density polyethylene
(PE-LD) cup (b) Polyethylene terephthalate (PET) water bottles and a Polyester (PEST) rope. Absorption

features are highlighted by the vertical yellow lines.

Polymer

Type of plastic

Main spectral absorption features

Polyethylene terephthalate (PET)

Water bottle

1130 and 1660 nm

Polypropylene (PP) Rope 1192, 1394, 1730 nm
Polyester (PEST) Rope 1130, 1413, 1660 nm
Low-density polyethylene (PE-LD) | Cup 1192, 1394, 1730 nm

Table 1. Main absorption features of different polymers.

the same time the signal reduction is very different per sample; for instance, at 2200 nm, it’s 75.33% for orange
placemat while it is 16.91% for an orange rope. The capacity to absorb moisture from the environment (moisture
absorption) is different per polymer, which is one of the reasons for observing various reduction percentages®.
Moreover, non-uniformity of plastic targets combined with possible different footprints between dry and wet
measurement might explain variation observed between the same type of material.

Wettening also changes slightly the shape of the plastic reflectance spectrum, particular in areas with strong
increases or decreases in the pure water absorption coefficient. For a blue placemat in Fig. 3a, the feature at 1395
nm in dry condition shifts to 1440 nm in a wet condition due to the water absorption. Two other features around
1213 nm and 1727 nm are still the same in the wet and dry condition because the first derivative of the water
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Figure 2. Spectral reflectance of dry natural and anthropogenic materials harvested in the Port of Antwerp in
2019.

absorption spectrum is near to zero at these wavelengths. Moreover, decrease of reflectance in wet condition
comparing to dry is different for samples and can be sharp like the plastic bag in Fig. 3b.

To evaluate how the presence of suspended sediments in the water and the presence of whitecaps complicate
the identification of marine plastic litter, measured and modelled spectra were used. Turbid water reflectance
spectra from the SeaSWIR database® and a whitecap spectrum?®” in Fig. 4 was added next to wet plastics and
wood spectra. In the VIS wavelength range, several plastics can be discriminated based on their color from the
water. This is the case for e.g. the white transparent plastic bags and plastic bottles (Fig. 4a), which are often found
in these waters. Moreover, as can be seen in Fig. 4b, orange-brownish plastics, will be difficult to discriminate
from the turbid water in VIS, while a blue rope can be distinguished easily at this range. Although transpar-
ent plastic bags can be differentiated from the water itself, they seem almost impossible to discriminate from
whitecaps.This means we cannot only look at the spectral information but need information on the geometric
shape to distinguish.

Around 1070 nm, all plastics have a significantly higher reflectance than the water, and color is not important
anymore. However, we will show later on that this is not true when the plastics are submerged. The reflectance
of whitecaps and water was close to zero beyond 1400 nm. We have already seen before that solid plastics like
a tube have a high SWIR reflectance which offers an opportunity for discrimination of these types of plastics at
this wavelength range. Wood, with its brownish color is difficult to discriminate from the water and the brown-
ish plastics in the VIS, but will be easy to distinguish from bags and bottles in the SWIR. Discriminating wood
from solid plastics in the SWIR might be possible based on the absorption features at 1729 nm where wood does
not have any feature (Fig. 4b). Finally, when selecting appropriate wavelengths for plastic identification from a
remote sensor, the atmospheric transmittance should be taken into account which is highlighted by yellow where
transmission is high. Clearly, wavelengths in the VIS, around 1070 nm, NIR around 1214 nm and in the SWIR
around 1659 and 1729 nm are suitable.

Submerged plastics. Figure 5 shows spectral reflectance of the orange rope when submerged in clear water
at different depths and various TSM concentration. The selected SeaSWIR* spectra have a TSM concentration
similar to the TSM concentration in the tank. For instance, in the Fig. 5b a SeaSWIR spectrum with a TSM
concentration of 74.44 mg/1 was used, while for Fig. 5¢ a spectrum with a TSM concentration of 300.69 mg/l was
used, which were the closest one to TSM concentration in the tank. In Fig. 5a it can be seen that with the slightest
submersion of 2 cm all reflectance beyond 1100 nm is absorbed by the water, confirming plastics are almost only
detectable at VNIR at this depth. The peak at 1070 nm disappears first when plastics are submerged more than
5 cm. As depth increases, the NIR signature weakens as well, which is even more pronounced severe with more
sediment in the tank. Looking at Fig. 5¢, the orange rope cannot be discriminated from the turbid water (with a
TSM concentration of 321 mg/l) when submerged more than 5 cm. Ata TSM concentration of 75 mg/l, the water
itself has a similar reflectance than an orange rope submerged at 16 cm (Fig. 5b).

Finally, Fig. 5d presents the spectra of the orange placemat submerged in water with a TSM concentration
of 75 and 321 mg/l at 640,860 and 1070 nm. These wavelengths were chosen because they correspond with very
different values of the pure water absorption coeflicient (respectively 0.3, 4.5 and 14.1 m™!). Clearly reflectance
decreases fastest with depth at 1070 nm because of the highest pure water absorption coefficient. The effect of

the TSM concentration is however much less at 1070 nm. The effect of the TSM concentration is largest for the
red wavelength at 640 nm.
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Figure 3. Absorption coefficient of pure water®>*
and wet plastic bag.
Wavelength (nm) | Orange placemat | Blue placemat | Blue rope | White rope | Orange rope
931 18.41 6.09 2.98 5.34 -3.87
1215 33.65 13.01 10.85 12.37 523
1732 63.08 35.45 12.65 6.39 9.02
2200 75.33 51.05 23.17 12.83 16.91

and spectral reflectance of (a) dry and wet placemats (b) dry

Table 2. Relative percentage loss in spectral reflectance, from dry to wet, placemats and ropes.

Evaluation of plastic detection indices.

The dataset of dry, wet and submerged spectral measurements
can be used to test plastic detection algorithms. Here we test an algorithm for finding plastic patches from
Biermann et al.*® which is based on the Normalized Difference Vegetation Index (NDVI) and Floating Debris
Index (FDI). Figure 6 shows scatterplots of the NDVI versus the FDI for different plastic types in wet, dry and
submerged conditions. Reported ranges for plastic and wood from Biermann et al.*® are added as a reference in
yellow and orange boxes. In Fig. 6a indices for the wood sample are within Biermann’s timber range for NDVI
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Figure 4. Spectral reflectance of natural and anthropogenic materials (a) whitecaps modelled after”’, SeaSWIR
measurements of Total Suspended Matter®®, wet plastic bag and water bottle (b) wood, orange tube and wet blue
rope. The vertical line indicate major absorption features.

and FDI. The plastic samples, however, show much more diversity compared to their results. The water spectra in
Fig. 6b have different TSM concentration which is the reason for having several points for water. When sediment
concentration is increasing, NDVT of the water spectrum is increasing as well and it is shifting to right in the
graph. As can be seen in Fig. 6¢, even by slightly submerging of a plastic sample, the FDI decreases significantly
and goes towards zero which makes that the indices are different than proposed in Bierman et al.*.

Highest NDVI and FDI can be seen for blue plastics in both dry and wet conditions. Considering other colors
in Fig. 6b, the same pattern as the visible light spectrum can be seen where red and yellow samples have low
NDVTI and FDI, while green samples have a higher NDVI and FDI. This is due to the NDVI formula, as it just uses
the NIR and red band ; therefore it can be affected by the color of samples. Figure 7 shows the spectrum of the
placemats with different colors with same size and shape in dry condition highlighting red and NIR wavelengths.

The relationship between the NIR and Red band has a direct impact on the NDVI. As can be seen from Fig. 7,
the blue placemat has minimum reflection amongst the different colors while it has high NIR reflectance. This is
the reason why we see highest NDVI for blue and green samples in Fig. 6b. Although FDI uses different bands,
the same explanation holds, where blue samples have the highest FDI. These results show, that plastic reflectance
is much more diverse than presented in Biermann et al.*. Different types of plastics have different values for the
indices, but also immersion and wettening has a profound effect. For their specific cases, the proposed NDVI/
FDI index might work, but it seems the performance highly depends on the types of plastics, and concentration
of suspended sediments.
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Figure 5. Above water reflectance when submerging an orange rope at different depths in the tank in three
conditions: (a) without sediment, (b) TSM concentration of 75 mg/l and (c) TSM concentration of 321 mg/L
A SeaSWIR water spectrum with similar TSM concentration is added. (d) Above water reflectance at specific
wavelengths for an orange placemat at different depths.
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Figure 7. Spectral reflectance of dry virgin placemats in different colors.
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Discussion

The spectral reflectance (350-2500 nm) of plastic samples was studied in wet and dry condition, with the sam-
ples submerged in water at different depths and with different TSM concentrations. Whitecaps and wood, often
found floating on the water surface and mixed with the plastics, have been considered as well. This information
is essential for designing a new sensor or selecting an existing one to detect plastics and discriminate plastics
from surface features and turbid water plumes. Furthermore, total atmospheric transmittance should be taken
into account and wavelengths should be selected outside the strong atmospheric absorption regions. In general,
the study confirmed some conclusions from several earlier publications but also found differences. Several
absorption features are found in the SWIR region, as in the literature, but the exact position of the features can
be slightly different. For instance, Garaba and Dierssen'!, mentioned features centered at 931, 1215, 1417 and
1732 nm whereas we have found them centered often at 1192, 1413, 1730 nm. The small shifts in the wavelength
should be examined further. Possible explanations could be the specific type of plastic with coatings and addi-
tives or the lab conditions.

Taking into account atmospheric transmittance, absorption features around 1192-1215, 1660 nm and 1730
nm seem most suitable for polymer discrimination. The feature around 1730 nm can serve also for separating
plastics from wood. Wood with its brownish color is difficult to discriminate from the water and the brownish
plastics in the VIS, but could be distinguished from plastics in the SWIR based on the absorption features at 1729
nm where wood does not have any feature. Marine harvested samples from the port of Antwerp show that the
features can be less pronounced in real weathered conditions. Spectral information in the SWIR region is valuable
for solid plastics such as the orange tube, but very thin and transparent plastic bags will be hard to identify. The
degree of weathering and bio-fouling and their impact on the spectral reflectance should be investigated further.
Although no characteristic plastic absorption features are present in the VNIR, this spectral region should also
be considered and might aid in the identification of marine plastic litter. In the visible part of the spectrum,
colored plastics can be confused with the water itself. Brownish plastics will be difficult to discriminate from
a turbid plume, blue plastics will be more difficult to discriminate in clear oceanic waters. The visible spectral
region might still be useful to discriminate plastics with a different color than the water and to discriminate
colored plastics from white caps, even when submerged; for instance, in case of an orange placemat it can be
differentiated till a submersion of 16 cm.

In the NIR, from 850 to 900 nm we did not observe a very prominent effect of the color and plastic reflectance
is generally higher than clear and turbid water reflectance, because pure water absorption is increasing. Moreover,
slightly submerged plastics can be detected at this range as well, in the case of an orange placemat, 5 to 10 cm
depending on the TSM concentration. 1070 nm is the best wavelength to discriminate plastics from extremely
turbid water and also detecting submerged plastics less than 5 cm. Still, white caps, when present, complicate
the retrieval of plastics in this spectral range. Floating macro algae and aquatic vegetation were not considered
in this study but both might influence the reflectance at 1070 nm. Saturated macro algae have shown to have a
reflectance peak around 1070 nm?, similar than turbid water. However, floating plastics will probably exhibit
a higher absolute reflectance in this wavelength region. Aquatic vegetation might become more complicated to
discriminate from the plastics in this region because of its high NIR reflectance plateau.

Spectral information in the SWIR region is valuable for solid plastics such as the orange tube, but plastic bags
will be hard to identify. Several spectral regions can be exploited: maximum reflectance and specific absorption
features related to the polymer type'®~*2. Considering atmospheric transmittance factor, 1280-1300 nm and
1550-1600 nm are the wavelength ranges allowing maximum reflectance through the atmosphere.

Absorption features are another criteria for developing new sensor for plastic detection, 1660 nm is suitable
for polymer discrimination while 1730 nm is great for separating plastics from wood and polymers. For instance,
wood with its brownish color is difficult to discriminate from the water and the brownish plastics in the VIS,
but will be easy to distinguish from bags and bottles in the SWIR. Discriminating wood from solid plastics in
the SWIR might be possible based on the absorption features at 1729 nm where wood does not have any feature.

Indeed, VIS, 1070, 1192-1215, 1660 and 1730 nm are most usable wavelengths for marine plastic detection;
For the design of a new sensor, wavelengths can be selected on the position of the absorption feature and outside
the absorption feature, at the maximum reflectance. The proposed wavelengths are also challenging from a tech-
nological point of view. The 1070 and 1730 nm wavelengths are at the limits or outside the spectral responsivity of
standard indium gallium arsenide photodiodes (InGaAs) and silicon based detectors. A combination of different
detectors or extending current detectors spectral responsivity will be needed.

The proposed wavelengths might not solve some issues identified in this study. It has been shown that white-
caps can complicate the spectral identification of several types of plastics. Mainly white, transparent plastics
such as plastic bags will be easily mistaken for a whitecap. In this case, additional information on the shape and
size of the plastics is needed.

Considering recent advances using Sentinel-2 data which were evaluated in the laboratory (see “Results” sec-
tion), we believe conclusions from satellite data in previous studies are not easily transferable to other locations
because of the variety in type and color of plastics, the differences resulting from immersion, wetness and from
the different properties of the water itself.

All in all, object detection in visible bands and spectral detection in SWIR bands at the same time will
be a comprehensive approach to detect macro-plastics in marine environment. A combination of RGB and
SWIR spectral data can be assimilated into customized object based detection as well as AI algorithms which
showed promising results in the detection, classification and quantification of floating and washed ashore marine
litter®*-#1. Descriptors related to shape, color, size and form of plastic litter can be derived from RGB data whilst
SWIR provides further information related to polymer type.
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Figure 8. Experimental setup. (a) Water tank with the electrical mixer attached to an aluminium frame, (b)
schematic of a custom-made aluminium frame with an adjustable arm for varying depth of sample below water
surface with two light source attached above the water surface. (c) Set-up of the tank covered with black cloth.

Methods

Laboratory and tank set-up. Spectral reflectance of the plastic targets was measured with an Analytical
Spectral Devices (ASD) FieldSpec 4*? from the ultraviolet (UV, 350 nm) to shortwave infrared (SWIR, 2500
nm). The VNIR spectrometer has a spectral resolution of approximately 3 nm at around 700 nm. The spectral
resolution in the SWIR varies between 10 and 12 nm. The reflectance R is defined as L/Ed with L the upwelling
radiance and Ed the downwelling irradiance. A Labsphere Spectralon 99% diffuse was used for white referencing
to derive relative reflectance measurements from the ASD. A foreoptic with an 8° field-of-view was attached to
the optical fibre detector end of the ASD. Each measurement consisted of 30 scans and 5 replicate measurements
were taken for each target.

Spectral reflectance measurements were performed in an optical calibration laboratory at VITO, Belgium
and water tank at Flanders Hydraulics facility in Antwerp. The water tank of diameter 2 m and depth 3 m had
a propeller attached allowing near homogeneous distribution of sediments (Fig. 8). A set of two halogen lamps
(12V 50W GY?9.5, Original Gilway L9389) were used to provide artificial lighting simulating sunlight. A tailor-
made aluminum frame was attached to the water tank for the attachment of the spectroradiometer detector,
lights and samples (Fig. 8b). The frame was also painted black so that it would not contribute to the bulk spectral
signal expected from only the plastic targets. It also consisted of an adjustable arm with a holder for the targets
marked had predetermined depth markings. A black cloth was used to create a dark surrounding over the water
tank to mitigate stray light from the laboratory surfaces.

An additional splice correction? was applied to the data. This correction has been applied to remove jumps
in the spectra due to overlaps by different detectors at 1000 and 1800 nm. The difference between 1000 and 1001
nm was used to correct the VNIR data (350-1000 nm), whilst the difference at 1800 and 1801 nm was used to
correct the SWIR-2 spectra (1800-2500 nm)>*.

In this study we wanted to simulate different conditions of water turbidity by taking spectral measurements
of the plastics in waters with low/none, moderate and high TSM concentration. To achieve these concentrations
of moderate and high TSM, we used clay sediments gathered from a tidal Deurganckdok in the Belgian harbor
of Antwerp. These clay sediments had a median particle size D50 of 11 & 0.3% pum which ranged between D10
of 2 um and D90 of 51 wm. After measurements at low concentration (5.3 & 1.7% mg/l), a small amount was
added to the water tank to obtain a moderate amount (75 & 4% mg/1) and then a final addition was done to reach
the high level (321 £ 6% mg/1)*.

Plastic specimen. Optical properties were measured on a set of harvested/weathered and virgin plastics.
We gathered weathered litter from the port of Antwerp consisting of plastic bottles, plastics bags, plastic pellets,
rope and wood. The virgin plastics included a black plastic waste bag, plastic bottles (PET), polyester ropes,
placemats and ropes (PP, PE) in different colors. Knaeps et al.** explains the data set** in more details like includ-
ing picture of each sample, selection of samples for the tank experiment based on statistical analysis for all 47
hyperspectral reflectance measurements. The plastic specimen investigated were described* using the widely
accepted recommendations (GESAMP, 2019)*. Polymer type identified by looking at the label imprinted at the
side or bottom of the object. Additional descriptor like the apparent colour, shape, age and form of the plastics
were determined by visual inspection. We classified the age based on the samples having been collected in the
natural environment (weathered) or recently purchased for the experiments (virgin).

Indexes driven from Sentinel-2. Recently, Biermann et al.*® highlighted the use of Sentinel-2 for marine
plastic detection through the Normalized Difference Vegetation Index (NDVI) and Floating Debris Index (FDI).
Through applying of these indexes, floating plastic aggregations in 4 different case studies at subpixel level were
detected with 86 percent accuracy. They monitored an NDVI range from 0 to 0.2 and an FDI range from 0.02 to
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0.06 for plastics and used it as main criteria for classification. Here we show the use of the marine plastics data-
base to test the algorithm. To reach this aim, first we resampled our data to Sentinel-2 to make 12 Multi Spectral
Instrument (MSI) bands through spectral responses of Sentinel-2 MSI*® and then we calculated NDVI and FDI
as represented in Biermann et al.*®.

Whitecap spectrum and turbid water spectrum. Breaking waves generate turbulence and entrain air
at the surface, forming clouds of bubbles beneath and foamy patches on the sea surface called whitecaps®.
Whitecaps may alter the spectral reflectance in a similar way as marine plastic litter does. They may act as false
positives when trying to detect marine plastic litter from satellites, drones or fixed camera. Hence, when select-
ing appropriate wavelength and designing algorithms for marine plastic litter detection, it is very important to
evaluate the spectral reflectance of whitecaps. Therefore, whitecap spectra have to be considered next to the
plastic responses. A third order polynomial has been used to generate whitecap spectrum?”:

Rf = 0.47x> — 1.62x* + 8.66x + 31.81, (1)

where x = log(a,y) and a,,(m~!) is absorption coefficient of water. The effect of water turbidity on the spectral
reflectance is also taken into account because turbidity plumes might be misinterpreted for marine plastic litter
patches. Algae and aquatic vegetation were not evaluated in this study because the focus of the research was on
sediment dominated waters, however, both may have an impact on the retrieval. The SeaSWIR dataset®, consist-
ing of 97 water reflectance and TSM measurements at three estuarine sites (Gironde, La Plata, Scheldt) was used
as water dataset. Moreover, pure water absorption coeflicient®*** and total one way atmospheric transmittance
simulated using Modtran radiative transfer code*® for a platform height of 800 km, a nadir view, a visibility of
17 km, a water vapour content of 2.5 m~!and a rural aerosol.

Data availability
For reproducibility and also using measurements as a reference, all data in this research are published in an open
access format in 4TU. ResearchData*.
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