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Impedance spectroscopy is a powerful characterization method
to evaluate the performance of electrochemical systems.
However, overlapping signals in the resulting impedance
spectra oftentimes cause misinterpretation of the data. The
distribution of relaxation times (DRT) method overcomes this
problem by transferring the impedance data from the fre-
quency domain into the time domain, which yields DRT spectra
with an increased resolution. Unfortunately, the determination
of the DRT is an ill-posed problem, and appropriate mathemat-
ical regularizations become inevitable to find suitable solutions.

The Tikhonov algorithm is a widespread method for computing
DRT data, but it leads to unlikely spectra due to necessary
boundaries. Therefore, we introduce the application of three
alternative algorithms (Gold, Richardson Lucy, Sparse Spike) for
the determination of stable DRT solutions and compare their
performances. As the promising Sparse Spike deconvolution
has a limited scope when using one single regularization
parameter, we furthermore replaced the scalar regularization
parameter with a vector. The resulting method is able to
calculate well-resolved DRT spectra.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is essential for
analyzing a variety of electrochemical systems. EIS can be used
for the investigation of reaction mechanisms,[1,2] fuel cells,[3,4]

microbial fuel cells,[5–7] batteries,[8–10] corrosion processes,[11,12]

and other systems.[13,14] Being fast, cost-effective, and non-
invasive, EIS is an advantageous technique.

In general, an impedance experiment is performed within a
broad user-chosen frequency range. Therefore, the measured
impedance spectrum reflects a combination of various over-
lapping physical-chemical effects which determine the electro-
chemical behavior of the investigated system. The challenge of
an EIS analysis is now to interpret the obtained impedance
spectrum correctly. A common approach to evaluate exper-
imental impedance spectra is to approximate the investigated
system by electrical equivalent circuits (EC) as fitting models.
The equivalent circuits generally contain passive electrical
components like resistors, capacitors, inductors, and Warburg
impedances and should represent the studied electrochemical
systems as well as possible. After mathematically fitting the
impedance behavior of the equivalent circuits to the exper-
imental impedance spectra, these models can be used to

estimate the parameters of the electrochemical system like the
resistance of charge transfer processes.[15] However, often
various ECs can be used to describe and fit a specific impedance
spectrum, which can make impedance studies ambiguous and
elaborate.[2]

In this work, we assume that a preprocessing of a certain
impedance spectrum may eliminate any inductive and diffusive
impedance behavior (the latter can be described by Warburg
impedances).[16,17] The remaining spectrum can then solely be
described and fitted using RC-circuits (parallel connection of a
resistor and a capacitor) connected in series. Herein the RC-
circuits represent polarization processes (e.g., charge transfer
processes). This way, the simplified impedance Z can be
represented as,

Z ¼ ZRC;1 þ ZRC;2 þ ZRC;3 þ :::þ ZRC;N (1)

and the impedance of each RC-circuit ZRC,i is calculable by

ZRC;i ¼
Ri

1þ jRiCiw
¼

Ri
1þ jtiw

: (2)

Ri is the resistance, and Ci is the capacitance of the respective
RC-circuits. ω is the angular frequency of the alternating
excitation signal (electrical current or voltage), τi is the time
constant of the individual RC-circuits, and j is the imaginary
unit.

Commonly, the impedance behavior of electrochemical
systems cannot be entirely described by ideal passive elements.
Because of uneven and porous electrode surfaces or other
inhomogeneities, the electrochemical double layer formation
does not correspond to the charging of an ideal capacitor.[18]

Therefore, the capacitor is replaced by a Constant-Phase-
Element (CPE), and the RC-element is replaced by the ZARC-
element. The impedance of the ZARC-element is then given
by,[15,19]
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ZARC;i ¼
Ri

1þ ðjtiwÞPi
: (3)

Pi is an exponential parameter that describes the deviation of
the CPE from an ideal capacitor. Given that 0 � P � 1.
Accordingly, the CPE has a phase angle of � Pi

p

2.
[18,20] The time

constant τi is now given by,

ti ¼ Qi �
ffiffiffiffi
Ri

Pi
p

(4)

where Qi has no clear physical meaning for P6¼1.[21] For P ¼ 1
the CPE corresponds to a capacitor. In this paper, the parameter
Q will be called the CPE coefficient.

For a user-chosen number N of ZARC-elements (each
representing an electrochemical polarization process), the
experimental impedance data can be fitted and analyzed using
various methods.[22–24] Here, the standard method is an CNLS
(complex non-linear regression least-squares) fitting. Al-Ali et al.
show in [24] an interesting alternative approach to quantify
impedance data. However, the challenging problem is that
many polarization processes occur in overlapping frequency
domains.[25] Hence, a reasonable estimation of N can become
complicated. A wrong number N oftentimes still reproduces the
qualitative shape of the experimental impedance spectrum but
leads to miserable fitting values for the determined parameters
of the ZARC-elements. For a better estimation of N, the
frequency-dependent impedance spectrum can be transferred
into a non-negative time-dependent distribution function, the
so-called distribution of relaxation times (DRT). Like every
probability distribution or density function, the DRT is non-
complex and positive. The DRT-method was introduced by
Schweidler.[26]

It holds that

Z wð Þ ¼

Z ∞

� ∞

g ln tð Þð Þ

1þ jwt
d ln tð Þ; (5)

which corresponds to a Fredholm integral equation.[27] Here,
g ln tð Þð Þ is a positive spectrum with

Z ∞

� ∞
g ln tð Þð Þd ln tð Þ ¼

XN

i

Ri: (6)

Ri are the resistances of the individual ZARC-elements. For a
known model for Z (number N of ZARC-elements and all
parameters of the passive elements are given) the equation 5 is
analytically solvable.[28] The corresponding DRT spectrum for a
single ZARC-element is given by,[16,19]

g ln tð Þð Þ ¼
R
2p

sin Ppð Þ

cosh P ln t0ð Þ � ln tð Þð Þð Þ þ cos Ppð Þ
; (7)

τ0 is the time constant of the ZARC-element and can be
calculated with the resistance R, the CPE coefficient Q and the
exponent P using equation 4. The equation 7 looks similar to a
normal distribution and has a maximum for t ¼ t0. Accordingly,

the DRT spectrum of an impedance spectrum, which is based
on multiple ZARC-elements, contains multiple peaks. In the DRT
spectrum, each peak represents one ZARC-element.

The DRT spectrum has a higher resolution than the
corresponding impedance spectrum, and hence it is suitable to
find the optimal number of ZARC-elements within the EC.[29]

Determining the DRT from experimental impedance data,
however, requires the solution of an ill-posed problem. Ill-posed
problems have infinite possible solutions and hence require
special mathematical treatments like regularizations to prevent
overfitting. The direct analytical DRT solution for experimental
impedance data is prone to instabilities like too many peaks or
oscillations in the resulting DRT spectrum.[30] The ill-posed
problem of the DRT method is commonly solved by operating a
Fourier transformation[31,32] or by using a Tikhonov
regularization.[33] Nevertheless, it could be shown, that it is
impossible to get the true DRT by utilizing a Fourier
transformation.[32] The Tikhonov regularization, in turn, has the
disadvantage that the solution includes positive and negative
values if no boundaries are chosen. Boundaries, on the other
hand, yield a poor DRT resolution or too many peaks. The usage
of alternative regularizations could overcome the problems
accompanied by the Tikhonov method. Here, the Gold and the
Richardson-Lucy deconvolution are promising, as they do not
need boundaries under specific conditions.[34,35] The Sparse
Spike deconvolution is less popular but has the advantage that
the calculated DRT is directly presentable as a sum of ZARC-
elements. Thus, we compare the often used Tikhonov approach
with the beforehand mentioned regularizations in this work.
Here, the various algorithms are applied to different impedance
simulations to compare their performance. Besides, we present
a novel method based on the Sparse Spike deconvolution,
where we replaced the regularization parameter with a
regularization vector for calculating an almost perfect DRT.

The scope of this work is to shortly introduce all algorithms,
and to show that besides the Tikhonov regularization alter-
natives exist, which may achieve better results for DRT
investigations. The details of the algorithms studied in this work
can be found in the references given for each algorithm,
respectively. After introducing the various algorithms (cf.
section 2), the different approaches will be benchmarked
according to their accuracy to describe DRT spectra from
experimental impedance data (cf. section 3.2). For this purpose,
simulated EIS data are used because for the synthetic data we
can obtain the theoretical DRT solution. This allows a
straightforward comparison of the DRT solutions determined
with the different algorithms with the theoretically optimal DRT
spectrum. The studied impedance test data and the utilized
criteria to rate the performance of each algorithm are
introduced in section 3.1. Eventually, the promising Sparse
Spike Deconvolution was revised to yield more accurate DRT
results. The respective discussion can be found in section 3.3.
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2. Theory

2.1. The Ill-Posed Problem

The calculation of the DRT with equation 5 from experimental
impedance data is an ill-posed problem. Accordingly, slight
measurement errors in Z have a large influence on the resulting
DRT. Erroneous impedance data can lead to additional peaks in
the DRT, for example. This effect can be prevented by operating
regularizations.

By using matrix notation, the equation 5 can be transposed
into the following form:[36]

Z ¼ Ax; (8)

herein the impedance Z and the Toeplitz matrix A are complex.
The DRT x, on the other hand, is a positive non-complex vector.
Therefore, this equation can be divided into

Z0 ¼ A0x; (9)

and

Z0 0 ¼ A0 0x; (10)

where Z0 is the real and Z0 0 is the imaginary part of A. can be
computed according to the works of Wan et al. and Gavrilyuk
et al.[36,37] The DRT x can be calculated with equations 9 and 10.
As both these equations represent ill-posed problems, regulari-
zations are needed.

Most regularizations use a scaling parameter (i. e., regulariza-
tion parameter) that prevents overfitting. This parameter can
smooth the results, reduce the norm of the results, or cause an
early stopping for iterative algorithms, for instance. However,
the regularization parameter needs to be prechosen by the
user. Validation methods can help to find an optimal parameter
value.[38] In this context, optimal means that the regularized
solution describes the problem as accurately as possible and
that the results are neither overfitted nor underfitted. In this
work, we use a validation method introduced by Saccoccio
et al.[39] The Re� Im cross-validation (RICV) starts with calculating
the DRT from the real impedance part x1 (or from the imaginary
impedance part x2, respectively). In the following step, the
resulting DRT spectrum is used to recalculate impedance
information in the frequency domain using equations 9 and 10.
The recalculated imaginary impedance (or the real part,
respectively) is then compared to the imaginary part (or the real
part, respectively) of the pristine experimental impedance Zsim.

RICV ¼ Z0sim � A0x2

�
�

�
�

2þ Z0 0sim � A0 0x1

�
�

�
�

2 (11)

In the results of this paper, we will present the norm of the
imaginary part and the norm of the real part separately.

For the general treatment of the algorithms, we use an ill-
posed problem of the generalized form,

Z ¼ A � x: (12)

2.2. Tikhonov Regularization

The Tikhonov regularization is a common approach for
computing the DRT. The fundamental equation is given by,[40]

min
x�0

Z � A � xj jj2 þ lj j L � xj jj2ð Þ: (13)

The first term resembles a linear least-squares approach. For
ill-posed problems, this term alone would strongly overfit the
data. The second term is a penalty term, which prevents
overfitting. Here λ is the regularization parameter that scales
this term. L is an identity matrix, the first or the second
numerical derivative operator.[40] Many works used this algo-
rithm for the calculation of the DRT,[41–43] and several
approaches were developed to calculate the optimal
λ.[30,37,38,41,44] This regularization leads to a DRT with positive and
negative values, but the DRT must be positive as explained
above. Therefore, constraints are essential to eliminate the
negative values to get suitable spectra.[45] Unfortunately,
constraints can also deteriorate the results. This problem will be
discussed in chapter 4. The Tikhonov regularization and its
impact on the solution are well documented in [46].

2.3. Gold Deconvolution

The Gold deconvolution is an extension of the Van-Cittert
deconvolution introduced in [35]. The Gold deconvolution is a
non-negative iterative method for regularizing ill-posed prob-
lems. The Van Cittert iteration is given by,[47,48]

xkþ1 ¼ xk þ m � ATAATð ÞZ � Hxk
� �

; (14)

with

H ¼ ATAATAð Þ: (15)

Here, μ is a relaxation factor. In the Gold deconvolution, the
relaxation factor is given by [45] as

mi ¼
xkiP

mðHi;mÞxkm
: (16)

Hence, the Gold iteration is described as

xkþ1i ¼ xki
ATi AA

T
� �

Z
P

mðHi;mÞxkm
: (17)

If the spectrum f and the impulse response function A own
the same sign, the result x is always positive. Accordingly, this
method does not need constraints and is very suitable for
deconvolution in spectroscopic methods.[45,49] The Gold decon-
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volution is an iterative algorithm, and thus, the results are
underfitted for too small iteration numbers, and for too high
iteration numbers, the results are overfitted. Hence, this method
is regularized by an early stopping of the algorithm. Here, the
regularization parameter is the iteration maximum.

2.4. Richardson Lucy Algorithm

The Richardson Lucy (RL) deconvolution resembles the Gold
deconvolution. In addition, the Richardson Lucy deconvolution
requires a point spread function (PSF),[50] which often corre-
sponds to the convolution matrix of the problem and has a
matrix norm of 1. The RL deconvolution is often used for image
deblurring, where the PSF corresponds to the kernel of the
image.[48,51] For calculating the DRT, the PSF is given by,

P ¼
� Aim
j Aimj jj2

: (18)

The iteration is given by,[48,52]

xkþ1i ¼ xki �
X

n

Pn;i �
ZnP

jðAn;jÞxkj
: (19)

As for the Gold iteration, the result x is always positive, and
the algorithm does not need any constraints. By comparing the
equation of the RL deconvolution and the Gold iteration, it can
be seen that the fraction of the Gold iteration is expanded by
multiple matrices of A. In section 3.2, we will show that this
expansion leads to a higher needed iteration number for the
Gold algorithm. For more details, further works can be
recommended that also compare and analyze results of the RL
and the Gold deconvolution (e.g. [48,53]).

2.5. Sparse Spike Deconvolution

The Sparse Spike deconvolution (SSD) is a method, which is
popular in seismology.[50,54–57] In our case, the assumption is
made that the DRT spectrum x is composed of a certain number
of sparse peaks cm, which all own the same impulse function G:

xi ¼
XM

m

Gi;m Pð Þcm ¼ Gi Pð Þ � c: (20)

This equation leads to the following minimization,

min
c�0
ðj Z � A � G Pð Þ � cj jj2Þ; (21)

where P is the regularization parameter and determines the
width of the impulse function G. The constraint c � 0 is
essential to get a suitable spectrum. In seismology, a constant
source impulse function is well known but the experimental
data are highly erroneous. Therefore, an additional Lasso
regularization is often used to prevent overfitting.[54] In our case,

unlike in seismology, an additional regularization should not be
necessary because the experimental data are assumed to be
only slightly erroneous. The DRT spectrum is expected to be
composed of many ZARC-elements. Hence, we use the optimal
DRT function for a ZARC-element (see equation 7) as the
impulse function. Accordingly, for a spectrum consisting of m
time constants, the impulse function for the time constant τi is
represented by

gi;m Pð Þ ¼
1
2p

sin Ppð Þ

cosh P ln tið Þ � ln tmð Þð Þð Þ þ cos Ppð Þ
: (22)

Subsequently, every column is normalized by

Gi;m Pð Þ ¼
gi;m Pð Þ

P
iðgi;m Pð ÞÞ

: (23)

If the system contains ZARC-elements which all have the
same parameter P, one impulse function G can be chosen so
that an optimal x is calculable with equation 20 after the
minimization of equation 21.

A short overview of the main properties of all algorithms
introduced beforehand is given in Table 1. Here, the constraints
and the utilized regularization parameters are listed. Further-
more, information is given whether the algorithms are iterative
or non-iterative.

3. Results

3.1. Test Data Sets and Performance Citeria

Simulated erroneous impedance spectra of ZARC-elements
have been used to determine DRT spectra with the beforehand
introduced algorithms and to benchmark the algorithms. In this
work, we focus on synthetic impedance spectra to compare the
calculated DRT with the optimal one. The latter is only
accessible for simulated data where all impedance information,
including the exact equivalent circuit used for the computation
of the EIS data, is given. For experimental impedance spectra,
on the other hand, the optimal DRT remains unknown. Four
different simulations were considered. The first spectrum
consists of three broad overlapping ZARC-signals with a low
error rate. The second spectrum also represents three ZARC-
elements but with varying CPE coefficients and high error rates.
The impedance spectra and the corresponding analytical DRT

Table 1. Properties for the algorithms.

Algorithms Constraints Reg. parameter Type

Tikhonov x � 0 λ non-
iterative

Gold not
needed

iteration
number

iterative

Richardson Lucy not
needed

iteration
number

iterative

Sparse Spike Deconvolution c � 0 P non-
iterative
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spectra, which are calculated by equation 7, are presented in
Figure 1. To show the influence of the error solely, we
calculated a third simulation, where we used the impedance
parameters of the first simulation and increased the super-
imposed error. The respective results for varied errors are
presented in the Supporting Information (7). In a fourth
simulation, we investigated the influence of the resistance
magnitude and the number of passive elements within the
equivalent circuits on the performance of the algorithms.
Thereby, we eliminated the last RCPE element in the equivalent
circuit of the second impedance simulation and divided all
resistances by a factor of 1000. The results of these inves-
tigations are presented in the Supporting Information (7).

All simulation parameters are listed in the Experimental
Section.

The DRT results of the various algorithms were validated by
comparing them with the corresponding analytical DRT spec-
trum by,

n ¼ j x � xbestj jj2: (24)

Here, ν represents the DRT quality by comparing the
experimental results (depending on the algorithm used) to the
theoretically optimal DRT spectrum xbest . A low ν indicates an
estimated DRT spectrum close to the optimal.

Besides minimal ν values, it is important that the DRT
solutions can be reconstructed into appropriate impedance
data that match the initial experimental EIS data as closely as
possible. Therefore, we compare impedance spectra recalcu-

lated from the computed DRT solution and EIS data that is
based on the optimal DRT spectrum xbest . To interpret the DRT
spectra's quality and the used algorithm's eligibility, we
estimate these impedance spectra by using equation 8 and
calculate,

m ¼ Aim � x � Aim � xbestj jj2þj j Are � x � Are � xbestj jj2 (25)

A small μ indicates an algorithm leading to a DRT, which
can reproduce the experimental impedance spectrum and is
hence not underfitted. Unfortunately, an overfitted DRT also
shows a small μ value. But in this case, the overfitted DRT
should lead to a high ν.

The real part of the impedance (see equation 9) or the
imaginary part (see equation 10) can be used for calculating the
DRT. We will calculate both results and will present them side
by side.

Additionally, to compare and rate the final DRT spectra, we
determined the Tanimoto distance to the optimal DRT by

t ¼ 1 �
x � xbest

xk k22þ xbestk k22� x � xbest

� �

(26)

If the DRT spectra x and xbest are identical, we get a
Tanimoto distance of 0. But if the spectra have no overlapping
areas, the Tanimoto distance will be 1.[58] Besides the quality of
the DRT outcomes of each algorithm, we also considered the
calculation times that are associated with the various ap-
proaches.

Figure 1. Nyquist plot of the first simulation (a) and the second simulation (c). The optimal DRT for the first Nyquist-Plot (b) and for the second Nyquist-Plot
(d). The upper DRT shows that the Nyquist-Plot contains three ZARC-elements with strongly overlapping semicircles. In the lower DRT is the influence of the
variant exponents P apparent.
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3.2. Comparison of the Algorithms

For each algorithm, the determination of the DRT depends on a
regularization parameter (cf. Table 1), which should prevent
over- and underfitting. Herein, the previously introduced RICV
can be calculated by equation 11 and used to estimate a
suitable regularization parameter. To compare the results of the
algorithms with each other, we calculate ν and μ with
equations 25 and 24 utilizing varying regularization parameters.
For the Tikhonov regularization we used 1000 different λ values
between 10� 2 and 10� 6 and for the Sparse Spike deconvolution,

we used 1000 different P values between 0.5 and 0.99. The
iterative methods have been calculated up to 105 cycles.

In Figure 2, ν, μ and the corresponding RICV values are
plotted for all algorithms applied to the first simulation setup of
section 3.1. On the left side the imaginary part (equation 10)
was used to calculate the DRT spectra. Accordingly, we
calculated RICV ¼ Z0sim � A0x2

�
�

�
�

2. On the right side, the real part
(equation 9) and RICV ¼ Z0 0sim � A0 0x1

�
�

�
�

2 have been used. It can
be seen that μ is almost always smaller when using the real part
for each regularization. Accordingly, the accuracy of the
recalculated impedance spectra is better when the real part is
considered for calculating the DRT solution.

Figure 2. ν and μ plotted against the regularization parameter for the first simulation, computed with different algorithms. Each row represents one algorithm.
From top to bottom the algorithms are: Tikhonov, Gold, SSD, Richardson-Lucy. The first column used the imaginary part (equation 10) and the second used
the real part (equation 9) for the calculation.
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The Tikhonov regularization shows good results for
5 � 10� 3 � l � 5 � 10� 4 for the real and the imaginary part
respectively. The increasing μ for a large λ indicates underfitting
and the increasing ν for small λ values implies overfitting. The
best DRT solution (smallest ν) can be found for l ¼ 1:8 � 10� 3

when using the imaginary part and for l ¼ 1:6 � 10� 3 when
using the real part. The DRT results are slightly worse when
using the real part, but a smaller μ shows that the recalculated
impedance spectra are better in this case. It is also worth
noticing that the RICV's minimum does not match the minimum
of μ or ν.

The Gold algorithm leads to better results than the
Tikhonov regularization (lower ν values). When the real part is
used higher iteration numbers are needed. The best ν can be
found for around 20000 iterations when using the real part. For
the imaginary part, on the other hand, a distinct ν minimum
can be found at around 900 iterations. The best μ values are at
slightly lower iteration numbers than the best ν values. For this
example, the RICV minima are at slightly higher iteration
numbers. Therefore, the RICV leads to a beginning overfitting.

The Sparse Spike deconvolution achieves the lowest μ
values using the real impedance part within the DRT computa-
tion. If P is chosen too small, the spectrum can no longer be
resolved properly, causing μ to increase drastically. This trend is
observable, regardless of the computational basis of the DRT
data (real or imaginary part). The RICV resembles the character-
istic μ curve for both the real and the imaginary part. For the ν
values, a clear minimum can be found in the region of the steep
increase of μ. The μ and the ν test function show a minimum
around P ¼ 0:8. Interestingly, this value corresponds to the
used exponents of the ZARC-elements within the simulation.
The RICV indicates an optimum for slightly higher P values,
which are still in good accordance with the other results.

The Richardson-Lucy algorithm shows very high μ values,
regardless of the number of iterations completed. Hence, the
impedance spectra which can be recalculated from the
respective DRT data are highly inaccurate. Thus, this algorithm
generally leads to an oversimplification of the solution and
yields underfitted DRT spectra. The ν values, on the other hand,
do not show any noticeable irregularities in comparison to the
results of the other algorithms. In contrast to the results of the
remaining algorithms, the Richardson-Lucy approach yields
RICV values that lie below the respective μ values. In addition,
no pronounced minimum can be found in the RICV curve for
the Richardson-Lucy algorithm. The first ten iterations lead to
miserable DRTs, therefore the minimum at the first iteration is
to be ignored. In a nutshell, the overall high μ values indicate
that the Richardson-Lucy algorithm is not suitable for calculat-

ing DRT spectra that can be recalculated into valid impedance
data.

Overall the Sparse Spike deconvolution achieves the small-
est ν and μ values. The Gold algorithm and the Tikhonov
regularization have similar μ values, but the Gold algorithm
achieves smaller ν outcomes than Tikhonov. The RICV can be
used for all presented algorithms except the Richardson-Lucy
algorithm to find optimal regularization parameters. However,
oftentimes the RICV leads to slightly overfitted DRT spectra.

In Figure 3, a comparison of the DRT spectra, that have
been computed with the various algorithms, and the theoret-
ically optimal DRT are shown. Here, we used for all calculations
the optimal regularization as indicated by the respective RICV
values. The used regularization parameters, the calculation
times, and the Tanimoto distances for all algorithms are listed
in Table 2. All DRT spectra were calculated based on the real
part. For the Richardson-Lucy deconvolution, the peaks are
poorly resolved and overlap too strongly. Especially at higher
time constants, the peaks merge. This insufficient peak
separation again indicates an underfitting of the problem. The
other algorithms can differentiate all three peaks properly.
However, the Gold algorithm and the Tikhonov regularization
yield a small additional peak at t ¼ 300 s. Additional peaks
(artifacts) are highly disruptive as they reduce the total
resistance of the real peaks and can cause misinterpretation of
the entire DRT outcome. Furthermore, oscillations in the range
of low time constants (t � 0:05 s) are conspicuous for the
Tikhonov and the RL regularization. Apart from the additional
peak at t ¼ 300 s, the Gold algorithm shows no oscillations. The

Figure 3. DRT spectra of all algorithms for the first simulation setup when
the RICV is used for determining the regularization parameter. All DRT
spectra were calculated from the real impedance part.

Table 2. Regularization parameters, calculation times, and Tanimoto distances to the optimal DRT for each DRT calculated by the various algorithm and
shown in Figure 3.

First Simulation Tikhonov Gold SSD RL

Regularization parameter l ¼ 0:00065 28921 iter. P ¼ 0:81 270 iter.
calculation time in ms 2.8 889 3.2 101
Tanimoto distance (Eqn. 26) 0.0133 0.0037 0.00089 0.0509
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SSD, on the contrary, leads to a DRT spectrum that resembles
the theoretical DRT outcome very well. All three peaks are
sufficiently resolved, and no artifacts or oscillations are
apparent. This finding is supported by very low ν values for the
spectrum (n < 0:2) and the smallest Tanimoto distance with
only 8:9 � 10� 4. Based on the DRT data, the impedance can be
recalculated easily. The respective spectra are shown in the
Supporting Information (7). In summary, the SSD and the Gold
algorithm achieve DRT spectra that are closer to the optimal
DRT spectrum than the DRT solution of the Tikhonov regulariza-
tion.

The calculation times for Tikhonov and SSD are significantly
shorter than for the RL and Gold algorithms. The main reason is
that RL and Gold are iterative algorithms that require many
iterations, whereas Tikhonov and SSD find a local minimum
after a few iterations. The Gold algorithm has a much higher
computation time than Richardson-Lucy because it needs more
iterations to find an optimal minimum. The calculation time per
iteration of Gold and RL is very similar. In the Experimental
Section, additional calculation details are shown.

We further investigated the effect of increased Gaussian
distributed error on the performance of all four algorithms. The
respective results can be found in the Supporting Information
(7). In these investigations, all algorithms compute DRT spectra
that are similar to the results of Figure 3. Hence, the increased
error has only minor effects on the algorithms. However, sightly
increased Tanimoto distances and μ and ν values can be found.

In Figure 4, the results for the investigation of the second
simulation setup are shown. The average ν values are much
higher for the second simulation than for the first simulation,
regardless of the used algorithm. These increased values are
caused by a more complicated DRT due to more various
exponents P. Again, when using the real impedance part for
calculating the DRT spectra, lower μ values result. Besides,
decreased RICV values can be found for utilizing the real part
instead of the imaginary impedance part. ν, on the other hand,
shows smaller values when the imaginary part is considered.
Only for the Richardson-Lucy algorithm, the minimum of ν
shows a lower value for the real part.

The resulting minima of all graphs of the Gold deconvolu-
tion and the Tikhonov regularization are much broader and
have larger absolute values than for the first simulation setup.
This effect can be explained by higher resistances within the
investigated impedance simulation. As before, the μ values for
the Tikhonov regularization are lower than for the Gold
deconvolution, but the Gold deconvolution leads to lower ν
values.

Due to the different exponential CPE factors for the second
simulation setup, the respective theoretical DRT spectrum
shows peaks of various widths (cf. Figure 1). Hence, ν and μ also
show significantly broader minima and higher values for the
Sparse Spike deconvolution. The qualitative course of the
individual variables as a function of the respective regulariza-
tion parameter is nevertheless comparable to the results of the
first simulation (cf. Figure 2). A remarkably good agreement of
the minima of all three variables (RICV, ν, and μ) is again
apparent for the Sparse Spike deconvolution. However, the SSD

shows slightly higher ν values than the Gold algorithm and
slightly lower values than the Tikhonov algorithm.

Like for the other algorithms, the RL algorithm shows higher
ν and μ values with broader minima than for the first
simulation. The low ν values for iterations between 103 and 104

show that the DRT is close to the optimal DRT, but the high μ
values indicate DRT spectra leading to impedance spectra far
from the optimum. With a m > 1 for all iterations, the
Richardson-Lucy algorithm again proved unsuitable for solving
the DRT problem.

For the SSD, Gold, and Tikhonov method, the RICV method
is well suited for determining the regularization parameter that
yields the lowest μ. For the RL algorithm, on the other hand,
the RICV is insufficient to find an appropriate minimum for ν.

From Table 3, it is evident, that each algorithm has a higher
Tanimoto distance than for the first simulation (cf. Table 2). Like
the increased ν values, this effect is caused by a more
complicated DRT than for the first impedance simulation.
Overall the Tikhonov regularization has the highest Tanimoto
distance and the Gold algorithm shows the lowest Tanimoto
distance. The Tanimoto distances of the SSD and RL algorithm
are similar. The computation times for the different algorithms
show the same tendency as for the first simulation (cf. Table 3).

Figure 5 compares the respective DRT spectra at optimal
RICV conditions with the theoretical optimum. Here, it can be
seen that no regularization can simultaneously resolve both the
spiky peak at t � 0:02 s and the broad peaks at higher time
constants. Remarkably, all graphs own an additional small peak
at t � 2000 s. Since all regularizations used the same erroneous
data set, this peak is probably due to errors within the
impedance simulation.

Despite the well-chosen regularization parameter λ, the
Tikhonov regularization results in significant differences from
the optimal spectrum. The sharp peak is insufficiently resolved,
while the broad peaks split into multiple signals. In addition,
the peak shape of the single peaks is far away from the
expected peak form caused by a ZARC-element. Other authors
also showed and discussed this behavior.[59] To get suitable DRT
spectra, the Tikhonov regularization is improvable by modifying
the minimization. However, these modifications probably lead
to additional unwanted smoothing or additional regularization
parameters (e.g., by adding radial basis functions with a shape
factor).[37] Also, the usage of alternative functions like a Gaussian
distribution leads to unwanted peak shapes.[60] Accordingly, the
standard Tikhonov regularization is not a suitable method for
generating non-negative DRT results with sharp and broad
peaks at the same time.

Table 3. Regularization parameters, calculation times, and Tanimoto
distances to the optimal DRT for each DRT calculated by the various
algorithm and shown in Figure 5.

Second Simulation Tikhonov Gold SSD RL

Regularization parame-
ter

l ¼ 0:0022 7649 iter. P ¼ 0:902 3247 iter.

calculation time in ms 2.7 347 3.7 128
Tanimoto distance
(Eqn. 26)

0.211 0.156 0.174 0.180
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The Gold deconvolution is very well suited for determining
DRT spectra because this deconvolution can lead to non-
negative DRT results without using any constraints. Never-
theless, the sharp peak in Figure 5 is insufficiently resolved. The
broad peaks, on the contrary, have almost the optimal shape.
Overall, the Gold deconvolution leads nearly to a correct
number of distinguishable peaks.

Also, the Richardson-Lucy method leads to non-negative
results, and the peak shapes appear acceptable. Nevertheless,
the corresponding μ is much higher than for the further
algorithms. Therefore, it can be assumed that the DRT is
oversimplified and leads to wrong parameters for the ZARC-

elements. Additionally, the minima of μ, ν, and RICV lie at very
different iteration numbers.

The chosen P in the Sparse Spike deconvolution yields a
good approximation of the large peak at low time constants.
Unfortunately, the optimal regularization parameter, indicated
by the RICV method, causes a splitting of the broader peaks
into doublets. This way, the spectrum is clearly overfitted for
higher time constants.

Nevertheless, the deficient DRT spectra (high ν) computed
with the Tikhonov regularization, the Gold algorithm, or the
SSD can still reproduce good impedance spectra (low μ).
Accordingly, the defects in the DRT have only a slight influence

Figure 4. ν and μ plotted against the regularization parameter for the second simulation, computed with different algorithms. Each row represents one
algorithm. From top to bottom the algorithms are: Tikhonov, Gold, SSD, Richardson-Lucy. The first column used the imaginary part (equation 10) and the
second used the real part (equation 9) for the calculation.
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on the recalculation of impedance data. This effect is shown
more in detail in the Supporting Information in Figures S1 and
S2 for the first simulation and in Figures S3 and S4 for the
second simulation. Even the additional peak splitting at higher
time constants for the SSD and the Tikhonov regularization has
no noticeable effect on the recalculated Nyquist plots. Only for
the Richardson-Lucy method, larger deviations appear in the
range of low frequencies. These, in turn, lead to the already
mentioned high μ values.

The results for the second simulation show that the Sparse
Spike deconvolution leads to a DRT with six peaks that strongly
deviate from the optimal DRT spectrum. Unlike the other
algorithms, which regularize the second norm of the DRT or are
based on early stopping, the SSD regularizes the DRT by the
parameter P. Here, the regularization parameter P corresponds
directly to the exponents of the ZARC-elements Pi. If all Pi are
equal, the searched peak function can, therefore, directly be
used as an impulse function, and the Sparse Spike deconvolu-
tion leads to much better results than the other algorithms, as
we showed for the first simulation. Consequently, we further
investigated and improved the SSD.

The main problem of the SSD is that most experimental
impedance spectra reflect multiple ZARC-elements with varying
exponent values. Figure S10 in the Supporting Information
shows the influence of various regularization parameters P on
the DRT results for the second simulation. Unfortunately, every
point in the deconvolution has the same impulse function.
Hence, a low value for P leads to a good resolution of the
broadest peak while simultaneously underfitting the further
peaks. A high P value, on the other hand, yields a suitable
resolution of the sharp peak while overfitting the remaining
peaks. This problem can be overcome by using m separated
regularization parameters instead of just one parameter. This
way, we introduce the Separated Sparse Spike deconvolution
(SSSD), which replaces the regularization parameter with a
regularization vector.

3.3. Separated Sparse Spike Deconvolution

In the novel Separated Sparse Spike deconvolution, the
regularization parameter P is substituted by a regularization
vector P with M elements. Herein, M is the number of data
points within the experimental impedance spectrum that will
be deconvoluted. Zhang et al. introduced in a comparable
approach a regularization vector for the Tikhonov
regularization.[44] Following this work, we call the vector
distribution of regularization factor (DRF).

Analogous to the previous SSD in equation 22, we now
estimate for each regularization parameter Pm an impulse
function gi,m which is given by,

gi;m Pmð Þ ¼
1
2p

sin Pmpð Þ

cosh Pm ln tið Þ � ln tmð Þð Þð Þ þ cos Pmpð Þ
; (27)

with 0 � Pm < 1. The new normalized impulse function is given
by,

Gi;m Pmð Þ ¼
gi;m Pmð ÞP
iðgi;m Pmð ÞÞ

: (28)

Herein, G Pð Þ is a matrix, in which each column m is a
normalized impulse function with the regularization parameter
Pm. A new minimization function is essential, which minimizes
the DRF and equation 8 simultaneously. In this work, the
minimization function is given by,

(29).

where, c should be a vector, which defines the resistance for
each time constant τ. Like in the other algorithms, the first two
terms determine a DRT which can be used to recalculate a
suitable impedance spectrum. The third term would lead to a
DRF P, where every value would be zero. Thus, this term
prevents overfitting of the impedance spectrum by reducing
the possible exponents P of the ZARC-elements. This term
needs to be scaled by k, which is the new regularization
parameter in the SSSD. If a suitable k is found, the number of
peaks in the DRF should be equal to the number of ZARC-
elements in the simulation model (or to the correct number of
ZARC-elements that describe the polarization behavior of
experimental impedance data, respectively).

For each function call, c is calculated by,

min
c�0
ðj Zre � Are � G Pð Þ � cj jj2Þ: (30)

In the best case, ci is zero for all time constants, except for
the location of the ZARC-elements. If the DRF is calculated with
equation 29 and the peaks c are calculated with equation 30,
the DRT is calculated by,

g tð Þ ¼ G P; tð Þ � c tð Þ: (31)

Figure 5. DRT spectra of all algorithms for the first simulation setup when
the RICV is used for determining the regularization parameter. All DRT
spectra were calculated from the real impedance part.

ChemPhysChem
Research Article
doi.org/10.1002/cphc.202200012

ChemPhysChem 2022, 23, e202200012 (10 of 14) © 2022 The Authors. ChemPhysChem published by Wiley-VCH GmbH

Wiley VCH Freitag, 24.06.2022

2213 / 248915 [S. 32/36] 1



In Figure 6, DRT spectra calculated with varying k values are
presented. For k ¼ 0:1, the third term of equation 29 has a too
strong influence, and the spectrum is underfitted. For k ¼ 1000,
on the other hand, the spectrum is overfitted and contains too
many peaks. For the values k ¼ 1 and k ¼ 10, the separated
SSD leads to a DRT with the expected three peaks. Hence, an
optimal k needs to be chosen, where the DRT is neither
underfitted nor overfitted.

Figure 7 depicts ν and μ for different k from 1 to 200. For
k � 8, the increasing ν and μ indicate an underfitting, and for
k � 150, the increasing ν with a constant μ indicates an
overfitting. It can be seen that for each k, the minimization of
the DRF has problems finding the global minimum and often
gets stuck in local minima. Therefore, the results of ν and μ are
very noisy. This problem is mainly due to too many variables
within the DRF. Due to high number of variables, it is difficult to
find an optimal solution and for each k, we got a computation
time between 20 and 24 seconds. This shows that this
algorithms is much slower than the algorithms studied before-
hand (see Table 3). In Figure 7, a minimal ν was obtained for
k ¼ 111 with n ¼ 1:19 and m ¼ 0:318. The respective DRF is
presented in Figure 8. Surprisingly, the calculated DRF does not
match the expectation of the optimal DRF. The median of the
DRF is about 0.16 instead of zero, which indicates an unfinished
minimization. Many small peaks exist which have no impact on
the spectra. Only five values are above the value 0.5 and show
potential positions for DRT signals.

The corresponding DRT for k ¼ 111 is shown in Figure 9.
For the SSSD, we obtained a Tanimoto distance of 0.0273 which
is much lower than for all other algorithms (see Table 3). The
DRT spectrum of the SSSD algorithm fits the theoretical
optimum much better than all DRT spectra of Figure 5. Due to
the use of the DRF, the broad peaks are not split into multiple
peaks and the sharp peak is well resolved simultaneously.
Overall, the DRT of the separated SSD is almost optimal
resolved, and no additional peaks are visible.

An additional advantage of this method is that the
determination of the ZARC-parameters out of the DRT results is
straightforward (cf. 7 in the Supporting Information).

For further investigation of the impact of divergent CPE
exponents on the DRT outcome of the studied algorithms, we
examined a fourth simulated impedance spectrum, which just
contained the sharpest and the broadest peak of the second
impedance simulation. Additionally, to examine the depend-
ency between the regularization parameters and the magni-
tude, we reduced the resistances' magnitude by a factor of

Figure 6. DRT spectra for the second simulation setup, calculated by the
separated SSD for different regularization parameters k (k ¼ 0:1 up to
k ¼ 1000).

Figure 7. ν and μ, calculated using eqn. 24 and 25, for the separated SSSD.
Both values plotted against the regularization parameter k.

Figure 8. The optimal theoretical DRF, and the DRF calculated using
equation 29 with k ¼ 111. All plotted against τ.

Figure 9. Best DRT results for the separated SSD, the Gold deconvolution
and the normal SSD in comparison with the theoretical optimum.
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1000. The results are presented in the Supporting Information
(cf. section 7).

Besides the simulated data sets, we investigated an
experimental impedance spectrum of a lithium-ion cell. The
respective results can be found in the Supporting Information
(cf. section 7). These results show that the SSSD is well suited to
describe experimental impedance spectra as well. The SSSD
even seems to calculate a superior DRT solution than the other
algorithms.

Experimental Section

Simulation Parameters

All algorithms were tested and evaluated using simulated impe-
dance data. In total, four different data sets were generated for this
purpose. The impedance spectra differ in terms of their exact
parametrization (resistance, CPE factors - cf. setup 1 vs. setup 2 in
Table 4) and their error structure (cf. setup 1 vs. setup 3 in Table 5).
The fourth setup differs in the equivalent circuit used for the
simulation and in terms of the magnitude of the resistances and
CPE parameters. The first three impedance simulations were
computed based on three ZARC-elements, connected in series. For
the fourth simulation, only two ZARC-elements were used. For all
simulations, the impedance was simulated in a frequency range
between 10� 5 to 105 Hz with 10 points per frequency decade. The
parameters of the respective passive elements are listed in Table 4.
For the calculation of the impedance, equation 3 was used. In
addition, we calculated for each simulated impedance setup the
respective theoretical DRT spectrum, using equation 7. The theoret-
ical DRT spectra were used to evaluate the results of the different
DRT algorithms introduced in this work. Furthermore, optimal
impedance data was recalculated from the theoretical DRT spectra.
The optimal impedance spectra are needed to calculate the test
value μ (cf. section 4.2).

Experimental impedance spectra of electrochemical systems are
always erroneous. Therefore, the presented algorithms were tested
on simulated data sets that were falsified by a Gaussian distributed
error. The following equations were used to generate erroneous
simulated data:

Zsim
0 wið Þ ¼ Zopt

0 wið Þ þ e1
0 � Zopt wið Þ
�
�

�
�

2�N 0; 1ð Þ þ e2
0 � N 0; 1ð Þ(32)

Zsim
0 0 wið Þ ¼ Zopt

0 0 wið Þ þ e1
0 0 � Zopt wið Þ
�
�

�
�

2�N 0; 1ð Þ þ e2
0 0 � N 0; 1ð Þ(33)

Here, the real and imaginary parts were treated separately from
each other. The variables e1

0; e2
0; e1

0 0 and e2
0 0 scale the error size.

Each variable is multiplied by a normal distribution N with m ¼ 0
and s ¼ 1. The second term is depending on the modulus of the
impedance. Therefore, the errors are depending on the magnitude
and are higher at lower frequencies.

Apart from the impedance, the frequency is also prone to errors
and an additional error factor to the frequency is added by,

wsim ið Þ ¼ wopt ið Þ � 1 � ef � N 0; 1ð Þð Þ: (34)

Table 5 lists the variables for the error calculation.

Fitting Algorithm

To find the best solution for the Tikhonov regularization and the
sparse spike deconvolution, we used the interior-point method of
MatLab.[61] The maximum iteration number was 5000 and the
maximum function tolerance was 10� 15. Generally, both algorithms
stopped the minimization between 15 and 30 iterations. For the
SSSD, we used a modified version of the particle swarm
optimization of MatLab to find the optimal solution. The swarm size
was set to 2000 with a maximum iteration of 300 and a maximum
function tolerance of 10� 9. We also investigated optimizations with
higher iteration numbers, but often a local minimum was found by
about 100 iterations and only negligible changes were found for
further iterations. The Gold algorithm and the Richardson-Lucy
algorithm are iterative algorithms and hence do not need any
further minimization algorithms.

All calculations were performed on an AMD Ryzen 7 3700X 8-Core
Processor with 3.59 GHz.

4. Conclusion

In this work, we introduced three algorithms for the determi-
nation of DRT spectra from experimental impedance data and
compared their performance to the often used Tikhonov
regularization. The shown approaches are the Gold algorithm,
the Richardson-Lucy algorithm, and the Sparse Spike deconvo-
lution. Simulated impedance data sets have been used to
compare the results of each algorithm to theoretical DRT
spectra. For all algorithms, we used the RICV (Real-Imaginary-
Cross-Validation) to estimate the optimal regularization param-
eter.

The comparison between the different algorithms showed
that the DRT spectra of the Gold deconvolution are closer to
the optimal DRT than the solutions calculated with the
Tikhonov regularization. For the commonly used Tikhonov

Table 4. Parameters of the simulated ZARC-elements.

R1 in Ω Q1 in
sffiffiffi
W
Pp

P1 R2 in Ω Q2 in
sffiffiffi
W
Pp

P2 R2 in Ω Q2 in
sffiffiffi
W
Pp

P2

1st Setup 1.6 0.10 0.80 2.0 1.0 0.8 2 10 0.8
2nd Setup 2.0 0.01 0.95 3.0 0.1 0.7 4 6 0.8
3rd Setup (7) 1.6 0.10 0.80 2.0 1.0 0.8 2 10 0.8
4th Setup (7) 2.0 · 10� 3 14.4 0.95 3.0 · 10� 3 1930 0.7 0 0 0.0

Table 5. The variables for the error simulation of the impedance data.

e1
0 e2

0 e1
0 0 e2

0 0 ef

1st Setup 0.002 0.002 0.002 0.002 0.001
2nd Setup 0.008 0.008 0.008 0.008 0.002
3rd Setup (7) 0.010 0.020 0.010 0.020 0.001
4th Setup (7) 0.0 0.0 3 ·10� 5 3 · 10� 5 0.002
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method, necessary boundaries and the penalty term, which
reduces the norm of the DRT, prevent the formation of natural
spectroscopic peaks. Especially, when the experimental impe-
dance spectrum contains both sharp and broad peaks, the
resulting DRT spectra of the Tikhonov regularization are poorly
resolved. The iterative Richardson-Lucy algorithm requires no
constraints and shows low iteration numbers, but the DRT
results were insufficient and showed pronounced deviations
from the theoretical optima. When all exponential ZARC-
parameters Pi of the simulated system are close to each other,
the Sparse Spike deconvolution (SSD) yields nearly optimal
results. For exponents Pi, significantly deviating from each
other, however, the SSD leads to overfitted DRT spectra.

Consequently, we substituted the regularization parameter
of the SSD with a suitable regularization vector P and
introduced the Separated Sparse Spike deconvolution (SSSD).
This way, the simulated data could be deconvoluted into nearly
optimal DRT spectra regardless of the variation of the ZARC-
parameters Pi. However, the prerequisite for valid DRT results
remains the determination of a suitable regularization parame-
ter. Unfortunately, the presented Separated Sparse Spike
deconvolution is accompanied by a high number of local
minima. This effect is due to an extensive quantity of variables
within the minimization. Nevertheless, the SSSD can calculate
high qualitative DRT spectra, which are not achievable by a
Tikhonov regularization. Hence, alternative minimization func-
tions within the SSSD should be tested in future work to find
stable global minima. Furthermore, we will publish a GUI
concluding each algorithm after further development and
optimizations.

Symbol and Description

Z impedance
Ri resistance of the ZARC-element i
Ci capacitance of the ZARC-element i
Pi exponent of the ZARC-element i
τi time constant of the ZARC-element i
N number of ZARC-elements
ω angular frequency of the alternating excitation signal
τ relaxation time
γ distribution of relaxation time
A convolution matrix
x solution of the ill-posed problem
xbest best solution of the ill-posed problem
ν discrepancy to the optimal DRT
μ discrepancy to the error-free EIS data
g impulse function for the SSD
c distribution of regularization factor

Abbreviations and Description

CNLS Complex nonlinear least-squares regression
EC Equivalent circuit
EIS Electrochemical impedance spectroscopy
DRT Distribution of relaxation time

DRF Distribution of regularization factor
RICV Re� Im cross-validation
SSD Sparse spike deconvolution
SSSD Separated sparse spike deconvolution
CPE Constant Phase Element
ZARC A Arc-shaped impedance Z

Generally, a resistance and a CPE connected in parallel
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