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ABSTRACT Stenotrophomonas maltophilia is an opportunistic Gram-negative bacterium
capable of causing respiratory infections. S. maltophilia siphophage Silvanus was iso-
lated, and its 45,678-bp genome is not closely related to known phages based on
whole-genome comparative genomics analysis. It is predicted to use cos-type packaging
due to the similarity of its large terminase subunit to that of phage HK97.

S tenotrophomonas maltophilia is an emerging Gram-negative, multidrug-resistant
pathogen most associated with respiratory infections in humans (1). With a goal of

using phage as potential control for this pathogen, we report here the isolation and
genome annotation of Silvanus, a siphophage targeting S. maltophilia.

Phage Silvanus was isolated from a soil sample collected from a horse pasture in College
Station, TX (GPS coordinates 30°33904.40N, 96°18944.00W), in January 2019. Silvanus was iso-
lated and propagated with the soft-agar overlay methods described previously (2) using an
S. maltophilia strain (ATCC 51331) grown aerobically at 30°C in nutrient broth or agar (BD).
Samples were negatively stained with 2% (wt/vol) uranyl acetate and imaged by transmis-
sion electron microscopy (TEM) at the Texas A&M Microscopy and Imaging Center (3). DNA
was purified using a Promega Wizard DNA cleanup system as described (4), and the libraries
were prepared using a Swift 2S Turbo library preparation kit and sequenced on an Illumina
MiSeq machine with paired-end 150-bp reads and V2 300-cycle chemistry. The sequence
reads were quality controlled with FastQC (www.bioinformatics.babraham.ac.uk/projects/
fastqc) and trimmed with FASTX-Toolkit v0.11.6 (http://hannonlab.cshl.edu/fastx_toolkit/).
Genomes were assembled from 85,453 trimmed reads with SPAdes v3.5.0 (5), and a contig
with 138-fold sequencing coverage was obtained. The genome was closed by PCR and
Sanger sequencing using forward primer 59-CATCGTGTGTGGGCGAAATC-39 and reverse
primer 59-TGAACCCCTGAGTTTCGTGG-39. PhageTerm was used to predict phage termini
from raw sequencing reads (6). The genome was assembled and annotated with the CPT
Galaxy-Apollo phage annotation platform (https://cpt.tamu.edu/galaxy-pub) (7–9). Gene call-
ing was conducted with GLIMMER v3 and MetaGeneAnnotator v1.0 (10, 11). tRNAs were
detected with ARAGORN v2.36 and tRNAscan-SE v2.0 (12, 13). Gene function predictions
were determined using InterProScan v5.48 (14) and BLAST v2.9.0 (15) against the NCBI non-
redundant (nr) and Swiss-Prot databases (16), TMHMM v2.0 (17), HHPred, LipoP v1.0, and
SignalP v5.0 (18–20). The genome-wide DNA sequence similarity to the top BLAST nucleo-
tide hits was calculated with progressiveMauve v2.4 (21). All analyses were conducted at
default settings.

Phage Silvanus has a siphophage morphology (Fig. 1). The 45,678-bp genome has a
coding density of 97.4% and a G1C content of 58.4%. No tRNA genes were identified,
and 26 out of 68 total genes were assigned putative functions, including a complete
lysis cassette with genes encoding an endolysin of the glycosyl hydrolase class, a holin
with three transmembrane domains and N-out, C-in topology (class I), and two-compo-
nent spanins. Silvanus is predicted to use cos-type packaging because it encodes a
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large terminase subunit similar to that of the well-characterized cos phage HK97 (21%
protein identity; E value, 1028; 100% HHpred probability) and also encodes an HNH en-
donuclease similar to that of HK97 gp74 (40% protein identity; E value, 10221) at the
opposite end of the genome, which is required for the 39 cos cleavage (22). Moreover,
according to HHPred, the predicted small terminase has a 99.5% probability match to
the structure of the Pseudomonas phage PaP3 small terminase, which generates cohe-
sive ends (23). The precise location of phage Silvanus cos sites, however, cannot be
determined by PhageTerm analysis. Whole-genome comparative genomics analysis by
progressiveMauve v2.4 (21) revealed that Silvanus has ,7% overall nucleotide identity
to known phages. Silvanus was found to carry a T1 p38-like tail tape measure protein.

Data availability. The Silvanus genome was deposited in GenBank with accession
number MZ326867. The associated BioProject, SRA, and BioSample accession numbers
are PRJNA222858, SRR14095258, and SAMN18509682, respectively.
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