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Abstract

Inside individual cells, protein population counts are subject to molecular noise due to low

copy numbers and the inherent probabilistic nature of biochemical processes. We investi-

gate the effectiveness of proportional, integral and derivative (PID) based feedback control-

lers to suppress protein count fluctuations originating from two noise sources: bursty

expression of the protein, and external disturbance in protein synthesis. Designs of bio-

chemical reactions that function as PID controllers are discussed, with particular focus on

individual controllers separately, and the corresponding closed-loop system is analyzed for

stochastic controller realizations. Our results show that proportional controllers are effective

in buffering protein copy number fluctuations from both noise sources, but this noise sup-

pression comes at the cost of reduced static sensitivity of the output to the input signal. In

contrast, integral feedback has no effect on the protein noise level from stochastic expres-

sion, but significantly minimizes the impact of external disturbances, particularly when the

disturbance comes at low frequencies. Counter-intuitively, integral feedback is found to

amplify external disturbances at intermediate frequencies. Next, we discuss the design of a

coupled feedforward-feedback biochemical circuit that approximately functions as a derivate

controller. Analysis using both analytical methods and Monte Carlo simulations reveals that

this derivative controller effectively buffers output fluctuations from bursty stochastic expres-

sion, while maintaining the static input-output sensitivity of the open-loop system. In sum-

mary, this study provides a systematic stochastic analysis of biochemical controllers, and

paves the way for their synthetic design and implementation to minimize deleterious fluctua-

tions in gene product levels.

Author summary

In the noisy cellular environment, biochemical species such as genes, RNAs and proteins

that often occur at low molecular counts, are subject to considerable stochastic fluctua-

tions in copy numbers over time. How cellular biochemical processes function reliably in

the face of such randomness is an intriguing fundamental problem. Increasing evidence

suggests that random fluctuations (noise) in protein copy numbers play important
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functional roles, such as driving genetically identical cells to different cell fates. Moreover,

many disease states have been attributed to elevated noise levels in specific proteins. Here

we systematically investigate design of biochemical systems that function as proportional,

integral and derivative-based feedback controllers to suppress protein count fluctuations

arising from bursty expression of the protein and external disturbance in protein synthe-

sis. Our results show that different controllers are effective in buffering different noise

components, and identify ranges of feedback gain for minimizing deleterious fluctuations

in protein levels.

1 Introduction

Advances in single-cell technologies over the last decade have revealed striking differences

between individual cells of the same population. For example, the level of a given protein can

vary considerably across cells within a population, in spite of the fact that cells are identical

clones of each other and are exposed to the same environment [1–6]. Such intercellular sto-

chastic differences in gene expression patterns can have tremendous consequences for biology

and medicine [7–12], including stochastic cell-fate assignment [13–19], microbial bet hedging

[20–24], bacterial and cancer drug-resistance [25, 26].

Stochastic variations in the intracellular level of protein primarily arise from two main

sources:

• Low-copy number fluctuations in underlying biomolecular components (genes, mRNA,

proteins). Moreover, this shot noise, usually originating from a simple Poisson birth-death

process, is amplified by the fact that transcription of genes is not a continuous process but

happens in sporadic bursts [27–31].

• External disturbances in the protein synthesis rate due to fluctuations in expression-related

machinery (RNA polymerases, ribosomes, etc.) or intercellular differences in cell-cycle

stage/cell size [32–35].

Given these noise sources, cells encode diverse regulatory mechanisms to suppress stochas-

ticity in the level of a protein around a set point. Perhaps the simplest example of this is a nega-

tive feedback loop, where the protein directly or indirectly inhibits its own synthesis [36–47].

Such naturally occurring feedbacks have been shown to be key motifs in gene regulatory net-

works [48]. Furthermore, design of in-vitro/in-silico synthetic feedback systems based on lin-

ear or nonlinear Proportional, Integral, and Derivative (PID) controllers is an intense area of

current research [49–55].

PID controllers are widely used in industry for maintaining plant output to a desired value

against perturbations. Classical control theory states that in the PID control, the control effort

or magnitude of the feedback regulation is either proportional to the error (difference between

set point and current protein level), integral of error or temporal derivative of error for P, I, D

controllers respectively. While the proportional control affects immediate regulation, it suffers

from steady state error offset. The integral control removes such an offset but is vulnerable to

high frequency disturbances. These disturbances are effectively buffered by derivative control,

hence each component serves a purpose. Several biochemical designs of integral feedback con-

trollers have been experimentally implemented in bacterial cells for perfect adaptation in

response to environmental perturbations [56, 57]. Naturally existing circuits implementing

integral feedback play a key role in regulating cellular heat shock responses [58, 59], and bacte-

rial chemotaxis [60, 61]. Proportional control is synthetically implemented in experiments in
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conjunction with integral controllers [49]. While derivative control biochemical designs have

been proposed [62], their experimental implementation is not yet realized. An effective syn-

thetic experimental implementation of these components requires carefully tuned control

parameters. The novel contribution of our work is to provide simple closed form expressions

for noise and optimal parameters.

In Section 2.1, we introduce an open-loop model of stochastic gene expression where the

protein is expressed in random bursts, and its expression is impacted by an upstream noisy

input (Fig 1). We provide exact analytical formulas for the protein mean and noise levels in

open loop. Section 2.1 also introduces the mathematical tools to be used throughout the paper

for the analysis of stochastic dynamical systems. In Section 2.2, 2.3 and 2.4, we discuss designs

of nonlinear biochemical circuits that function as approximate proportional, integral and deri-

vate controllers, respectively. Given the nonlinearities introduced by feedback loops, we use

the linear noise approximation method [63, 64] to investigate their noise suppression proper-

ties, and validate the results by performing exact stochastic simulations of the feedback system.

2 Results

Symbols and Notation: Throughout the paper we denote chemical species by capital letters,

and use corresponding small letters for molecular counts. For example, if Y denotes a protein

species, then y(t) is the number of molecules of Y at time t inside the cell. We use angular

brackets to denote the expected value of random variables and stochastic processes. Given a

Fig 1. Schematic of the gene expression process, where a gene is transcribed to produce mRNAs. Each mRNA is

subsequently translated to synthesize protein Y molecules. The expression process is impacted by an upstream external

disturbance. Proportional-integral-derivative (PID) controllers can be designed to minimize fluctuations in Y copy

number around a desired set point.

https://doi.org/10.1371/journal.pcbi.1009249.g001
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scalar random process y(t) 2 {0, 1, 2, . . .} that takes non-negative integer values, then

hyðtÞmi≔
X1

i¼0

imPðyðtÞ ¼ iÞ; m 2 f1; 2; . . .g ð1Þ

represent its mth order uncentered moment and PðyðtÞ ¼ iÞ is the probability of having i mole-

cules. Steady-state statistical moments are denoted by

hymi≔ lim
t!1
hyðtÞmi: ð2Þ

Finally, noise in the level of protein species is quantified by the steady-state coefficient of varia-

tion squared (variance divided by mean squared) that is defined as

CV2
Y ≔
hy2i � hyi

2

hyi
2

: ð3Þ

2.1 Systems modeling of gene expression

We start by introducing simple models of the gene expression process with a particular focus

on incorporating noise mechanisms that drive fluctuations in the level of a protein.

2.1.1 Incorporating bursty dynamics. Usually in eukaryotes, transcription of individual

genes inside single cells has been shown to occur in bursts of activity, followed by periods of

silence [62, 65–69]. Each burst corresponds to the gene stochastically switching to a transcrip-

tionally active state, and then becoming inactive after synthesizing a few messenger RNA

(mRNA) transcripts. Such bursts in mRNA can result in the burst of protein copy number as

well. In prokaryotes, however, the burst mechanism could be different. The mRNAs are typi-

cally unstable with short half-lives compared to proteins they encode, and consequently each

mRNA decays after translating a burst of few protein molecules [70, 71]. The combined effect

of both these processes (single gene making multiple mRNAs, single mRNA making multiple

proteins) is to create a net burst of protein molecules, every time the gene becomes active.

Motivated by these experimental findings, we phenomenologically model protein copy-num-

ber fluctuations via a bursty birth-death process [72–76]. More specifically, bursts arrive at a

constant Poisson rate ky that corresponds to the frequency with which the gene becomes

active. Each burst arrival event, results in the synthesis of By 2 {1, 2, . . .} protein molecules,

where the burst size By is an independent and identically distributed random variable that is

drawn from an arbitrary positively-valued probability distribution.

Let y(t) denote the intracellular copy number of protein Y at time t. Then, based on the

above model description, the probability of a burst event of size By = j molecules occurring in

the next infinitesimal time interval (t, t + dt] is

Pðyðt þ dtÞ ¼ yðtÞ þ jjyðtÞÞ ¼ kyPðBy ¼ jÞdt: ð4Þ

Assuming each protein molecule decays with a constant rate γy, defines the probability for the

protein death event occurring in the time interval (t, t + dt] as

Pðyðt þ dtÞ ¼ yðtÞ � 1jyðtÞÞ ¼ gyydt: ð5Þ

Having defined an integer-valued continuous-time Markov process y(t) via the probabilities

(4) and (5), we now focus our attention on its statistical moments. We refer the reader to [77–

80] for a thorough analysis of moment dynamics for stochastic systems of the form (4) and (5),
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and only provide the main result here—the time evolution of the expected value of y(t)m is

given by

dhyðtÞmi
dt

¼ hGðyÞi; m 2 f1; 2; . . .g ð6Þ

where the infinitesimal generator G takes the form

GðyÞ≔
X1

j¼0

kyPðBy ¼ jÞ½ðyþ jÞm � ym� þ gyy½ðy � 1Þ
m
� ym�: ð7Þ

Intuitively, the right-hand-side of (7) is simply the product of the change in ym when an event

occurs and the probabilistic rate at which it occurs, summed across all possible events. Substi-

tuting the appropriate value of m in (6) yields the following moment dynamics

dhyi
dt
¼ kyhByi � gyhyi ð8aÞ

dhy2i

dt
¼ gyðhyi � 2hy2iÞ þ kyhB

2

yi þ 2kyhyihByi ð8bÞ

where hByi is the mean protein burst size, and hB2
yi is its second-order moment. Subsequent

steady-analysis of (8) reveals the protein mean and noise levels to be

hyi ¼
kyhByi
gy

; CV2

Y ¼
hByi þ hB2

yi

2hByihyi
; ð9Þ

respectively. By = 1 with probability one leads to Poissonian fluctuations in Y copy numbers

with CV2
Y ¼ 1=hyi. If the burst size By is assumed to be a geometrically-distributed random

variable with mean burst size hByi (as shown experimentally for an E. coli gene [81]), then

hB2
yi ¼ 2hByi

2
� hByi, and the above noise levels reduce to

CV2
Y ¼
hByi

hyi
¼
gy

ky
: ð10Þ

A key point worth mentioning is that the product CV2
Y � hyi is independent of the burst fre-

quency ky, while CV2
Y in (10) is independent of the mean burst size hByi. Thus, simultaneous

measurements of both the mean and protein noise levels allows for discerning whether a

change in hyi is a result of alterations in ky or hByi. Interestingly, this noise-based method

works quite well in practice, and has successfully elucidated the bursty kinetics of several genes

[82–85]. We note that the analytical expressions for the noise obtained in this paper for various

controllers are valid for arbitrary burst size distributions. For simulations, the burst size distri-

bution is assumed to be geometric.

2.1.2 Incorporating external disturbance. Next, we introduce another important source

of stochasticity that arises from external disturbances in the protein synthesis rate. These dis-

turbances correspond to fluctuations in the abundance of enzymes, such as, transcription fac-

tors, RNA polymerases, etc. We lump these factors into a single species X and model its

stochastic dynamics via a bursty birth-death process [86], analogous to (4) and (5):

Pðxðt þ dtÞ ¼ xðtÞ þ jjxðtÞÞ ¼ kxPðBx ¼ jÞdt; ð11aÞ

Pðxðt þ dtÞ ¼ xðtÞ � 1jxðtÞÞ ¼ gxxdt: ð11bÞ
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Here kx is the Poisson arrival rate of bursts in X, Bx is the burst size, and γx is the decay rate of

X. Then, as per (9)

hxi ¼
kxhBxi
gx

; CV2

X ¼
hBxi þ hB2

xi

2hBxihxi
: ð12Þ

The time-scale for the above bursty dynamics of extrinsic factor is g� 1
x [86]. Therefore, one can

independently vary hBxi and γx to change the amplitude and time-scale of the external distur-

bance. We note, alternatively, the Ornstein-Uhlenbeck (OU) process is also used to model

extrinsic noise in the literature [87, 88].

The disturbance can be connected to the synthesis of Y by redefining the frequency of pro-

tein Y bursts to be proportional to x(t), that is, by replacing ky with kyxðtÞ=hxi. This redefini-

tion includes the division by hxi to ensure that the average burst arrival rate is ky. While the

external disturbance can be incorporated in the burst size, in this paper we consider modula-

tion of burst frequency [89]. This leads to a system of coupled bursty birth-death processes

given by (11) and

Pðyðt þ dtÞ ¼ yðtÞ þ jjyðtÞ; xðtÞÞ ¼
kyx

hxi
PðBy ¼ jÞdt ð13aÞ

Pðyðt þ dtÞ ¼ yðtÞ � 1jyðtÞ; xðtÞÞ ¼ gyydt ð13bÞ

which replaces (4) and (5). The statistical moments of this joint process evolve as per

dhyðtÞm1xðtÞm2i

dt
¼ hGðy; xÞi; m1;m2 2 f0; 1; 2; . . .g

Gðy; xÞ≔
X1

j¼0

kyx

hxi
PðBy ¼ jÞ½ðyþ jÞm1xm2 � ym1xm2 �

þ
X1

j¼0

kxPðBx ¼ jÞ½ym1ðxþ jÞm2 � ym1xm2 �

þgxx½ym1ðx � 1Þ
m2 � ym1xm2 � þ gyy½ðy � 1Þ

m1xm2 � ym1xm2 �

ð14Þ

[77–80]. To write moment dynamics in a compact form we define a vector

m ¼ ½hxi; hyi; hxyi; hx2i; hy2i�
T ð15Þ

that consists of all the first and second order moments of x(t) and y(t). Then, its time evolution

is given by a system of linear differential equations

_m ¼ â þ Am; ð16Þ

where vector â and matrix A are obtained via (15) by choosing appropriate values of m1, m2.

Steady-state analysis of (16) results in the same mean Y level as (9), and the following noise

level

CV2
Y ¼ CV2

int

zffl}|ffl{
Intrinsic noise

þ
gy

ðgy þ gxÞ
CV2

X;

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
External disturbance

CV2
int ¼

hByi þ hB2
yi

2hByihyi
;

ð17Þ

that can be decomposed into two components. The first component CV2
int is the noise contri-

bution from stochastic bursts computed earlier in (9), and has been referred to in literature as
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the intrinsic noise in Y [90–94]. The second component is the noise contribution of the exter-

nal disturbance, and has been referred to as the extrinsic noise in Y. Note that the ratio γy/(γy +

γx) quantifies the time-averaging of upstream fluctuation in X by Y. For example, fast fluctua-

tions in X are efficiently averaged out by Y, and this ratio approaches zero for γx!1. In con-

trast, slow fluctuations in X lead to inefficient time-averaging that increases Y noise levels to

CV2
Y ¼ CV2

int þ CV
2
X; gx � gy: ð18Þ

Our results will remain the same, even if we model the external disturbance as an OU process

instead of the bursty process (See S1 Text section V). Next, we investigate how negative feed-

back regulation suppresses different noise components in (17) to minimize fluctuations in Y
copy numbers around it mean hyi.

2.2 Noise suppression using proportional controller

To implement a negative feedback loop, we first introduce a new protein species Z that func-

tions as a noisy sensor of Y. Protein Z is also assumed to be synthesized in bursts of size Bz,
and senses Y via its burst frequency kzy(t) that responds linearly to any changes in Y levels.

This leads to the following bursty birth-death process for z(t)

Pðzðt þ dtÞ ¼ zðtÞ þ jjyðtÞ; zðtÞÞ ¼ kzyPðBz ¼ jÞdt; ð19aÞ

Pðzðt þ dtÞ ¼ zðtÞ � 1jyðtÞ; zðtÞÞ ¼ gzzdt; ð19bÞ

where γz is the decay rate of protein Z. Recall from Section 2.1.2 that the frequency of bursts in

the Y protein was kyxðtÞ=hxi in the open-loop system. To close the feedback loop, we now

modify this burst frequency to kygðzÞxðtÞ=hxi, where g(z) is a positively-valued monotonically

decreasing function of z(t). Typically, g takes the form of a Hill function that mechanistically

arises from the fast binding-unbinding of the protein to the gene’s promoter region to regulate

transcriptional activity [95]. Within this feedback there are three noise mechanisms at play:

external disturbance X impacting synthesis of Y, expression of Y in stochastic bursts, and a

noisy sensor Z that measures Y and inhibits it (Fig 2). The overall stochastic system is given by

(11), (19) and

Pðyðt þ dtÞ ¼ yðtÞ þ jjyðtÞ; xðtÞ; zðtÞÞ ¼
kygðzÞx

hxi
PðBy ¼ jÞdt ð20aÞ

Pðyðt þ dtÞ ¼ yðtÞ � 1jyðtÞ; xðtÞ; zðtÞÞ ¼ gyydt: ð20bÞ

2.2.1 Analysis of mean levels. At equilibrium, the mean levels of the random processes x
(t), y(t) and z(t) satisfy

hxi ¼
kxhBxi
gx

; hzi ¼
kzhBzihyi

gz
;

kyhgðzÞxihByi

hxi
¼ gyhyi: ð21Þ

Assuming copy-number fluctuations are tightly regulated by the feedback system, and that
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they are small,

hgðzÞxi
hxi

�
hgðzÞihxi
hxi

¼
gðhziÞhxi
hxi

¼ gðhziÞ: ð22Þ

Given that g(z) is a positively-valued monotonically decreasing function, using (21) and

(22), the steady-state mean level of Y is the unique solution to the equation

kyg
kzhBzihyi

gz

 !

hByi ¼ gyhyi: ð23Þ

Having solved for the means, the burst frequency of Y can now be approximated using Taylor

series as

kygðzÞx=hxi � kygðhziÞ
x
hxi
� fp

z � hzi
hzi

 !

ð24Þ

where

fp≔ �
hzi

gðhziÞ
dgðzÞ
dz

�
�
�
�
z¼hzi

> 0 ð25Þ

is the log sensitivity of the function g evaluated at steady state. It is important to point out that

this linearization of nonlinearities is a key element of the linear noise approximation, and is

needed to obtain closed-form solutions to the noise levels [63, 64, 96, 97]. Formulas obtained

using this approximation are exact in the limit of small noise, and provide analytical insights

into the regulation of noise levels. To see how fp is regulated by different parameters consider a

Hill function for the repression curve

gðzÞ ¼
1

1þ ðz=zcÞ
h ð26Þ

Fig 2. Implementation and noise decomposition for a proportional feedback controller. (a) Schematic of a proportional controller where the protein Y is sensed by

a noisy sensor Z that inhibits the synthesis of Y. (b) Different components in the noise levels of protein Y from (30) plotted as a function of the feedback gain fp. While

feedback selectively attenuates noise due to external disturbance and stochastic expression of Y, it amplifies the sensor noise, leading to a non-monotonic profile for the

total noise. The noise contribution from the external disturbance decreases rapidly as a function of fp and approaches zero for fp!1. In contrast, the intrinsic noise

decreases slowly and asymptotically approaches a non-zero limit. In this plot, noise levels are normalized to the open-loop noise (fp = 0), with other parameters chosen

as CV2
Z ¼ 0:4, CV2

int ¼ CV2
X ¼ 0:2, γz = 5γy = 15γx. (c) The normalized total noise in Y from (30) with respect to the feedback gain fp for different levels of sensor noise.

The total noise CV2
Y is minimized at an optimal feedback gain, which critically depends on the extent of sensor noise CV2

Z .

https://doi.org/10.1371/journal.pcbi.1009249.g002
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where zc denotes the strength of the repression of Y by Z. In this case the feedback gain is given

by

fp ¼ h 1 �
1

1þ ðhzi=zcÞ
h

 !

ð27Þ

and is bounded by the Hill coefficient h. As can be seen in this equation, fp can be increased in

three different ways: increasing h; increasing the mean sensor level hzi; and enhanced repres-

sion of Y by Z (lower zc). Since ky does not affect fp, it can be modulated to bring the output

mean level Y to the desired set point.

Note that if the sensor dynamic is very fast compared to the measurand Y (i.e., γz� γy),

then z(t)/ y(t), and the burst frequency in (24) will be proportional to the error y � hyi.
Hence, this circuit architecture can be interpreted as an approximate proportional controller

with feedback gain fp. Finally, if we consider the parameter ky in Y’s burst frequency as an envi-

ronmental input, then one can define a static sensitivity of hyi to ky

Shyiky ≔
ky
hyi

dhyi
dky

ð28Þ

which using (21) and (25) is given by

Shyiky ¼
1

1þ fp
ð29Þ

and monotonically decreases with increasing gain. Note for the open-loop system fp = 0 and

Shyiky ¼ 1 as mean hyi is simply proportional to ky from (9).

2.2.2 Analysis of noise levels. Next, we focus on computing the noise levels in Y for the

overall feedback system. As before, we define a vector μ that consists of all the first and second

order moments of x(t), y(t) and z(t). The time evolution of μ can be obtained by expanding

(15) to the three-species system, where Y’s nonlinear burst frequency is replaced by its linear

approximation (24). Having linear probabilistic rates for all birth-death events results in a lin-

ear dynamical system (16) that can be solved analytically to obtain steady-state moments [80].

This analysis yields the following noise level for protein Y

CV2
Y ¼

ðgy þ fpgy þ gzÞ
ðfp þ 1Þðgy þ gzÞ

CV2

int

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Intrinsic noise

þ
gyððgz þ gyÞðgx þ gzÞ þ gxgyfpÞ

ð1þ fpÞðgy þ gzÞððgx þ gyÞðgx þ gzÞ þ gygzfpÞ
CV2

X

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
External disturbance

þ
f 2
p gy

ðfp þ 1Þðgy þ gzÞ
CV2

Z

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Sensor noise

ð30Þ

which can be decomposed into three components. The first component is the intrinsic noise

in Y due to its bursty expression, and it decreases with increasing feedback gain fp approaching

a non-zero lower bound gyCV2
int=ðgy þ gzÞ as fp!1. This lower bound represents a funda-

mental limit to which intrinsic noise can be decreased, and this limit is determined by how fast

the sensor dynamics is compared to Y’s decay rate. The second component is the noise contri-

bution from the external disturbance that monotonically decreases to zero as fp!1. The
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third component arises from the fact that the sensor Z is itself noisy, where

CV2
Z ¼
hBzi þ hB2

zi

2hBzihzi
ð31Þ

is the noise in Z due to its own expression occurring in random bursts. This third component

is amplified with increasing feedback gain, and as a consequence, the total noise CV2
Y is a non-

monotonic function of fp with noise being minimal at an optimal feedback gain (Fig 2). The

trade-off between buffering of intrinsic noise and amplification of controller noise is also

observed in other biomolecular feedback systems [97]. When fp = 0, (30) reduces to the open-

loop noise (17). Recall that the noise formula (30) is based on the linear noise approximation,

and we validate the predicted U-shape noise profile by performing Monte Carlo simulations of

the fully stochastic nonlinear system (see S1 Text section I for details).

If the sensor dynamics is sufficiently fast (γz� γy), and the time-scale of disturbance fluctu-

ations are slow (γx� γy), then (30) simplifies to

CV2
Y ¼

1

1þ fp
CV2

int

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
Intrinsic noise

þ
1

ð1þ fpÞ
2
CV2

X

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{
External disturbance

þ
f 2
p gy

ðfp þ 1Þgz
CV2

Z:

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
Sensor noise

ð32Þ

Furthermore, in the absence of the sensor CV2
Z ¼ 0, the resulting noise level (32) corresponds

to the scenario where Y directly inhibits its expression [38], and in this case CV2
Y monotoni-

cally decreases with increasing fp. Note that the contribution from external disturbance

decreases as 1=f 2
p compared to 1/fp for the intrinsic noise. Hence, proportional feedback is

much more effective in buffering stochasticity from external inputs rather than the intrinsic

noise. This point relates to the static sensitivity Shyiky ¼ 1=ð1þ fpÞ defined in (28), where

increasing feedback gain suppresses noise, but it comes at the loss of adapting Y levels to

changes in the environmental input. Finally, further assuming a strong feedback fp� 1 in

(32), the optimal feedback gain and the corresponding minimal noise level are

fp ¼
2CV2

Xgz
CV2

Zgy

 !1
3

; CV2
Y ¼ 3

CVXCV2
Zgy

2gz

� �2
3

when CV2
int ¼ 0 ð33Þ

fp ¼
CVint

CVZ

ffiffiffiffi
gz
gy

s

; CV2

Y ¼ 2CVintCVZ

ffiffiffiffi
gy

gz

r

when CV2

X ¼ 0; ð34Þ

respectively. In summary, while previous works on transcriptional autoregulation have shown

monotonically decreasing noise levels with increasing feedback gains [38], implementation of

proportional feedback by an intermediate sensor species results in a U-shape noise profile (Fig

2). More specifically, noise from the sensor is amplified at high feedback gains creating a lower

limit to which noise can be suppressed as quantified in (33) and (34). Substituting the expres-

sions of CVint and CVZ for geometric burst size distributions (see (10)), the lower limit of noise

without external disturbance in (34) can be rewritten as

CV2
Y ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hyi
hByi

 !
gzhzi
gyhBzi

 !v
u
u
t

;

ð35Þ
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where hyi=hByi and gzhzi=ðgyhBziÞ represent the average number of burst events within the

timescale of g� 1
y for the target and controller gene respectively. Note that the noise decays as a

square root of the number of burst events for controller species Z and target species Y. This is

the same scaling as the fundamental limit of noise suppression in gene expression for any arbi-

trary controller that was recently quantified [97].

2.3 Noise suppression using integral controller

Several biochemical designs of integral feedback controllers have been proposed [98–100], and

experimentally implemented in bacterial cells for perfect adaptation in response to environ-

mental perturbations [56]. Naturally existing circuits implementing integral feedback play a

key role in regulating cellular heat shock responses [58, 59], and bacterial chemotaxis [60, 61].

We use the stochastic framework to uncover the impact of integral feedback on different noise

components of the target protein.

2.3.1 Integral controller design. We consider the simplest controller design where an

integrator species Z is activated by the target protein Y, and degrades via a zero-order decay

process (Fig 3). More specifically, in the deterministic limit the dynamics of z is given by

dzðtÞ
dt
¼ kzðyðtÞ � hyiÞ; ð36Þ

where the net decay of Z per unit time is a constant and equal to kzhyi, leading to an integra-

tion of the error between y(t) and its given target set point hyi. The realization of such a

scheme follows straightforwardly from Michaelis-Menten enzyme kinetics. Inside cells pro-

teins are actively degraded by enzymes known as proteases. When the enzyme is present in

high abundance compared to the substrate (protein Z), then decay is a first-order process that

is proportional to the protein level z(t). In contrast, when the substrate is present in sufficiently

high abundance, then decay follows a zero-order process that becomes invariant of the protein

level, and is determined by the enzyme level. In essence, the rate-limiting enzyme sets the con-

stant decay in (36), which in turn determines the target protein’s set point.

An alternative implementation is proposed in [98] with deterministic dynamics

dzðtÞ
dt
¼ kzzðtÞ hyi � yðtÞ

� �
ð37Þ

that is realized by Z activating its own expression, and Y degrading Z via a first-order process.

It turns out that both these implementations lead to similar noise levels in the target protein,

and we focus our efforts on the simpler implementation through a zero-order decay.

2.3.2 Analysis of noise levels. In the stochastic setting of (36), the time evolution of inte-

ger-valued z(t) is modeled as a bursty birth-death process

Pðzðt þ dtÞ ¼ z þ jjzðtÞ ¼ zÞ ¼
kzy
hBzi
PðBz ¼ jÞdt; ð38aÞ

Pðzðt þ dtÞ ¼ z � 1jzðtÞ ¼ zÞ ¼ kzhyidt ð38bÞ

with the degradation-event probability now being a constant and proportional to the target

protein’s desired set point. As before, we redefine the burst frequency of Y to be

kygðzÞxðtÞ=hxi to include the repression by Z, where g(z) is a positively-valued monotonically

decreasing function of z(t). The stochastic dynamics of y(t) and the external disturbance x(t)
are given by (20) and (11), respectively. Exploiting the linear noise approximation, we linearize
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Y’s burst frequency

kygðzÞx=hxi � kygðhziÞ
x
hxi
� fi

z � hzi
hzi

 !

ð39Þ

fi≔ �
hzi

gðhziÞ
dgðzÞ
dz

�
�
�
�
z¼hzi

> 0 ð40Þ

Fig 3. Implementation and noise decomposition for an integral feedback controller. (a) Design of an integral controller where the target protein Y activates an

integrator species Z, Z degrades via a zero-order decay process (36) and inhibits the expression of Y. (b) Total noise in the target protein (42), and its different noise

components as a function of the integral feedback gain. Integral feedback suppresses the noise contribution from external disturbance while keeping the intrinsic noise

intact to its open-loop value. The noise contribution from the integrator increases with feedback gain and the total noise is minimized at an intermediate feedback

gain. All noise levels are normalized to the total noise at fi = 0. c) The external noise contribution in (42) varies non-monotonically as a function of the normalized

time-scale of disturbance fluctuations γy/γx for different feedback gains. Other parameters taken as CV2
X ¼ 0:5, kz = γy, hzi=hyi ¼ 1. (d) The total normalized noise in

Y with respect to the feedback gain for different integrator noise CV2
Z . For this plot parameters taken as CV2

X ¼ 0:5, γy = 3γx and CV2
int ¼ 0:2.

https://doi.org/10.1371/journal.pcbi.1009249.g003
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where fi is the integral feedback gain, and hzi is the unique solution to

kygðhziÞhByi ¼ gyhyi: ð41Þ

Note by integral feedback design the mean levels of y(t) converge to hyi over time, hence the

static sensitivity of hyi to ky is Shyiky ¼ 0.

Performing a stochastic analysis as described in the previous section yields the following

steady-state noise level in the target protein

CV2
Y ¼

hzigxgy
ðhyifikzgy þ hziðgygx þ g2

xÞÞ
CV2

X

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
External disturbance

þ fiCV
2

Z

zfflffl}|fflffl{
Integrator

þ CV2

int

zffl}|ffl{
Intrinsic noise

ð42Þ

where CV2
int and CV2

Z are given by (17) and (31), respectively.

The first noise component in (42) represents the noise contribution from the external dis-

turbance, and interestingly, it varies non-monotonically with the time-scale of disturbance γx
(Fig 3). With increasing γx, CV2

Y first increases to reach a maximum when

gx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kzfihyigy
hzi

s

; ð43Þ

and then decreases to zero as γx is increased beyond (43). This behavior can be contrasted to

the open-loop system (17) where this noise component monotonically decreases to zero with

increasing γx. Intuitively, the non-monotonicity arises because the integral feedback is able to

compensate slowly-varying disturbances allowing adaptation of y(t) to hyi, while rapidly-vary-

ing disturbances are effectively buffered by time averaging as in the open-loop system. The sec-

ond noise component in (42) represents the contribution from Z’s stochastic expression, and

it increases with stronger feedbacks due to enhanced noise propagation from Z to Y. Finally,

the intrinsic noise in the target protein remains unaltered by integral feedback. For slowly-

varying disturbances (γx! 0), (42) reduces to

CV2
Y ¼

hzigx
hyifikz

CV2

X

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
External disturbance

þ fiCV
2

Z

zfflffl}|fflffl{
Integrator

þ CV2

int

zffl}|ffl{
Intrinsic noise

ð44Þ

illustrating the differential scaling of noise components with fi (Fig 3). In this limit, the mini-

mal noise level

CV2
Y ¼ 2

ffiffiffiffiffiffiffiffiffiffi
hzigx
hyikz

s

CVXCVZ þ CV2
int ð45Þ

is achieved at an optimal feedback gain

fi ¼

ffiffiffiffiffiffiffiffiffiffi
hzigx
hyikz

s
CVX

CVZ
: ð46Þ

Note that the minimal noise scales as CV2
Y / CVX for integral feedback, but scales as CV2

Y /

CV
2
3
X for proportional feedback in (33). Thus, while the proportional feedback may provide bet-

ter scaling of CV2
Y with CVX, the scaling factor for integral feedback can be arbitrarily reduced

by increasing kz.
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The alternative implementation of integral feedback (37) leads to similar noise level

CV2
Y ¼

gxgy

ðhyifikzgy þ gygx þ g2
xÞ
CV2

X

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
External disturbance

þ fiCV
2

Z

zfflffl}|fflffl{
Integrator

þ CV2

int

zffl}|ffl{
Intrinsic noise

ð47Þ

with the only difference being in some proportionality constants to match dimensionality in

the first noise component. In summary, the results show that an integral controller selectively

buffers the noise from external disturbance while amplifying the noise from the controller,

and the noise buffering is most effective for a slowly-varying external disturbance [60]. Finally,

we point out that the predicted U-shape noise profile in Fig 3B is confirmed using stochastic

simulations of the nonlinear integral feedback design (see S1 Text section I for details).

2.4 Noise suppression using derivative controller

Having completed the analysis for proportional and integral controllers we next turn our

attention to a derivative controller.

2.4.1 Derivative controller design. How can biochemical circuits be designed to approxi-

mately sense the derivative of y(t)? To see this, consider the sensor dynamics in the determin-

istic limit

dzðtÞ
dt
¼ kzhBziyðtÞ � gzzðtÞ ð48Þ

which in the Laplace domain corresponds to

ZðsÞ ¼
kzhBziYðsÞ
sþ gz

¼
hzi
hyi

YðsÞ
s
gz
þ 1

: ð49Þ

Here Z(s) and Y(s) are the Laplace transforms of z(t) and y(t), respectively, and we have used

the fact that at equilibrium hzi=hyi ¼ kzhBzi=gz. The burst frequency function g(y, z) must

obey particular parametric constraints to act as a derivative controller (see S1 Text section III

for details). In this manuscript, we consider the scenario where Y inhibits its own burst fre-

quency and Z activates it (Fig 4). A general form for g(y, z) is given by the product of activation

and repression Hill functions [95] as

gðy; zÞ ¼
ðz=zcÞ

hz

1þ ðz=zcÞ
hz

 !
1

1þ ðy=ycÞ
hy

 !

: ð50Þ

Here, yc and zc are the levels of Y and Z for the half-maximal repression and half-maximal acti-

vation, while the Hill coefficients are hy and hz respectively. For strong binding affinity of Y
and weak affinity of Z represented by yc � hyi and zc � hzi, we get the relationship that the

Hill coefficients must be same hz = hy = h for derivative control [95, 101]. The subsequent

form of the burst frequency function being proportional to (z/y)h leads to a simpler analysis in

terms of number of parameters. An arbitrary choice of hy, hz, yc, and zc can lead to a combina-

tion of derivative and proportional controllers (see S1 Text section III for details) Then, in the

limit of small fluctuations in z(t), y(t) around hzi, hyi, respectively,

z
y

� �h

�
hzi
hyi

 !h

� h
hzi
hyi

 !h
z
hzi
�

y
hyi

 !

: ð51Þ
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Using (49) and assuming γz is large (i.e., fast sensor dynamics), the Laplace transform of the

right-hand-side of (51) is

h
hzi
hyi

 !h
ZðsÞ
hzi
�
YðsÞ
hyi

 !

¼ �
hzi
hyi

 !h
hsYðsÞ
hyiðsþ gzÞ

 !

ð52aÞ

� �
hzi
hyi

 !h
hsYðsÞ
hyigz

 !

: ð52bÞ

Recall that sY(s) is the Laplace transform of the time derivate of y(t), and hence in the time-

domain, the burst frequency (51) corresponds to implementing a derivative controller. Going

back to the original stochastic system, let the frequency of bursts in the Y protein be given by

kyx=hxiðz=yÞ
h
. Then, as the ratio hzi=hyi ¼ kzhBzi=gz becomes a constant at steady-state, the

mean protein level for Y

hyi ¼
kyhByi
gy

z
y

� �h

�
kyhByi
gy

hzi
hyi

 !h

¼
kyhByi
gy

kzhBzi
gz

� �h

ð53Þ

is proportional to ky and the sensitivity Shyiky ¼ 1 as in the open-loop system. Note that unlike

the proportional controller design in Fig 2, here we have Z activating Y’s expression, while Y
inhibits its own expression. This dual-control of expression using both species is a critical fea-

ture of the derivative controller that allows an estimate of the rate of change of the output by

performing a molecular subtraction of the current output (Y) with the delayed output (Z).

2.4.2 Analysis of noise levels. To perform a noise analysis of the derivative controller-

based feedback system, we revert to the noisy sensor Z described by the bursty birth-death

Fig 4. Implementation and noise decomposition for a derivative-based controller. (a) Schematic of the derivative controller where Y activates the sensor Z, Z
activates the burst frequency of Y, while Y represses its own burst frequency (b) Different noise components in (57) are plotted as a function of the derivative feedback

gain fd. Noise levels are normalized by the open-loop noise (17) and other parameters are chosen as CV2
int ¼ 0:25, CV2

Z ¼ 0:1, CV2
X ¼ 0:7, gx ¼

1

5
gy, γz = 3γy. While

both the intrinsic noise, and the noise contribution from the external disturbance decrease with increasing fd, the noise contribution from the sensor increases. In

contrast to the proportional feedback, the intrinsic noise decreases faster than the disturbance contribution. (c) The noise in Y as a function of the derivative feedback

gain fd emphasizes the nonmonotonic noise profile for different levels of sensor noise CV2
Z .

https://doi.org/10.1371/journal.pcbi.1009249.g004
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process (19). The stochastic dynamics of protein Y is now described by

Pðyðt þ dtÞ ¼ yðtÞ þ jjyðtÞ; xðtÞ; zðtÞÞ ¼ ky
x
hxi

z
y

� �h

PðBy ¼ jÞdt ð54aÞ

Pðyðt þ dtÞ ¼ yðtÞ � 1jyðtÞ; xðtÞ; zðtÞÞ ¼ gyydt: ð54bÞ

As before, the external disturbance is described by (11). To write a closed systems of differen-

tial equations for the time evolution of moments, we linearize protein Y’s burst frequency

assuming small copy-number fluctuations

ky
x
hxi

z
y

� �h

� ky
hzi
hyi

 !h
x
hxi
þ
fdgz
gy

z
hzi
�

y
hyi

 ! !

ð55Þ

where

fd≔
hgy
gz
> 0: ð56Þ

is the derivative feedback gain. A steady-state analysis of the resulting linear moment dynamics

yields the following noise in protein Y

CV2
Y ¼

ðgy þ gzÞ

gy þ gzfd þ gz
CV2

int

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Intrinsic noise

þ
gyðgyðgx þ gzÞ þ gzðgx þ gz þ gzfdÞÞ

ðgy þ gzfd þ gzÞðgyðgx þ gzÞ þ gxðgx þ gzfd þ gzÞÞ
CV2

X

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
External disturbance

þ
f 2
d g

2
z

gyðgy þ gzfd þ gzÞ
CV2

Z:

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Sensor noise

ð57Þ

Analysis of the resulting noise components reveals that both the intrinsic noise, and the noise

contribution from the external disturbance, decrease with increasing gain fd, with the former

showing a much faster decay (Fig 4). The noise contribution from the sensor amplifies with

increasing feedback gain resulting in the total noise CV2
Y being minimized at an intermediate

gain (Fig 4). In comparison to the proportional and integral controllers, if adaptation of Y level

to the environmental input is desired, then the derivative controller is optimal as it offers quali-

tatively similar noise buffering without affecting static sensitivity. This is because in the pro-

portional controller, sensitivity reduces with increasing feedback strength as in (29) and in the

integral controller, the sensitivity is zero. In the limit of slow fluctuations in the external distur-

bance γx� γy, γz, the above noise level simplifies to

CV2
Y ¼

ðgy þ gzÞ

gy þ gzfd þ gz
CV2

int

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Intrinsic noise

þ CV2

X

zffl}|ffl{
External disturbance

þ
f 2
d g

2
z

gyðgy þ gzfd þ gzÞ
CV2

Z

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Sensor noise

ð58Þ

showing the derivative controller’s inability to reject low-frequency external disturbances.

Finally, assuming no external disturbance (CV2
X ¼ 0), we verify the ability of a derivative con-

troller to minimize intrinsic noise in Y by performing exact Monte Carlo simulations based on

the Stochastic Simulation Algorithm (SSA) [102]. Stochastic simulation results of the overall

nonlinear feedback system are shown in Fig 5, and the noise levels show a good match with the

formula (57) confirming the noise suppression abilities of a derivative controller.
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3 Discussion

While PID controllers have become quite standard in industry, designing biochemical circuits

that perform analogous functions inside cells is a highly nontrivial problem. Generally, con-

trollers operate with all PID components as they are designed considering multiple constraints

(system stability, transient response, disturbance rejection, error between measured and

desired output). However, in this contribution we have focused on a single output—minimiz-

ing deleterious fluctuations in the protein level around a desired set point. To obtain insights

into this process, we investigate controllers individually and gauge their performance with

respect to noise mitigating.

Here we present simple circuits that function as approximate PID controllers assuming

fluctuations in molecular counts are small around their respective means. Analytical formulas

for protein noise levels were obtained using the linear noise approximation, and while these

formulas are exact in the small-noise regime, they may provide poor quantitative fits in

Fig 5. A derivative-based controller minimizes stochastic fluctuations in protein levels. Noise in the level of protein Y as obtained by performing

exact Monte Carlo simulations of the nonlinear feedback system (19) and (54) with h = 1 and no external disturbance x ¼ hxi with probability one.

Other parameters are taken as ky = 2, γy = 0.2, hByi = 20, hBzi = 1, kz = γz, with burst sizes following a shifted geometric distribution (see S1 Text section

I). In this case, γz was varied to change the gain fd as per (56). The noise level obtained by running a large number of Monte Carlo simulations match

their analytical estimates in (57).

https://doi.org/10.1371/journal.pcbi.1009249.g005
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parameter regimes leading to large fluctuations in species copy numbers (see S1 Text section I

and II for details).

The realization of an approximate proportional controller can arise in naturally occurring

autorepressive motifs which are abundant in E. coli [48, 103]. In this case, the feedback system

has two species, mRNA and the protein translated from it. The protein then acts like the sensor

species (Z) actuating proportional control of mRNA levels with mRNA being the target species

(Y). Our analysis of biochemically-implemented proportional feedback reveals the following

properties:

• Proportional feedback is more efficient in suppressing stochasticity arising from noisy input

signals, compared to noise arising from protein expression occurring in random bursts

(Fig 2).

• Any form of measurement noise (for example, due to stochastic expression of the sensor

protein), leads to an optimal feedback gain for minimizing total protein noise via a U-shape

profile. A similar U-shaped curve for noise in gene expression is observed in experiments

with increasing feedback strength, which is reminiscent of the trade-off between buffering of

intrinsic noise and amplification of sensor noise (Fig 2B) [37].

• Consistent with prior work [104], noise suppression in the proportional feedback circuit

comes at the cost of reduced static input-output sensitivity, i.e., the protein levels are pre-

cisely regulated for a given environment, but do not respond to new environments.

• For our specific proportional controller, the minimum target protein noise obeys the funda-

mental limit of noise suppression obtained in [97] for an arbitrary controller (see (35)).

Integral controllers are commonly found in natural regulatory circuits and known for their

robust adaptive response [58, 61]. They also have been recently implemented in synthetic cir-

cuits [56, 57]. However, the stochastic behaviour of the integral controller is not clear. Here,

we have shown that, in contrast to proportional feedback controllers, integral controllers are

highly efficient in suppressing slow external disturbances, and have no impact on the noise

contribution from Y’s bursty expression (Fig 3). Interestingly, the noise contribution from

external disturbances was found to be maximized at intermediate frequencies of the distur-

bance. While the above analysis was restricted to single controllers, it begs the question if a

combination of different controllers can provide better noise suppression. Our analysis of a PI

(mixture of proportional and integral) controller shows that in the presence of extrinsic noise

a PI controller provides better noise suppression compared to individual controllers (see S1

Text section II for details).

The derivative controllers are not well known in biology. Biochemical designs of derivative

control have been proposed in theoretical works [62]. The purpose of derivative controller is

to buffer fast changing disturbances by estimating of the rate of change of the output. In our

work, this rate of change is estimated by performing a molecular subtraction of the current

output (Y) with the delayed output (Z), which is an important feature of incoherent feedfor-

ward loops. Incoherent feedforward loops have two arms, one repressing and one activating a

target species. One of the arms contains an intermediate species while the other is a direct reg-

ulation of the target species. The existence of the intermediate species creates a delay in target

species regulation with respect to the direct regulation creating the aforementioned molecular

subtraction. Typically in the feedforward configuration, the source of the regulation is different

from the target species. However, in this work we consider the simplified case where incoher-

ent regulation is fed back on to Y itself to give derivative action. Incoherent feedforward motifs

are known to be abundant in E. coli and higher organisms [105–108]. One can speculate that
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at least some of these motifs are part of feedback circuits, however a rigorous bioinformatic

analysis would have to be done to show this. Intriguingly, our analysis shows that this control-

ler suppresses intrinsic noise in the protein while preserving the open-loop static input-output

sensitivity (see (Eq 53)). Intuitively, any rapid increase in protein levels due to a random burst

is compensated by lowering the frequency of subsequent bursts. We confirmed our small-

noise analysis results with exact Monte Carlo simulations of the nonlinear feedback system

(Fig 5).

The feedback gain in the controllers depends mainly on the two circuit elements: the Hill

coefficient h, denoting the sensitivity of the regulation of Y by Z and the mean level of the sen-

sor species hzi, reflecting the strength of Y! Z activation. In the above noise plots, we, how-

ever, have kept hzi constant and have mainly varied h. Alternatively, one could also change hzi
to vary the feedback gain. A natural question arises: Do the noise properties of Y depend on

the way feedback gain is varied? To understand the effect of Y! Z activation strength, we plot

the target protein noise as a function of hzi for all the controllers (see S1 Text section IV for

details). We observe that the proportional controller mostly acts as a noise buffer as a function

of hzi, except for a large h value where increasing hzi enhances the sensor noise contribution.

In the case of integral controller, increasing Y to Z activation strength is not that effective to

reduce the noise in the target protein as the increment of hzi can lead to enhancement of both

the sensor and extrinsic noise components. For the derivative controller, the target noise

reduces asymptotically with hzi. However, the controller is ineffective in buffering intrinsic

noise component by increasing hzi compared to increasing h as this noise remains unchanged.

Thus, the increment of activation strength of Y to Z or the repression Hill coefficient can

reduce the total target protein noise in a range of parameter values and their noise reduction

ability depends on the context.

As part of future work, we will investigate design of controller that consider a combination

of proportional, integral and derivative controllers for regulating multiple system properties at

the same time, for example maintaining a given static input-output sensitivity, noise in the tar-

get protein, transient response, and noise propagation to downstream proteins. Our study of

the derivative controller has a limitation as the Hill coefficient is the only tunable parameter

for feedback gain. This is because of our specific choice of the burst frequency function of Y
has the same Hill coefficients for both activation and repression in the weak binding limit of Z
and strong binding limit of Y to the Y promoter. While this choice gives us theoretical insights

through simple analytical expressions of noise, the analysis with multiple tunable parameters

(as in [62, 109]) is a matter of our future study. Another direction is to study information pro-

cessing in biochemical controllers using the framework of channel capacity, i.e., how many

input states can be accurately discriminated form a noisy output of the target protein. Our pre-

liminary work shows that proportional controllers decreases channel capacity in spite of noise

suppression due to the reduced input-output sensitivity [110].

Supporting information

S1 Text. Supplementary text includes I) Comparison of analytical results with stochastic

simulations; II) Stochastic simulation for a P and I combination circuit; III) Parametric

constraints for derivative control; IV) Noise plots with changing feedback gain via Y to Z
activation strength; V) Considering external disturbance as an OU process. In addition, Fig

A shows the analytical vs simulation results for the proportional controller, Fig B shows the

analytical vs simulation results for integral controller, and Fig C shows the simulation results

for the combined circuit of proportional and integral controller. Fig D shows the effect of
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changing the activation of Z by Y on total noise.

(PDF)
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