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Abstract

Although both resting and task-induced functional connectivity (FC) have been used to 

characterize the human brain and cognitive abilities, the potential of task-induced FCs in 

individualized prediction for out-of-scanner cognitive traits remains largely unexplored. A recent 
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study Greene et al. (2018) predicted the fluid intelligence scores using FCs derived from rest and 

multiple task conditions, suggesting that task-induced brain state manipulation improved 

prediction of individual traits. Here, using a large dataset incorporating fMRI data from rest and 7 

distinct task conditions, we replicated the original study by employing a different machine 

learning approach, and applying the method to predict two reading comprehension-related 

cognitive measures. Consistent with their findings, we found that task-based machine learning 

models often outperformed rest-based models. We also observed that combining multi-task fMRI 

improved prediction performance, yet, integrating the more fMRI conditions can not necessarily 

ensure better predictions. Compared with rest, the predictive FCs derived from language and 

working memory tasks were highlighted with more predictive power in predominantly default 

mode and frontoparietal networks. Moreover, prediction models demonstrated high stability to be 

generalizable across distinct cognitive states. Together, this replication study highlights the benefit 

of using task-based FCs to reveal brain-behavior relationships, which may confer more predictive 

power and promote the detection of individual differences of connectivity patterns underlying 

relevant cognitive traits, providing strong evidence for the validity and robustness of the original 

findings.
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1. Introduction

Owing to the well-recognized convenience in data acquisition, robustness to practice effects, 

flexibility in analysis, and an unconstrained nature in task demands, resting state functional 

magnetic resonance imaging (rs-fMRI) has become the default condition for probing 

individual differences (Finn et al., 2017). Using neuroimaging features of functional 

connectivity (FC) derived from rs-fMRI, together with machine learning approaches, 

researchers have demonstrated that connectome-based models are strongly predictive of 

various behavioral aspects (Dubois et al., 2018; Finn et al., 2015; Hsu et al., 2018; Jiang et 

al., 2019, Jiang et al., 2019; Lake et al., 2019; Liu et al., 2018; Wang et al., 2018; Yamashita 

et al., 2018; Yip et al., 2019). However, FC can also depend on different task conditions. 

Importantly, converging evidence from previous studies has highlighted the consistent 

organization of functional networks at rest and during various tasks (Bzdok et al., 2016; 

Cole et al., 2014; Tavor et al., 2016). Specifically, Tavor et al. found that the FC 

measurement derived from rs-fMRI can accurately predict individual differences in task-

evoked brain activation maps. These studies suggested that the large-scale brain networks 

were similar across distinct cognitive states, and tasks only moderately modified FC patterns 

throughout the brain (Cole et al., 2014). Nonetheless, recent studies substantiated that 

although subtle, these task-based FC contributed strongly to cognitive performance by 

reorganizing behaviorally relevant neural networks, which can better reveal individual 

differences (Finn et al., 2017; Gratton et al., 2016). Consequently, the study and analysis of 

FCs derived from rs-fMRI may provide just a partial understanding of the brain’s functional 
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architecture (Mennes et al., 2013), signifying that to appreciate the repertoire of the 

functional dynamics of the human brain, task-based FCs should also be considered.

However, the application of task-induced FCs (connectivity features measured during task) 

in individualized prediction for cognitive traits remains relatively limited. Most existing 

studies are commonly limited to predicting in-scanner completion metrics quantified by 

performing tasks, e.g. (Beaty et al., 2018) accomplished robust prediction of individual 

creative ability using FCs acquired from 163 participants engaging in a classic divergent 

thinking task. By contrast, the predictability of out-of-scanner cognitive behaviors using FCs 

derived from a wide range of task conditions remains largely unexplored. Importantly, only 

few studies successfully established the relevance of FCs from a variety of cognitive states to 

cognitive behavior using connectome-based machine learning approaches. An impressive 

example is a recent study that predicted the fluid intelligence scores using FCs derived from 

rest and multiple task conditions, suggesting that task-based model improved prediction of 

individual traits (Greene et al., 2018). This pioneering study provided crucial foundations for 

future studies to better reveal brain-behavior relationships. Moreover, since individual 

differences in task-based FCs consist of state-dependent aspects (Geerligs et al., 2015), 

distinct tasks may exert different but specific influences on the brain topology properties. 

Putatively, integrating FC features from multiple cognitive conditions may generate better 

predictions. Accordingly (Elliott et al., 2019), developed a brain measurement termed 

general functional connectivity (GFC) by combining resting and task scans, and suggested 

that GFC could perform as well as or better than specific tasks in cognition predictions. 

Additionally (Gao et al., 2019), proposed a novel prediction framework by integrating 

multiple task connections into a single predictive model to capture the complementary 

information, which exhibited superior performance in the prediction of fluid intelligence 

over single connectome-based model.

Recent advances in fMRI studies have established the uniqueness and stability of FC across 

cognitive conditions. Specifically, Finn et al. found that although changes in brain states may 

modulate FC patterns to some degree, an individual’s intrinsic functional architecture was 

reliable enough regardless of how the brain was engaged during scanning (rest or task), and 

distinct enough to identify the individual (Finn et al., 2015), i.e., FC fingerprint. More 

interestingly, the FC-based matching algorithm achieved varied identification accuracies 

between different pairs of fMRI conditions, implying that brain state may be manipulated to 

emphasize individual differences in functional connectivity (Finn et al., 2017). Compared to 

self-identification, predicting cognitive traits with continuous values requires more dedicated 

design and techniques (Rosenberg et al., 2016). Interestingly, Greene and colleagues also 

tested the cross-condition generalization but limited the analysis only to the best- and worst-

performing models.

Despite such promising progress, there is still a scarcity of more evidence demonstrating the 

superiority of task-induced FCs in cognition predictions. In the current study, we are 

inspired to replicate the findings of Greene et al. and Gao et al. to confirm (1) whether 

models built from task-based FCs outperform those built from resting FCs, (2) does 

combining multiple connectomes from different conditions improve cognition predictions, 

(3) and whether the connectome-based models can generalize between different task-task 
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and rest-task conditions. Importantly, we integrated these two studies into a unified 

framework to demonstrate that the large-scale brain networks were dominated by a stable 

intrinsic architecture that ensured successfully cross-condition generalizations, and tasks can 

amplify individual differences in trait-related FCs, which conferred more predictive power.

We followed a similar analytical pipeline but employed a different machine learning 

approach named partial least square (PLS) regression, and applied the method to predict 

fluid intelligence as well as three other different cognitive metrics including reading 

comprehension abilities, cognitive flexibility, and working memory capacity. PLS regression 

can establish the brain-behavior relationship without a feature selection step, and is 

especially useful in situations where feature dimension considerably overwhelms the sample 

size. It has been successfully used for the prediction of several cognitive behaviors like 

episodic memory and sustained attention (Fong et al., 2018; Meskaldji et al., 2016; Yoo et 

al., 2017). Notably, the reading comprehension was used as the leading measure being 

investigated in the present study. As a general cognitive ability, reading comprehension plays 

a ubiquitous role in modern society, from facilitating language acquisition, communication 

and information sharing to improving daily functioning and health. Investigating this 

cognitive metrics could enhance our understanding of the underlying neural correlates. On 

the other hand, the human connectome project (HCP) dataset provides 2 specific tests (oral 

reading recognition test [ORRT] and picture vocabulary test [PVT]) for measuring 2 core 

components of reading skills: reading decoding and linguistic comprehension abilities (Cui 

et al., 2017; Hoover et al., 1990), which allows the comparison of predictive models built 

from different cognitive conditions for the same reading measure, and models built from the 

same cognitive condition for two different reading measures.

2. Materials and methods

2.1. Subjects

We used the released HCP S500 data, which incorporated high-resolution fMRI data in rest 

and 7 distinct task conditions, and a battery of cognitive tests (Barch et al., 2013). There 

were 512 subjects’ records in the data we obtained from the HCP. Detailed inclusion/

exclusion criteria can be found in (Van Essen et al., 2012) and our previous work (Zuo et al., 

2018). After excluding subjects with either missing imaging data or missing cognitive 

scores, 463 healthy subjects (269 females, mean age 29.1 ± 3.5 years, in range of 22–36 

years) were retained, all of whom participated 2 tests for measuring reading decoding and 

linguistic comprehension, i.e., ORRT (HCP: ReadEng_AgeAdi) and PVT (HCP: Pic-
Vocab_AgeAdj) (Gershon et al., 2013). Specifically, the PVT and ORRT were assessed 

using the NIH Toolbox Cognition Battery (Gershon et al., 2013). In PVT, participants are 

presented with an audio recording of a word and four photographic images and are asked to 

select the picture that most closely matches the meaning of the word. In ORRT, participants 

are asked to read and pronounce letters and words as accurately as possible. According to 

the NIH Toolbox national norms, the raw scores of the 2 tests were transferred into the age-

adjusted scores, with mean of 100 and standard deviation of 15 (Cui et al., 2017). We used 

fMRI data from 8 separate conditions: one rest session and 7 distinct task sessions (Emotion, 

Gambling, Language, Motor, Relational, Social, and Working Memory [WM]; Table S1).
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2.2. MRI data acquisition and preprocessing

Data acquisition for HCP has been described in detail elsewhere (Ugurbil et al., 2013), as 

well as in our previous work (Zuo et al., 2018). For the sake of completeness, we repeat 

these main descriptions for data collection here: the dataset was collected on a 3T Skyra 

(Siemens, Erlangen, Germany) with a 32-channel head coil. The primary scanning 

parameters were repetition time (TR), 720 ms; echo time (TE), 33.1 ms; flip angle, 52°; field 

of view, 208 × 180 mm; slice thickness, 2.0 mm; and voxel size, 2.0 mm isotropic cube 

(Smith et al., 2013). The HCP data were already preprocessed, well aligned, and registered 

to the Montreal Neurological Institute (MNI) 2-mm standard space when we received it. The 

main preprocessing steps included (Glasser et al., 2013): (1) gradient nonlinearity distortion; 

(2) 6 degrees of freedom (DOF) FSL/FLIRT-based motion correction; (3) FSL/top-up-based 

distortion correction; (4) registration to a T1 space image; and (5) FSL/FNIRT-based 

registration to MNI 2-mm space. After receiving the above preprocessed data from HCP, we 

further band-pass-filtered the data at 0.009–0.08 Hz to reduce low-frequency drift and high-

frequency noise (Vatansever et al., 2015). The mean signal of the white matter, cerebrospinal 

fluid (CSF), and the movement parameters and its derivatives (in the 

Movement_parameters.txt file in the HCP S500 release) were regressed out as confounding 

factors.

2.3. Functional connectivity analysis

The registered fMRI volumes in the Montreal Neurological Institute (MNI) template were 

divided into 246 nodes (regions of interest, ROI) from the Brainnetome Atlas (Fan et al., 

2016). For each condition, mean regional time series were obtained by averaging voxel-wise 

fMRI time series in each of the 246 nodes for each individual. Pearson correlations of time 

courses between any two nodes were then calculated and Fisher transformed, resulting in a 

246 × 246 symmetric FC matrix for each subject (Jiang et al., 2018). After removing 246 

diagonal elements, we extracted the upper triangle elements of the FC matrix as features for 

prediction, namely, each subject has a feature vector in the dimension of (246 × 245)/2 = 

30135.

2.4. Individualized prediction of reading comprehension abilities using distinct fMRI 
states

Following the study of Greene and colleagues, we replicated the prediction procedure to 

predict cognitive metrics using FC matrices from each of the 8 fMRI conditions. Different 

from the original study, we employed PLS regression to predict the reading comprehension 

scores (PVT and ORRT) of new subjects. PLS regression bears some relation to principal 

component analysis and multiple linear regression, and works by representing variables with 

a few number of latent components (Yoo et al., 2017). The prediction was conducted within 

a 10-fold cross-validation. Specifically, one fold subjects (10%) were designated as the 

testing sample while the remaining 9-fold subjects (90%) were used as the training set. 

During training, PLS regression (Geladi and Kowalski, 1986) was adopted to model the 

relationship between observed reading comprehension scores and whole-brain FCs in 

training subjects, yielding a prediction model. Then, the model built in the training set was 

applied to the one-fold left out testing subjects’ connectivity data to generate predicted 
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reading comprehension scores. By exchanging the roles of testing and training sets in turn 

(with each fold of subjects excluded once), we obtained the predicted PVT and ORRT scores 

for all subjects. The optimal number of latent component was tuned in a nested 10-fold 

cross-validation loop. The parameter was tested ranging from 1 to 20, and the value that 

yielded the highest prediction accuracy was finally determined as the optimum number of 

components. In our experiments, the optimal number of latent components was 3–5 for most 

conditions. It failed to model the brain-behavior relationship when setting the parameter to a 

too small value. Setting the parameter to a large value led to high prediction accuracy in 

training samples but low prediction performance in testing samples (overfitting). Since the 

full dataset was randomly divided into 10 folds, performance might depend on data division 

(Feng et al., 2018). Consequently, to ensure the robustness and reliability, we repeated the 

prediction procedure 100 times with subjects randomly shuffled. The prediction 

performance was measured by the mean of the 100 correlations between observed and 

predicted reading comprehension scores. Notably, the above prediction procedure was 

separately performed for PVT and ORRT. Moreover, we also conducted a non-parametric 

permutation test to determine the significance of the prediction accuracy. Specifically, we 

randomly shuffled the observed reading comprehension scores 5000 times and reran the 

prediction pipeline each time, generating a null distribution for significance testing. The p-

values was determined by (1 × the number of permutated r values greater than or equal to the 

empirical r)/5001 (Beaty et al., 2018).

2.5. Replicability of the prediction under different conditions

As demonstrated in the original study, some potential confounds may influence the 

predictions. To validate our main results, we performed the following analyses. (1) The 

reading comprehension scores are negatively correlated with the mean framewise 

displacement (FD) for all conditions (r = −0.23~−0.16, p < 0.05). To confirm that our 

predictive models captured FC variations specific to reading comprehension ability 

independently of this contamination, we calculated the partial correction between predicted 

and observed reading comprehension scores while factoring out the mean FD (Rosenberg et 

al., 2016). (2) To further control for the effect of head motion, we reran the prediction 

procedure only on subjects whose mean FD was less than 0.14 mm or 0.10 mm, which are 

the two most commonly applied inclusion criteria (Finn et al., 2015; Greene et al., 2018). (3) 

To ensure the prediction results were robust to cross-validation approaches, we repeated the 

entire prediction procedure using a leave-one-out cross-validation (LOOCV) strategy. (4) 

Many subjects in the HCP dataset are genetically related. To account for the family 

structure, we reran the prediction procedure using a leave-one-family-out cross-validation 

(Dubois et al., 2018). (5) To investigate the influence of brain parcellation, we repeated the 

prediction procedure using connectivity matrices in a feature dimension of 34716 calculated 

from the 264-node Power atlas (Power et al., 2011). (6) Functional scans in the HCP 

protocol differed considerably in duration (176–1200, Table S1). Previous studies have 

shown that longer scan durations better preserve individual difference in FCs and have a 

higher test-rest reliability (Elliott et al., 2019; Finn et al., 2015). To investigate its effect on 

prediction, we recalculated the FC matrices by truncating the time courses from all 

conditions to include the same number of frames as the shortest condition (Emotion, 176 

vol), and repeated the prediction pipeline. (7) To investigate whether our results that task-
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based model outperformed rest-based model were specific to the cognitive metrics adopted, 

we repeated the prediction procedure to predict another three cognitive constructs: the fluid 

intelligence, cognitive flexibility, and working memory capacity using connectivity data 

from each of the 8 fMRI conditions. Specially, the fluid intelligence was used as the 

phenotypic measure of interest in the study of Greene et al.

2.6. Integrating multi-task FC features improves prediction

To replicate the results of Gao et al., we further investigated whether combining FCs from 

multiple fMRI conditions can generate improved predictions. We concatenated whole-brain 

FCs from all 8 fMRI conditions horizontally together as input features (in a feature 

dimension of 30135 × 8), and then repeated the prediction procedure as discussed above. 

Furthermore, we adopted a backward selection strategy to find the optimal combination of 

cognitive conditions which can yield the highest prediction performance. Because our 

primary objective is to explore whether integrating the more cognitive conditions could yield 

higher prediction accuracy, we will not test the prediction performance across all possible 

state combinations. The backward selection finds the optimal task combination by excluding 

each of the fMRI states in a stepwise way (Gao et al., 2019). Specifically, we searched for 

the cognitive condition, after excluding which can improve prediction the most in each step. 

Then, this fMRI condition was pruned from the current set of cognitive conditions. This 

procedure was iteratively repeated until excluding any cognitive condition won’t lead to 

improvement in prediction. Notably, the multi-task predictions were also run within 10-fold 

cross-validation with 100 repetitions for PVT and ORRT separately.

2.7. Reading comprehension-predictive functional edges

We investigated the similarity of FC or node weights within- and between-conditions. The 

similarity was quantified by the correlations of whole-brain FC or node weights between 

each condition pairs. Node weight was computed by summarizing beta coefficients of all 

FCs connected with a given node. Notably, since we employed a 10-fold cross validation 

strategy with 100 repetitions, FC weight was averaged across 1000 loops.

PLS model includes all features in prediction and assigns each a different weight. To 

investigate whether the beta coefficient represented edge’s real contribution to prediction or 

was just assigned by chance, we employed permutation test to assess the significance of the 

beta coefficient for each edge, as described in (Yoo et al., 2017). We randomly shuffled the 

behavioral scores (i.e., reordering the rows of Y and leaving X unchanged), and then fitted a 

PLS model using mismatched brain and behavioral data on all participants. PLS beta 

coefficient can be obtained for each edge from each permutation, and repeating this process 

100000 times allowed us to create a null edge weight distribution. Significance was 

determined by whether its real beta value differed (two-tailed p < 0.05) from the empirical 

distribution acquired from 100000 permutations (Yoo et al., 2017). We then counted the 

number of significantly predictive edges between each macroscale brain region pair. In this 

study, the permutation test was performed separately for PVT and ORRT in cognitive 

conditions of rest, language and WM.
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Finally, to explicitly characterize the contribution of each functional network to prediction, 

we grouped the 246 nodes into 8 canonical networks, which included 7 networks mapped 

from the Yeo’s 7-network parcellation scheme (visual, somatomotor, dorsal and ventral 

attention, limbic, frontoparietal, default mode [DMN]) (Yeo et al., 2011) and a subcortical 

network. Following the same procedure as in (Greene et al., 2018), we computed the fraction 

of the most significantly predictive FCs in each pair of canonical networks, normalized by 

the fraction of total edges belonging to that pair. Therefore, a value > 1 indicated 

overrepresentation of the network pair to the prediction model.

2.8. Generalizability of predictive models across fMRI conditions

We next demonstrated that prediction models can generalize across distinct cognitive 

conditions. To this end, we reran the prediction procedure within 10-fold cross-validation, 

however, this time we used FCs in training and testing subsets from different cognitive 

conditions, as implemented in the original study. Specifically, the model was trained on 9-

fold participants’ whole-brain FCs, but tested on the left-out one-fold participants’ 

connectivity data from a different fMRI condition. The cross-condition generalization was 

tested between all possible condition pairs by training the prediction model with each of the 

8 fMRI conditions and testing with the other 7 conditions, instead of limiting the analysis 

only to the best- and worst-performing models as in the original study. Overall, 56 possible 

condition pairs were tested for each of the two reading comprehension measures (PVT and 

ORRT).

3. Results

3.1. Individualized prediction of reading comprehension abilities using distinct fMRI 
conditions

Fig. 1 demonstrates the prediction results of reading comprehension scores using whole-

brain FC from each of the 8 fMRI states. Overall, all 8 prediction models achieved 

significant estimations of PVT and ORRT scores (Fig. 1a and b, Table S2). Specifically, for 

PVT prediction, the WM task and language task achieved the top two highest prediction 

performance (r[WM] = 0.430 ± 0.011, Fig 1c; r[Lang] 0.408 ± 0.013; p = 2.0 × 10−4; Fig. 

1d). For ORRT, the language task achieved the highest prediction accuracy (r[Lang] = 0.465 

± 0.012; p = 2.0 × 10−4; Fig. 1e), and the WM task achieved the second-highest accuracy 

(r[WM] = 0.425 ± 0.014; p = 2.0 × 10−4; Fig. 1f). The emotion task yielded the worst-

performing model for both PVT and ORRT (r[PVT] = 0.204 ± 0.013, p = 1.0 × 10−3; 

r[ORRT] = 0.223 × 0.017, p = 2.0 × 10−4). Our results successfully replicated the findings of 

Greene et al. by demonstrating that rest might be not the optimal condition for predicting 

individual cognitive traits.

3.2. Replicability of the prediction under different conditions

All predictions remained significant and largely unchanged when controlling for mean 

frame-wise displacement (Fig. S1), rerunning the prediction pipeline only on subjects with a 

small head motion (Fig. S2), using a LOOCV approach (Fig. S3), controlling for the family 

structure (Fig. S4), or using FC data calculated from a different brain parcellation scheme 

(Fig. S5). Additionally, we observed that longer time courses improved prediction accuracy 
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(Fig. S6). This is consistent with previous evidence suggesting that longer scan lengths 

better preserved individual difference in connectivity profiles (Finn et al., 2015). Given 

equal scan durations, the rest state generated largely attenuated prediction performance, and 

all task-based models except emotion again achieved higher prediction accuracies than rest-

based models (Fig. 1i). A Steiger’s z-test for testing differences between two dependent 

correlations (Steiger, 1980) revealed that for ORRT, prediction performance based on 

cognitive conditions of motor, language, relational and WM was significantly higher than 

that based on rest (p < 0.02). For PVT, models based on social, gambling, relational, 

language and WM significantly outperformed rest-based model (Steiger’s z-test, p < 0.04). 

Moreover, in the prediction of fluid intelligence, cognitive flexibility, and working memory 

capacity, most task-based models again outperformed rest-based models (Fig. 2), suggesting 

that our conclusion that, rest might be not the optimal cognitive state for investigating 

individual difference, was not constrained by the specific cognitive metrics adopted.

3.3. Integrating multi-task FC features improves prediction

The finding that combining multiple connectomes from different cognitive states improved 

prediction performance was replicated by our results. Specifically, integrating 8-state FC 

features achieved improved prediction accuracy than using any single condition alone (Fig. 

1a and b, red bar: r[PVT] = 0.467 ± 0.089; r[ORRT] = 0.476 ± 0.011). However, integrating 

the more cognitive conditions could not yield the higher accuracy. As a result, the optimal 

FC combination includes 6 fMRI conditions for both PVT (r[PVT] = 0.503 ± 0.009; the two 

excluded states were emotion and gambling; pink bar in Fig. 1a, g) and ORRT (r[ORRT] = 

0.498 ± 0.012; the two excluded states were emotion and motor; pink bar in Fig. 1b, h). 

More results can be found in Fig. S7. For PVT prediction, the optimal multi-task predictions 

significantly outperformed predictions based on any single task (Steiger’s z-test, p < 0.015). 

For ORRT, the optimal multi-task predictions significantly outperformed single task 

predictions of WM, relational, gambling, social, rest, motor, and emotion (Steiger’s z-test, p 

< 0.01), but not significantly for language task (Steiger’s z-test, p = 0.15).

3.4. Reading comprehension-predictive edges

The predictive models were similar across conditions, with within-condition similarities 

(r[FC weights] = 0.654–0.757, r[node weights] = 0.622–0.734) higher than between-

condition similarities (r[FC weights] = 0.185–0.289, r[node weights] = 0.224–0.338; Fig. 3a 

and b). Under permutation test, the resting state identified 481 and 565 edges for PVT and 

ORRT, showing diffuse patterns widely spanning the entire brain (Fig. 4a, Fig. 5). Nodes 

within the DMN and their connections with frontoparietal regions were overrepresented for 

PVT model, while regions within visual network and their connections with DMN and 

subcortical network were overrepresented for ORRT model (Fig. 4a). By contrast, FCs 

derived from language and WM tasks exhibited considerably denser patterns and greater 

degrees in predominantly language processing-related regions (Fig. 5). Specifically, the 

language task detected 477 and 487 edges for PVT and ORRT. Regions in the DMN and 

frontoparietal network exhibited the greatest involvement in HCP language-based models for 

both PVT and ORRT (Fig. 4b). The WM task revealed 411 and 262 FCs for PVT and ORRT 

(Fig. 4c). The DMN, visual and frontoparietal networks were overrepresented for PVT 

model, while the ventral attention and frontoparietal networks were overrepresented for 
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ORRT model. When generating predictive FCs using a conservative threshold of p < 0.01, 

we derived similar patterns (Figs. S8 and S9). Moreover, consistent with the original study, 

models demonstrated a substantial edge overlap between each pair of conditions (shared 

edges ranged from 11 to 127, Fig. 3b).

3.5. Generalizability of predictive models across fMRI conditions

The cross-condition generalizability was successful across all condition pairs (p < 0.001, 

FDR corrected), with accuracies ranging from r = 0.188 (relational to rest) to r = 0.315 (rest 

to language) for PVT (Fig. 6a), and from r= 0.172 (language to motor) to r = 0.336 (rest to 

language) for ORRT (Fig. 6b).

4. Discussion

In this study, we successfully replicated the findings of Greene et al. by demonstrating that 

task-based models generally outperformed rest-based models in cognition prediction, 

especially when using equivalent scan durations. Additionally, we found that combining 

multi-task fMRI improved prediction performance; however, integrating more fMRI 

conditions cannot ensure the higher accuracy, which replicated the results of Gao et al. 
Moreover, the reading comprehension-predictive models can be generalized across distinct 

cognitive conditions. Together, our results demonstrated the superiority of using task-based 

FCs to predict individual cognitive traits, which may confer more predictive power and 

promote the detection of individual differences of FC patterns in cognitive-specific and 

cognitive-general networks. Although there are some difference between the original studies 

and our current study in terms of the employed prediction method and the investigated 

cognitive measures, our results are supportive of their findings, providing strong evidence 

for the validity and robustness of the original findings.

4.1. Task-induced FC may better predict individuals’ cognitive traits

Although both resting and task-based FCs have been used to characterize the human brain 

and cognitive abilities in health and psychiatric disease, resting state has been playing a 

dominating role in the field (Finn et al., 2017). In this study, we confirmed the findings of 

Greene et al. by employing a different prediction method and applying it to predict two 

reading comprehension measures. Consistent with their results, we found that models built 

from task conditions (e.g., language, WM) predicted 2 reading-related out-of-scanner 

cognitive traits better than those built from rest data, implying that the resting state might be 

not the optimal condition for probing individual differences. There are three explanations for 

this.

First, the unconstrained nature of rs-fMRI brings many uncertain parameters. Across 

reported studies, resting-state scans were variably performed with eyes open or closed, with 

visual fixation points or without, and with various types of subjects’ instructions, all of 

which can substantially affect the acquisition of scans (Buckner et al., 2013; Zou et al., 

2009). Considering that no explicit input and output is specified, it is hard to distinguish 

between meaningful trait-related variance and less interesting state-related components from 

the individual resting-state signal (Finn et al., 2017). By contrast, participants are more 
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engaged during task conditions. Consequently, more of the brain is devoted to task-relevant 

processes, promoting the task effect through more of the connectivity matrix in a way that 

reduces the task-irrelevant non--stationarities like noise. Consistently, a recent study also 

concluded that tasks afforded a better ratio of within-to between-subject variability by 

bringing meaningful idiosyncrasies across participants, which can significantly enhance the 

individual signal in functional networks of interest beyond what can be measured at rest 

(Finn et al., 2017).

Second, limitations of resting state also include the susceptibility to head motion artifacts 

and participant drowsiness or sleep (Vanderwal et al., 2015), both of which can alter FC 

patterns dramatically (Boly et al., 2012; Power et al., 2015). Tasks can facilitate holding 

participants’ attention with less risk of falling asleep, and subjects practically are inclined to 

move less during imaging if they are engaged in a task. Participants may devote more 

attention to the task-relevant processing, and consequently more individual difference in FC 

patterns can be preserved (Finn et al., 2017). When comparing the difference in head motion 

between rest and tasks, we found that rest had higher mean FD values than five of the seven 

task conditions (only two were statistically significant) (Table S3).

Finally and most importantly, tasks can perturb functional connections in the brain and 

further amplify individual differences in the neural circuitry underlying related traits (Greene 

et al., 2018). Numerous studies have pointed that the brain would reveal a stable intrinsic 

network architecture during resting state, while, this standard state of brain origination can 

be modified as necessary to meet task demands during task conditions (Cole et al., 2014). 

Consequently, more context-specific modulations would be made on FCs that are directly 

related to the given task (Mennes et al., 2013). In our results, two language-relevant tasks 

(language and WM), which were among those with the highest cognitive demands, achieved 

the best prediction performance of reading comprehension abilities. However, models built 

from rest and less reading-relevant tasks (e.g., emotion, motor) achieved relatively lower 

prediction accuracies. Probably, modifications of functional organization evoked by these 

less reading relevant tasks contributed nothing or even negatively to the prediction. And this 

might also be the reason that integrating more fMRI conditions did not necessarily ensure 

higher prediction accuracy. Since task conditions provide state-dependent aspects, distinct 

tasks may exert different but specific modifications to the brain network topology properties 

(Geerligs et al., 2015). Combining multi-task FCs could leverage the complementary 

information encoded in each condition, yet, redundant or overlapped information brought by 

some tasks may impair the predictive power.

Interestingly, the predictive models demonstrated higher within-condition similarities and 

greater edge overlap than between-condition similarities and edge overlap. This is probably 

because these two reading comprehension measures are similar and closely related (r = 

0.69). Additionally, this may suggest that the magnitude of FC changes generated by tasks is 

greater than that generated from different reading measures.

Moreover, the predictive FCs derived from the language and WM tasks, compared with 

those derived from rest, exhibited a denser pattern in predominantly default mode, and 

frontoparietal networks, and brain nodes implicated in these networks were highlighted with 
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more predictive power. These networks may gain its multi-function ability by rapidly 

updating their patterns of global FC according to task demands and flexibly interacting with 

various functionally specialized networks throughout the brain (Cole et al., 2010; Cole and 

Schneider, 2007). In support with our findings, a study investigating the task-evoked 

network properties found that resting-state networks tended to be more broadly distributed, 

while networks during semantic decision making were more distinct and interconnected, 

especially in language-related areas (DeSalvo et al., 2014). They posited that this 

reorganization in functional networks during the semantic decision task reflected the 

involved cortical computations including phonetic, lexical, orthographic and semantic 

processing. Collectively, these results suggest that rs-fMRI discloses only part of the relevant 

individual differences in brain function, while studying individual differences across a wider 

range of cognitive conditions will provide a more complete understanding of the brain’s 

functional architecture (Geerligs et al., 2015; Mennes et al., 2013).

4.2. Generalizability of prediction models across distinct cognitive conditions

Our results demonstrated that connectome-based prediction models have a robust 

generalizability across distinct cognitive conditions. Importantly, the model generalization 

was successful across all possible pairs of cognitive conditions, which may be due to the 

great correspondence between them (Betti et al., 2013; Krienen et al., 2014). A wealth of 

independent studies converged in demonstrating a grossly high degree of spatial overlap 

between functional networks estimated at rest and across distinct tasks, with a shared 

variance in FC reaching 80% (Krienen et al., 2014; Mill et al., 2017). These findings 

suggested the existence of a stable functional backbone that was present across rest and tasks 

(Fox and Raichle, 2007; Vincent et al., 2007), and the intrinsic FC pattern did not 

substantially change under distinct states of consciousness or task engagement (Cole et al., 

2014; Greicius et al., 2008; Larson-Prior et al., 2009), which was potentially driven by 

anatomical connectivity between regions (Dosenbach et al., 2007). We speculated that it is 

this stable intrinsic architecture that drives the noted high correspondence in FC patterns 

between distinct cognitive conditions and consequently ensures the successful cross-

condition generalization. However, compared with predictions by training and testing with 

the same type of fMRI condition (Fig. 1), accuracies achieved in the cross-condition 

predictions were significantly attenuated (p < 10−10), presumably due to the subtle changes 

brought by different task conditions as mentioned above.

4.3. Biological implications of the predictive functional patterns

Apart from demonstrating that FCs derived from both rest and task conditions are strongly 

predictive of individual cognitive traits, our results also support the recent findings of 

reading comprehension abilities as emerging from the coordination of several core language-

related regions. Generally, the reading comprehension constitutes multifaceted and complex 

skills that can break down at several levels including acoustic-phonological analysis, local 

synaptic structure building, lexical-semantic processes and domain-general processes such 

as executive functioning (Binder et al., 2009; Fedorenko and Thompson-Schill, 2014; 

Herrmann et al., 2011; Leaver and Rauschecker, 2010). Over the years, a myriad of works 

on the neurobiological basis of reading comprehension have accumulated, establishing that 

the neural circuits supporting language functions primarily locate in the prefrontal and 
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temporal cortices, which are connected via ventral and dorsal pathways (Brauer et al., 2013; 

Friederici and Gierhan, 2013). Consistently, predictive functional patterns identified in our 

results converged well on the core regions in the language-processing networks, including 

STG, IFG, MTG, angular gyrus, fusiform gyrus, and some regions in the executive control 

and default mode networks (Fedorenko and Thompson-Schill, 2014; Friederici, 2012).

4.4. Limitation and future directions

Some issues need to be mentioned. First, our discovery cohort came from the HCP S500 

release, instead of the newly released S1200, which incorporated more subjects. The huge 

computational burden was the major concern that prevented us from using the larger sample 

datasets. Apart from the multitask prediction and permutation test, we had to repeat our 

prediction procedure for more than 10000 times: 100 repetitions × 8 cognitive conditions × 

(2 reading measures × 6 control analyses + 3 other cognitive measures). Future studies can 

be performed on larger study samples whenever more computational resources are available. 

In addition, a recent study showed that predictive models would have a high stability once 

the sample size reached 300 (Cui and Gong, 2018). Accordingly, our current prediction 

models built on a sample of 463 participants achieved relatively high prediction accuracies 

and results remained largely unchanged when controlling for a series of potential confounds. 

Second, we didn’t perform global signal regression (GSR). As one of the most contentious 

and debated preprocessing strategy, there was no consensus regarding physiological 

interpretation of GSR (Murphy et al., 2009). Moreover, previous studies found that GSR 

discarded globally distributed neural information and introduced negative correlations (Ben 

Simon et al., 2017; Matsui et al., 2016). Finally, the multi-task predictions were 

implemented by simply concatenating FCs from different fMRI conditions horizontally into 

a combined feature space. To maximally capitalize on the strength of each cognitive 

condition, future studies can develop novel methods to combine these conditions (Elliott et 

al., 2019). Additionally, multimodal neuroimaging features can also be leveraged to achieve 

improved predictions (Sui et al., 2018).

5. Conclusions

In summary, this replication study highlights the benefit of using task-based FCs to reveal 

brain-behavior relationships, which may confer more predictive power and promote the 

detection of individual differences of FC patterns underlying related cognitive traits, adding 

strong evidence for the validity of the original studies. Besides, our results show high 

stability of connectome-based prediction models to be generalizable across distinct cognitive 

states. Overall, our results suggest that task-based FC patterns could serve as potentially 

effective predictors of human cognitive traits.
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Fig. 1. Prediction results of two reading comprehension abilities (PVT and ORRT).
All 8 fMRI conditions yielded significant correlations between observed and predicted (a) 
PVT or (b) ORRT scores. Specifically, for PVT, the WM task yielded the best-performing 

model (c), and the language task yielded the second-best model (d). For ORRT, the language 

task achieved the highest prediction accuracy (e), and the WM task achieved the second-

highest prediction accuracy (f). Combining FC features from all 8 fMRI conditions 

generated improved prediction performance (red bar in a, b) than using any single condition 

alone. An optimal combination of 6 cognitive conditions achieved the best predictions for 

both (g) PVT and (h) ORRT (r[PVT] = 0.503 ± 0.009, r[ORRT] = 0.498 ± 0.012; pink bar in 

a, b). Values in the x-axis and y-axis were normalized for visualization. (i) Given equal scan 

durations, all task-based models except emotion again achieved higher prediction accuracies 

than rest-based models. Abbreviation: Emo, emotion; Gam, gambling; Lang, language; Mot, 

motor; Rel, relational; Soc, social; WM, working memory; PVT, picture vocabulary test; 

ORRT, oral reading recognition test.
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Fig. 2. Prediction results of fluid intelligence, cognitive flexibility and working memory capacity.
(a) For the prediction of fluid intelligence, the WM task achieved the highest prediction 

accuracy (r[WM] = 0.378 ± 0.0139, p = 2.0 × 10−4), and the emotion task achieved the 

lowest prediction accuracy (r[Emotion] = 0.222 ± 0.0164, p < 1.0 × 10−3). (b) Importantly, 

integrating 8-condition connectivity data achieved improved prediction performance than 

using any single state alone (r = 0.409 ± 0.0116, p = 2.0 × 10−4). (c) For cognitive flexibility, 

the WM task yielded the best-performing model (r[WM] = 0.311 ± 0.0114, p = 2.0 × 10−4), 

and the emotion task yielded the worst-performing model (r[Emo] = 0.099 ± 0.0198, p > 

0.05). (d) Combining all 8-condition connectivity data also achieved improved prediction 

performance than using any single state alone (r = 0.330 ± 0.0150, p = 2.0 × 10−4). (e) For 

the prediction of working memory capacity, the WM task yielded the best-performing model 

(r[WM] = 0.302 ± 0.0154, p = 2.0 × 10−4), and the rest yielded the worst-performing model 

(r[Rest] = 0.083 ± 0.0191, p > 0.05). (f) Moreover, combining all 8-state connectivity data 

also achieved improved prediction performance than using any single state alone (r = 0.339 

± 0.0151, p = 2.0 × 10−4).
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Fig. 3. 
(a) Similarity of FC or node weights within (main diagonal) and between-conditions (off-

diagonal). The similarity was quantified by the correlations of whole-brain FC or node 

weights between each condition pairs. The weight distributions demonstrated higher within-

condition similarities (r [FC weights] = 0.654–0.757, r[node weights] = 0.622–0.734) than 

between-condition similarities (r [FC weights] = 0.185–0.289, r[node weights] = 0.224–

0.338). (b) Edge overlap within (main diagonal) and between (off-diagonal) each pair of 

fMRI conditions. Cells in the matrix plots are plotted as number of shared edges within and 

between each pair of cognitive conditions. Values in the row or column names represent the 

number of edges identified by permutation test under a threshold of p < 0.05. The PVT and 

ORRT models are represented in the lower and upper triangles respectively.
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Fig. 4. The FCs that contributed to reading comprehension prediction and the overrepresented 
networks.
The most predictive FCs determined by permutation test were demonstrated in the circle plot 

for cognitive conditions of (a) rest, (b) language and (c) working memory. As shown in the 

circle plot, functional edges for PVT and ORRT are visualized in orange and blue, 

respectively. Cells in the matrix plots are plotted as the fraction of the most significantly 

predictive FCs in each pair of canonical networks, normalized by the fraction of total edges 

belonging to that pair. A value > 1 indicated overrepresentation of that network pair to the 

prediction model. Abbreviation: VIS, visual; MOT: somatomotor; DAN: dorsal attention 

network; VAN: ventral attention network; LIM: limbic; FPN: frontoparietal network; DMN: 

default mode network; SUB: subcortical.
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Fig. 5. 
The number of significantly predictive edges between each macroscale brain region pair 

determined by permutation tests under the threshold of p < 0.05. As shown in the circle and 

matrix plot, the 246 FC nodes are grouped into 24 macroscale brain regions that are 

anatomically defined by the Brainnetome atlas. Cells in the matrix plots are plotted as 

number of edges within and between each pair of brain regions.
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Fig. 6. 
The identified reading comprehension predictive models demonstrated a robust 

generalizability across fMRI conditions. Namely, the prediction models built on one fMRI 

state could be applied to FC data from other different conditions to predict (a) PVT and (b) 
ORRT with appreciable accuracy.
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