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Abstract: Filtering and smoothing algorithms are key tools to develop decision-making strategies and
parameter identification techniques in different areas of research, such as economics, financial data
analysis, communications, and control systems. These algorithms are used to obtain an estimation
of the system state based on the sequentially available noisy measurements of the system output.
In a real-world system, the noisy measurements can suffer a significant loss of information due
to (among others): (i) a reduced resolution of cost-effective sensors typically used in practice or
(ii) a digitalization process for storing or transmitting the measurements through a communication
channel using a minimum amount of resources. Thus, obtaining suitable state estimates in this
context is essential. In this paper, Gaussian sum filtering and smoothing algorithms are developed
in order to deal with noisy measurements that are also subject to quantization. In this approach,
the probability mass function of the quantized output given the state is characterized by an integral
equation. This integral was approximated by using a Gauss–Legendre quadrature; hence, a model
with a Gaussian mixture structure was obtained. This model was used to develop filtering and
smoothing algorithms. The benefits of this proposal, in terms of accuracy of the estimation and
computational cost, are illustrated via numerical simulations.

Keywords: state estimation; quantized data; Gaussian sum filtering; Gaussian sum smoothing;
Gauss–Legendre quadrature

1. Introduction

It is well known that discrete-time dynamical systems can be described as first-order
difference equations relating internal variables called states [1]. State estimation is a sci-
entific discipline that studies methodologies and algorithms for estimating the state of
dynamical systems from input–output measurements [2,3]. There are a variety of applica-
tions that use state estimation, such as control [4–7], parameter identification [8–10], power
systems [11,12], fault detection [13–17], prognosis [18,19], cyber–physical systems [20],
hydrologic and geophysical data assimilation [21,22], maritime tracking [23], consensus-
based state estimation using wireless sensor networks [24–26], navigation systems [27], and
transportation and highway traffic management [28–30], to mention a few. Depending on
the measurements that are used, two algorithms of state estimation can be distinguished:
filtering and smoothing. Filtering algorithms estimate the current state using measure-
ments up to the current instant, and smoothing algorithms estimate the state at some time
in the past using measurement up to the current instant [23,31].

In general, the experimental noisy data can suffer a significant loss of information in-
troduced by low-resolution and cost-effective sensors [32] in the digitalization process [33].
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Typically, the digitalization process encompasses a process known as quantization. Quanti-
zation is a nonlinear map that partitions the whole signal space and represents all of the
values in each subspace by a single one [32]. In spite of the loss of information, the benefits
of quantization have led to a number of applications in which quantized measurements
arise. This occurs due to fundamental limitations on measuring equipment and bandwidth
resources [34], digital and analog converters [35], and experimental designs where it is
necessary to quantize the data in order to store it or minimize communication resource
utilization [36]. In particular, estimation problems utilizing quantized measurements arise
in networked control over limited-/finite-capacity communication channels, where usually,
encoder–decoder state estimation schemes are used [37–40]. In addition, in order to deal
with uncertain dynamic systems, robust estimation algorithms have also been developed;
see, e.g., [37,38,41].

Currently, state estimation from quantized data has gained significant attention in a
growing number of applications such as fault detection [42,43], networked control [42,44,45],
and system identification [35,46–48]. For instance, in [49,50], Kalman-based state estimation
algorithms were developed using multiple sensors for distributed systems. In [24], a
Kalman smoothing algorithm was developed for any-time minimum-mean-squared error
optimal-consensus-based state estimation using wireless sensor networks. In [27], an
online smoothing algorithm was developed to estimate the positional and orientation
parameters of integrated navigation systems utilizing a low-cost microelectromechanical
system inertial sensor in near-real time.

In Figure 1, a usual representation of a process is shown, which is defined by the
interconnection of three blocks: (1) an actuator, (2) a process, and (3) a sensor. This
representation includes a link that can be a communication channel and a base station.
The actuator input usually comes from a control system, and the output of the process
is measured with noise by a sensor. The sensor introduces quantization to the noisy
measurements. This representation has been used for state estimation and control in a
microgrid with multiple distributed energy resources, where a dequantizer is used to
reconstruct the received signal and then perform the standard Kalman filter [51]. In [42],
a fault isolation filter for a discrete-time networked control system with multiple faults
was developed using the Kalman filter, where the sensor measurements were transmitted
only when the output signal was greater than a threshold. The authors in [52] dealt with a
similar structure to the one in Figure 1 to estimate the vehicle sideslip angle of an in-vehicle
networked system with sensor failure, dynamic quantization, and data dropouts. For more
examples, see, e.g., [15,53].
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Figure 1. Diagram of a real dynamic system with quantized data.

For linear systems and Gaussian noises (without quantization), the optimal estimator
of the system state is the celebrated Kalman filter [1] and smoother [22]. However, in the
most general case, i.e., nonlinear systems and non-Gaussian noises, it is not possible to
obtain an optimal estimator because the computation of some integrals in the filtering



Sensors 2021, 21, 7675 3 of 29

and smoothing equations is difficult or the integrals are just intractable. As mentioned
above, the quantization process is a nonlinear map that results in a significant loss of infor-
mation on the system dynamics, which produces a biased state estimation and incorrect
characterization of the filtering and smoothing probability density functions (PDFs). In this
context, several suboptimal filtering and smoothing algorithms for state-space systems
with quantized data have been developed, for instance, standard- [49,54], unscented- [55],
and extended- [36] Kalman filters for quantized data, in which some structural elements of
the state-space models and the quantizer are exploited. Sequential Monte Carlo methods
have been also used for filtering and smoothing with quantized data, where complex
integrals are approximated by a set of weighted samples called particles [31], which define
(approximately) a desired PDF. However, the most common difficulty in these methods is
dealing with the quantizer model. Some approaches have been proposed for this purpose
such as gradient-based approximation of the quantizer [56] or modeling the quantizer
as uniformly distributed additive noise [32,57]. In [58], an approximation of the integral
in the non-Gaussian probability mass function (PMF) of the quantized output given the
state was proposed by using Gaussian quadrature rules in order to deal with binary data.
This approximation naturally yields an explicit Gaussian mixture model (GMM) form for
the PMF of the quantized output. In this paper, the approximation of this integral was
extended by considering a more general (finite- and infinite-level) quantizer, and it was
used to develop Gaussian sum filtering and smoothing algorithms.

Main Contributions

The main contributions of this work are:

1. Developing an explicit model (of the GMM form) for the PMF of the quantized output
considering a finite- and infinite-level quantizer, to solve in closed-form filtering and
smoothing recursions in a Bayesian framework;

2. Designing Gaussian sum filtering and smoothing algorithms to deal with quantized
data, providing closed expressions for the state estimates and for the filtering and
smoothing PDFs.

The filtering algorithm for quantized data presented in this paper includes, as a
particular case, the filtering algorithm presented in [58], where only the case of binary
data was considered. Additionally, the smoothing algorithm presented here, based on the
approximation of the PMF of the quantized output given the state, is completely novel.
The remainder of the paper is as follows: In Section 2, the problem of interest is defined.
In Section 3, the characterization and approximation of the PMF of the quantized data
given the state are presented, and using this explicit model, the Gaussian sum filtering
and smoothing algorithms are developed. In Section 4, some examples are presented to
show the benefits of this proposal in terms of accuracy and computational cost. Finally,
in Section 5, conclusions are presented.

2. Statement of the Problem
2.1. System Model

Consider the state-space model for a discrete-time linear-time-invariant system with
quantized output (see Figure 2):

xt+1 = Axt + But + wt, (1)

zt = Cxt + Dut + vt, (2)

yt = q{zt}, (3)

where xt ∈ Rn is the state vector, zt ∈ R is the nonquantized output, yt ∈ R is the quantized
output, and ut ∈ Rm is the input of the system. The matrices are A ∈ Rn×n, B ∈ Rn×m,
C ∈ R1×n, and D ∈ R1×m. The nonlinear map q{·} is the quantizer. The state noise wt ∈ Rn

and the output noise vt ∈ R are zero-mean white Gaussian noises with covariance matrix
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Q and R, respectively. The system in (1)–(2) can be described using the state transition and
conditional nonquantized output probability distributions:

p(x1) = Nx1(µ1, P1), (4)

p(xt+1|xt) = Nxt+1(Axt + But, Q), (5)

p(zt|xt) = Nzt(Cxt + Dut, R), (6)

where Nx(µ, P) represents a PDF corresponding to a Gaussian distribution with mean µ
and the covariance matrix P of the variable x. The initial condition x1, the model noise wt,
and the measurement noise vt are statistically independent random variables.

ut
System

wt vt

+ q {·}
ytzt

Figure 2. State-space model with quantized output.

2.2. Quantizer Model

Let the quantizer q{·} : R → V be a map from the real line defined by the set of
intervals {Ji ⊂ R : i ∈ I} to the finite or countable infinite set V = {βi ∈ R : i ∈ I} [59],
where I is a set of indices defined by the quantizer type. In this work, two quantizers were
considered. The first an infinite-level quantizer, in which the output of the quantizer has
infinite (countable) levels of quantization corresponding to the indices’ set:

I = {. . . , 1, 2, . . . , L, . . . }. (7)

The definition of the infinite-level quantizer is as follows (see Figure 3 (left)):

q{zt} = βi if zt ∈ Ji, i ∈ I , (8)

where the sets Ji = {zt : qi−1 ≤ zt < qi} are disjoint intervals and each βi is the value that
the quantizer takes in the region Ji. The second is a finite-level quantizer, in which the
output of the quantizer is limited to a minimum and maximum values (saturated quantizer)
corresponding to the indices’ set:

I = {1, 2, . . . , L− 1, L}. (9)

The definition of the finite-level quantizer (see Figure 3 (right)) is similar to (8), where I
is defined in (9), J1 = {zt : zt < q1}, JL = {zt : qL−1 ≤ zt}, and Ji = {zt : qi−1 ≤ zt < qi}
with i = 2 . . . , L− 1.

β1

β2

...

...

βL

zt

Infinite Level Quantizer

yt

β1

β2

...

...

βL−1

βL

zt

Finite Level Quantizer

yt

. . . q0 q1 q2 . . . qL−1 qL . . . −∞ q1 q2 . . . qL−1 +∞

Figure 3. Representation of the (left) uniform infinite- and (right) finite-level quantizers defined in
terms of the quantized values βi and the intervals Ji.
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2.3. Problem Definition

The problem of interest can be defined as follows: Given the available data
u1:N = {u1, u2, . . . , uN} and y1:N = {y1, y2, . . . , yN}, where N is the data length, obtain the
filtering and smoothing PDFs of the state given the quantized measurements, p(xt|y1:t)
and p(xt|y1:N), respectively the state estimators:

x̂t|t = E{xt|y1:t}, (10)

x̂t|N = E{xt|y1:N}, (11)

and the corresponding covariance matrices of the estimation error:

Σt|t = E
{
(xt − x̂t|t)(xt − x̂t|t)

T |y1:t

}
, (12)

Σt|N = E
{
(xt − x̂t|N)(xt − x̂t|N)

T |y1:N

}
, (13)

where t ≤ N and E{x|y} denotes the conditional expectation of x given y.

3. Gaussian Sum Filtering and Smoothing for Quantized Data

Here, the Gaussian sum filtering and smoothing algorithms for quantized output data
are explained in detail.

3.1. Gaussian Mixture Models

Gaussian mixture models refer to a convex combination of Gaussian densities corre-
sponding to a random variable ζ ∈ Rn. Then, the PDF can be written as [60]:
p(ζ) = ∑Ki=1 ϕiNζ(υi, Γi) subject to ϕi > 0 and ∑Ki=1 ϕi = 1, where ϕi is the ith mix-
ing weight, υi ∈ Rn is the ith mean, and Γi ∈ Rn×n is the ith covariance matrix. GMMs
are used in a variety of applications to approximate non-Gaussian densities [61–63] and
filtering and smoothing [64,65], to mention a few.

3.2. General Bayesian Framework

The well-known equations for Bayesian filtering (see, e.g., [31]) are given by:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (14)

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt|y1:t)dxt, (15)

where p(xt|y1:t) and p(xt+1|y1:t) are the measurement and time-update equations, respec-
tively. The PDF p(xt+1|xt) is obtained from the model in (5), and p(yt|y1:t−1) is a normal-
ization constant. On the other hand, the well-known formula for Bayesian smoothing (see,
e.g., [31]) is defined by:

p(xt|y1:N) = p(xt|y1:t)
∫ p(xt+1|y1:N)p(xt+1|xt)

p(xt+1|y1:t)
dxt+1. (16)

However, the PDF in (16) is difficult to compute because of the division by a non-Gaussian
density. This difficulty was overcome in [64] where the smoothing equations were separated
in a two-fold formula filter: (i) the first formula, called the backward filter, defined by the
following recursion:

p(yt+1:N |xt) =
∫

p(yt+1:N |xt+1)p(xt+1|xt)dxt+1, (17)

p(yt:N |xt) = p(yt|xt)p(yt+1:N |xt), (18)
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where p(yt+1:N |xt) and p(yt:N |xt) are the backward prediction and the backward-
measurement-update equations, respectively, and (ii) the second formula, given by:

p(xt|y1:N) =
p(xt|y1:t−1)p(yt:N |xt)

p(yt:N |y1:t−1)
, (19)

where p(xt|y1:t−1) is the time-update equation from the filtering step, p(yt:N |y1:t−1) is a
normalization constant, and p(yt:N |xt) is obtained using the backward recursion given
in (17) and (18).

Due to the non-Gaussianity of p(yt|xt), the integrals in both the filtering and backward-
filtering algorithms in (15) and (17), respectively, are difficult to compute or intractable.
Widely used methods to deal with these integrals are Monte-Carlo-based algorithms, such
as particle filtering and smoothing; see, e.g., [31,66]. These methods represent the posterior
distributions p(xt|y1:t) and p(xt|y1:N) by a set of weighted random samples. However,
in general, they exhibit a growing computational complexity as the model dimension
increases. Here, an alternative method to compute the PMF p(yt|xt) using Gauss–Legendre
quadrature is proposed. This procedure results in a GMM form. Hence, the integrals in
both the filtering and backward filtering in (15) and (17), respectively, can be computed in
closed form.

Remark 1. Notice that since yt is a discrete random variable, the measurement-update equation
in (14) and the backward-measurement-update equation in (18) comprise PDFs and a PMF. Hence,
generalized probability density functions are used here; see, e.g., [67].

3.3. Computing an Explicit Model of p(yt|xt)

From (8), it is observed that the output zt ∈ Ji is mapped to a single value βi. Then,
the probability that yt takes the value βi is the same as the probability of zt belonging
to set Ji, as shown in Figure 4. Notice that the quantizer regions Ji include finite and
semi-infinite intervals.

qi−1 qi

P {zt ∈ Ji}

q1

P {zt ∈ J1}

qL−1

P {zt ∈ JL}

Figure 4. The shaded area represents the probability of yt taking a value βi that is equal to the
probability of zt belonging to set ∈ Ji. Here, P{·} denotes probability.

In the following theorem, the characterization of p(yt|xt) is formalized via the com-
putation of the probability P{zt ∈ Ji} shown in Figure 4 through the integral definition
of probabilities [68]. Therefore, the approximation of this integral by using the Gauss–
Legendre quadrature rule is presented (see, e.g., [69]).

Theorem 1. Consider the system (1)–(3), the infinite- and finite-level quantizers defined in (8).
Then, the PMF of the discrete random variable yt given the state xt is given by:

p(yt|xt) =
∫ bt

at
Nvt(0, R)dvt, (20)

where at and bt are functions of the boundary values of each region of the quantizers and are
defined in Table 1. In addition, the integral in (20) can be approximated using the Gauss–Legendre
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quadrature rule, yielding:

p(yt|xt) ≈
K

∑
τ=1

ςτ
tNητ

t
(Cxt + Dut + µτ

t , R), (21)

where K is the number of points from the Gauss–Legendre quadrature rule (defined by the user), ςτ
t ,

ητ
t , and µτ

t are defined in Table 1, and ωτ and ψτ are weights and points defined by the quadrature
rule, given in, e.g., [69].

Table 1. Integral limits and parameters of Theorem 1. ILQ and FLQ mean infinite- and finite-level
quantizers, respectively.

FLQ: yt = β1
ILQ: yt = βi with i ∈ I in (7)

FLQ: yt = βi with i = 2, . . . , L− 1 FLQ: yt = βL

at −∞ qi−1 − Cxt − Dut qL−1 − Cxt − Dut

bt q1 − Cxt − Dut qi − Cxt − Dut ∞

ςτ
t 2ωτ/(1 + ψτ)2 ωτ(qi − qi−1)/2 2ωτ/(1 + ψτ)2

ητ
t −(1− ψτ)/(1 + ψτ) ψτ(qi − qi−1)/2 (1− ψτ)/(1 + ψτ)

µτ
t −q1 −(qi + qi−1)/2 −qL−1

Proof. From the infinite- and finite-level quantizers, it is observed that the random vari-
able yt can only take the values βi with i in the indices’ sets given in (7) and (9). Then,
the probability of yt = . . . , β1, β2, . . . , βL, . . . or yt = β1, β2, . . . , βL−1, βL is the same as
the probability that the random variable zt belongs to the sets Ji. This probability can be
obtained from the distribution function as follows:

P{yt = βi|xt} = P{zt ∈ Ji|xt}, (22)

where P{·} denotes probability. Considering the infinite-level quantizer and the output
equation in (2), the following expressions are obtained for yt = βi with i = . . . , 1, 2 . . . , L, . . . :

P{yt = βi|xt} = P{qi−1 ≤ zt < qi|xt},
= P{at ≤ vt < bt|xt},

(23)

where at = qi−1 − Cxt − Dut and bt = qi − Cxt − Dut. Additionally, for the finite-level
quantizer, (23) holds for yt = βi with i = 2, . . . , L− 1, and for yt = β1 and yt = βL, the
following holds:

P{vt < bt|xt} if yt = β1, (24)

P{vt ≥ at|xt} if yt = βL, (25)

where bt = q1 − Cxt − Dut and at = qL−1 − Cxt − Dut. Then, using the fact that p(vt) =
Nvt(0, R) and using (23)–(25), the integral in (20) can be obtained, where the integral limits
are given in Table 1.

On the other hand, the Gauss–Legendre quadrature for approximating a definite
integral over the interval [−1, 1] is given by:

∫ 1

−1
f (r)dr ≈

K

∑
τ=1

ωτ f (ψτ), (26)
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where ωτ and ψτ are the quadrature weights and the roots of the order K Legendre
polynomial, respectively; see, e.g., [69]. Notice that the integral over [at, bt] can be mapped
onto the interval [−1, 1] using:

∫ bt

at
f (r)dr =

bt − at

2

∫ 1

−1
f
(

bt − at

2
r +

bt + at

2

)
dr, (27)

and using the definition in (26), this integral is approximated by:

∫ bt

at
f (r)dr ≈ bt − at

2

K

∑
τ=1

ωτ f
(

bt − at

2
ψτ +

bt + at

2

)
. (28)

Defining at = qi−1 − Cxt − Dut, bt = qi − Cxt − Dut, and f (vt) = Nvt(0, R) with
i = . . . , 1, 2 . . . , L, . . . , the approximation of p(yt|xt) given in (21) for the infinite-level
quantizer is derived.

For the finite-level quantizer, (28) holds for yt = βi with i = 2, . . . , L − 1. Then,
the approximation of p(yt|xt) for yt = β1 and yt = βL is defined. First, it is observed that
the integral over the semi-infinite interval [at, ∞) can be mapped onto the interval (0, 1]
using r = at + (1− ξ)/ξ, so that:∫ ∞

at
f (r)dr =

∫ 1

0
f
(

at +
1− ξ

ξ

)
dξ

ξ2 . (29)

Then, using an appropriate change of variable, it can be mapped onto the interval
(−1, 1], yielding: ∫ ∞

at
f (r)dr =

∫ 1

−1
f
(

at +
1− s
1 + s

)
2ds

(1 + s)2 . (30)

Using the Gauss–Legendre approximation given in (26), the approximation of p(yt|xt) for
yt = βL is obtained as follows:

∫ ∞

at
f (r)dr ≈

K

∑
τ=1

ωτ f
(

at +
1− ψτ

1 + ψτ

)
2

(1 + ψτ)2 . (31)

Defining at = qL−1 − Cxt − Dut, b = ∞, and f (vt) = Nvt(0, R), (21) is obtained. A similar
procedure for the integral over the semi-infinite interval (−∞, bt] can be applied using
r = bt − (1− ξ)/ξ to find the approximation of p(yt|xt) for yt = β1, as follows:

∫ bt

−∞
f (r)dr ≈

K

∑
τ=1

ωτ f
(

bt −
1− ψτ

1 + ψτ

)
2

(1 + ψτ)2 . (32)

Defining at = −∞, bt = q1 − Cxt − Dut, and f (vt) = Nvt(0, R), (21) is obtained. This
completes the proof.

Remark 2. Notice that any quadrature rule, such as Newton–Cotes, Gauss–Laguerre, and Gauss–
Hermite (see, e.g., [69,70]), used to approximate the integral in (20), yields a weighted sum of
Gaussian distributions evaluated as a linear function of the values qi and the state xt. Furthermore,
it is possible to interpret p(yt|xt) as a weighted sum of Gaussian distributions in the random
variable xt. This weighted sum is denoted as the GMM structure. Thus, this structure is considered
for developing the Gaussian sum filtering and smoothing algorithms that deal with quantized data.

Remark 3. Notice that in [70], a suboptimal filtering algorithm called the quadrature Kalman
filter, where a linear regression is used to linearize the nonlinear process and measurement functions
using the Gauss–Hermite quadrature rule, was developed. This approach is not directly applicable
to the problem of interest in this paper, so that the quantizer is a nondifferentiable nonlinearity.
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On the other hand, the cubature Kalman filter [70] and smoother [71] are approaches that use
the spherical–radial cubature rule to approximate the n-dimensional integrals when computing the
expected values in (10)–(13) in a nonlinear state-space model. These integral approximations are
obtained under the assumption that p(xt|y1:t) and p(xt|y1:N) are Gaussian distributed. The differ-
ence between these approaches and the proposed method in this paper is that the Gauss quadrature
rule was used to approximate the integral in the probabilistic model of p(yt|xt). It is clear that in
this paper, the Gaussian assumption in the filtering and smoothing densities was not used. In fact,
it is shown that p(xt|y1:t) and p(xt|y1:N) are non-Gaussian PDFs.

3.4. Understanding the Gaussian Sum Filtering and Smoothing Algorithms

The general Bayesian framework for filtering leads to the product p(yt|xt) and
p(xt|y1:t−1), as shown in (14). From the definition of p(yt|xt) in (21), it is observed that
p(xt|y1:t) results in the product of two GMMs. This, in turn, results in a GMM with more
components than the individual factors p(yt|xt) and p(xt|y1:t−1). This implies that the time-
update equation p(xt+1|y1:t) in (15) is also a GMM distribution. A similar situation occurs
in the backward-measurement-update equation p(yt:N |xt) in (18), which is the product of
two GMM structures p(yt|xt) and p(yt+1:N |xt). This yields another GMM structure with
more components than the individual factors, which implies that the backward-prediction
equation in (17) is also a GMM structure. For the clarity of the presentation, reducing the
product of two GMMs (structures) into one is necessary.

In order to understand the transformation of the product of two summations into
another summation, the following sums are considered: g = ∑K

τ=1 gτ and f = ∑M
`=1 f`.

Then, for each two-tuple (τ, `) where τ = 1, . . . , K and ` = 1, . . . , M, the product h = f g
is another summation and has KM terms indexed by k = (`− 1)K + τ. Then, reordering
these terms, the following sum is obtained: h = ∑KM

k=1 hk, where hk = f`gτ .

3.5. Gaussian Sum Filtering for Quantized Data

Using the approximation of the PMF p(yt|xt) defined in Theorem 1, the Gaussian sum
filtering algorithm can be derived using (14) and (15) as follows:

Theorem 2 (Gaussian sum filter). Consider the system in (4)–(6) and the approximation of
p(yt|xt) in (21). The filtering equations for state-space systems with quantized output data are
defined as follows:

Initialization: For t = 1, the predicted distribution is p(x1) = Nx1(µ1, P1), where p(x1) is the
prior distribution of the initial state. Then, for t = 1, . . . , N, the measurement-update and the
time-update equations for the Gaussian sum filtering are defined as follows:

Measurement update: The PDF of the current state xt given the current and previous measure-
ments, that is y1, . . . , yt, is the GMM given by:

p(xt|y1:t) =

Mt|t

∑
k=1

γk
t|tNxt(x̂k

t|t, Σk
t|t), (33)

where γk
t|t, x̂k

t|t, and Σk
t|t are given in Appendix B, Mt|t = KMt|t−1, and Mt|t−1 is the number of

Gaussian components in the time update step. The initial values satisfy that M1|0 = 1, γ1|0 = 1,
x̂1|0 = µ1, and Σ1|0 = P1.

Time update: The PDF of the future state xt+1, one-step-ahead prediction given the measurements
y1, . . . , yt, is the GMM given by:

p(xt+1|y1:t) =

Mt+1|t

∑
k=1

γk
t+1|tNxt+1(x̂k

t+1|t, Σk
t+1|t), (34)

where Mt+1|t = Mt|t, γk
t+1|t, x̂k

t+1|t, and Σk
t+1|t are given in Appendix B.
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Proof. Consider the recursion in (14) and (15). The required PDF p(xt+1|xt) and PMF
p(yt|xt) are obtained from (5) and (21), respectively. Then, using the measurement-update
equations in (14) and Lemma 2 in [65] (p. 86), the following expression is obtained:

p(xt|y1:t) ∝
K

∑
τ=1

Mt|t−1

∑
`=1

ςτ
t γ`

t|t−1Nητ
t

(
κ`τ

t , V`
t

)
Nxt(x̂k

t|t, Σk
t|t) (35)

where κ`τ
t , V`

t , x̂k
t|t, and Σk

t|t are defined in (A11), (A12), (A7), and (A8), respectively. Notice

that Nητ
t
(κ`τ

t , V`
t ) is a coefficient since the measurement yt is available. Then, rewrit-

ing the double summation in (35) as a single one with a new index k = (` − 1)K + τ,
the measurement-update equation in (33) is derived defining Mt|t = KMt|t−1, the weights
γ̄k

t|t as in (A9), and computing the corresponding normalization constant. On the other
hand, using the time-update equation in (15) and Lemma 2 in [65] (p. 86), the following
equation is obtained:

p(xt+1|y1:t) =

Mt|t

∑
k=1

γk
t|t

∫
Nxt

(
mk

t , Sk
t

)
Nxt+1

(
x̂k

t+1|t, Σk
t+1|t

)
dxt, (36)

where x̂k
t+1|t and Σk

t+1|t are defined in (A14), and (A15), respectively. Then, solving this in-
tegral, the time-update equation in (34) can be derived defining Mt+1|t = Mt|t, the weights
γk

t+1|t as in (A13), and computing the corresponding normalization constant. This com-
pletes the proof.

3.6. Computing the State Estimator x̂t|t from a GMM

Provided p(xt|y1:t) in (33) as a GMM, the state estimator given in (10) and the covari-
ance matrix of the estimation error in (12) can be computed as follows:

x̂t|t =
Mt|t

∑
k=1

γk
t|t x̂

k
t|t, (37)

Σt|t =
Mt|t

∑
k=1

γk
t|t
[
Σk

t|t + (x̂k
t|t − x̂t|t)(x̂k

t|t − x̂t|t)
T
]
. (38)

3.7. Backward Filtering for Quantized Data

Using the approximation of the PMF p(yt|xt) defined in Theorem 1, the backward
filter recursion can be derived as follows:

Theorem 3 (Backward filtering). Consider the system in (4)–(6) and the approximation of
p(yt|xt) in (21). Then, the backward filter for state-space systems with quantized output data is:

Initialization: For t = N, the backward measurement update is given by:

p(yN |xN) =

SN|N

∑
k=1

εk
N|Nλk

N|N exp
{
−1

2

(
xT

N Fk
N|N xN − 2GkT

N|N xN + Hk
N|N

)}
, (39)

where SN|N = K, and:

εk
N|N = ςk

N ,

Fk
N|N = CT R−1C,

λk
N|N = (det{2πR})−1/2

GkT
N|N = θkT

N R−1C,

θk
N = ηk

N − DuN − µk
N ,

Hk
N|N = θkT

N R−1θk
N ,

(40)

where ςk
N , ηk

N , and µk
N are defined in Table 1. Then, for t = N − 1, . . . , 1, the backward prediction

and the backward-measurement-update equations are defined as follows:
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Backward predictions: The backward-prediction equation is given by:

p(yt+1:N |xt) =

St|t+1

∑
k=1

εk
t|t+1λk

t|t+1 exp
{
−1

2

(
xT

t Fk
t|t+1xt − 2GkT

t|t+1xt + Hk
t|t+1

)}
, (41)

where St|t+1 = St+1|t+1, St+1|t+1 is the number of components in the backward-measurement-
update step, and εk

t|t+1, λk
t|t+1, Fk

t|t+1, GkT
t|t+1, Hk

t|t+1 are given in Appendix C.

Backward-measurement update: The distribution of yt:N |xt evaluated at yt, . . . , yN is:

p(yt:N |xt) =

St|t

∑
k=1

εk
t|tλ

k
t|t exp

{
−1

2

(
xT

t Fk
t|txt − 2GkT

t|t xt + Hk
t|t
)}

, (42)

where St|t = KSt|t+1, St|t+1 is the number of components in the backward-prediction step, and εk
t|t,

λk
t|t, Fk

t|t, GkT
t|t , Hk

t|t are given in Appendix C.

Proof. Consider the recursion in (17) and (18). The required PDF p(xt+1|xt) and PMF
p(yt|xt) are given by Equations (5) and (21), respectively. The proof is carried out by
induction in reverse time. First, it is verified that it holds for t = N − 1, then it is assumed
to be true for t = s + 1, and finally, it is verified that it holds for t = s. Notice that the
recursion starts in t = N with p(yN:N |xN) = p(yN |xN), which is defined in (39). From (17),
at time t = N − 1, the backward-prediction step is defined as:

p(yN:N |xN−1) =
∫

p(yN:N |xN)p(xN |xN−1)dxN , (43)

where p(yN:N |xN) is given by (39) and p(xN |xN−1) is defined by the system model in (5).
From the definition given in (43), the equation below is obtained:

p(yN:N |xN−1) =

SN|N

∑
k=1

εk
N|Nλk

N|N√
det{2πQ}

∫
exp

{
−1

2

[
xT

N P̄k
N xN − 2V̄kT

N xN + S̄k
N

]}
dxN , (44)

where P̄k
N =

(
Fk

N|N + Q−1
)

, V̄k
N =

(
Gk

N|N + JN−1

)
, S̄k

N =
(

Hk
N|N + LN−1

)
, JT

N−1 =

(AxN−1 + BuN−1)
TQ−1, and LN−1 = (AxN−1 + BuN−1)

TQ−1(AxN−1 + BuN−1). Then,
completing the square and solving the integral in (44), it is obtained:

p(yN:N |xN−1) =

SN−1|N

∑
k=1

εk
N−1|Nλk

N−1|N

× exp
{
−1

2

(
xT

N−1Fk
N−1|N xN−1 − 2GkT

N−1|N xN−1 + Hk
N−1|N

)}
,

(45)

where SN−1|N = SN|N and the remaining terms in (45) are defined in (A22)–(A26), but eval-
uated at t = N − 1. The backward-measurement-update step in (18) is as follows:

p(yN−1:N |xN−1) = p(yN−1|xN−1)p(yN:N |xN−1). (46)

Thus, using (45) in the definition given in (46), it is obtained:
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p(yN−1:N |xN−1) =
K

∑
τ=1

SN−1|N

∑
`=1

ςτ
N−1ε`N−1|Nλ`

N−1|N√
det{2πR}

× exp
{
−1

2

(
xT

N−1 F̃N−1xN−1 − 2G̃τT
N−1xN−1 + H̃τ

N−1

)}
× exp

{
−1

2

(
xT

N−1F`
N−1|N xN−1 − 2G`T

N−1|N xN−1 + H`
N−1|N

)}
,

(47)

where F̃N−1 = CT R−1C, G̃τT
N−1 = θτT

N−1R−1C, and H̃τ
N−1 = θτT

N−1R−1θτ
N−1 with

θτ
N−1 = ητ

N−1 − DuN−1 − µτ
N−1. Finally, rewriting the double summation in the last

equation into a single one with a new index k = (`− 1)K + τ results in:

p(yN−1:N |xN−1) =

SN−1|N−1

∑
k=1

εk
N−1|N−1λk

N−1|N−1

× exp
{
−1

2

[
xT

N−1Fk
N−1|N−1xN−1 − 2GkT

N−1|N−1xN−1 + Hk
N−1|N−1

]}
,

(48)

where SN−1|N−1 = KSN−1|N and the remaining terms in (48) are the same as the ones
shown in (A16)–(A21), but evaluated at t = N − 1. Thus, it is concluded that it holds
for t = N − 1. A similar procedure was applied to find that, for both the backward-
prediction and backward-measurement-update steps in the backward filter, it yields the
same expressions in (A22)–(A26) and (A16)–(A21), but evaluated at t = s. Thus, it is
concluded that Theorem 3 holds for all t.

From Theorems 2 and 3, it is clear that the number of elements in the mixture grows
exponentially with every iteration, making the algorithm computationally intractable
after a few iterations. In addition, it would be necessary to save and manage a large
amount of information in every iteration of the Gaussian sum filtering and in the backward
recursion. Therefore, an algorithm that reduces the number of GMM components should
be implemented in every iteration of these two algorithms in order to keep the number
of components bounded. Different methods have been proposed to perform this kind of
procedure, termed Gaussian sum reduction, such us pruning, joining, and integral-squared-
error-based methods; see [70]. In this work, the Kullback–Leibler approach for Gaussian
sum reduction proposed in [64,72] was used. The idea behind the Gaussian sum reduction
is to transform the GMM {ϕi, υi, Γi}J

i=1 into a GMM {ϕi, υi, Γi}S
i=1, where 1 ≤ S ≤ J. In [64],

it was suggested to use a measure of dissimilarity between two components and pooling
the pair of components that minimize this measure. Then, based on this idea, in [72], the
Kullback–Leibler information number was used as the measure of dissimilarity. The author
in [72] provided an algorithm to merge two components so that the merged component
preserves the first- and second-order moments of the original two components, which is
given by: (

ϕij, υij, Γij
)
=M

{
(ϕi, υi, Γi),

(
ϕj, υj, Γj

)}
, (49)

whereM{·, ·} is a merging function such that:

ϕij = ϕi + ϕj, (50)

υij = ϕ̄iυi + ϕ̄jυj, (51)

Γij = ϕ̄iΓi + ϕ̄jΓj + ϕ̄i ϕ̄j
(
υi − υj

)(
υi − υj

)T , (52)
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where ϕ̄i = ϕi/(ϕi + ϕj) and ϕ̄j = ϕj/(ϕi + ϕj). The merging function applied to two
components i and j (i 6= j) minimizes the dissimilarity measure D(i, j), defined as:

D(i, j) =
1
2
[
ϕij log det

{
Γij
}
− ϕi log det{Γi} − ϕj log det

{
Γj
}]

, (53)

The function D(i, j) satisfies D(i, j) = D(j, i) and D(i, i) = 0. This implies that the total
number of combinations to merge is reduced to 0.5J(J − 1). The authors in [73] used
Runnalls’ algorithm in a Bayesian filtering environment, and they modified it to include a
user-defined threshold for the number of components after reduction and a user-defined
threshold ε that satisfies D(i, j) < ε. In Algorithm 1, the steps for implementing the
Gaussian sum filtering are summarized.

Algorithm 1: Gaussian sum filter algorithm for quantized output data

1 Input: The PDF of the initial state p(x1), e.g., M1|0 = 1, γ1|0 = 1, x̂1|0 = µ1,

Σ1|0 = P1. The points of the Gauss–Legendre quadrature {ωτ , ψτ}K
τ=1.

2 for t = 1 to N do
3 Compute and store ςτ

t , ητ
t , and µτ

t according to Theorem 1.
4 Measurement Update:
5 Set Mt|t = KMt|t−1.
6 for ` = 1 to Mt|t−1 do
7 for τ = 1 to K do
8 Compute the index k = (`− 1)K + τ.
9 Compute and store γk

t|t, x̂k
t|t, and Σk

t|t according to Theorem 2.
10 end
11 end
12 Compute the state estimation in (10) and the covariance matrix of the

estimation error in (12) according to (37) and (38).
13 Perform the Gaussian sum reduction algorithm according to [73] to obtain the

reduced GMM of p(xt|y1:t).
14 Time Update
15 Set Mt+1|t = Mt|t.
16 for k = 1 to Mt+1|t do
17 Compute and store γk

t+1|t, x̂k
t+1|t, and Σk

t+1|t according to Theorem 2.
18 end
19 end
20 Output: The state estimation in (10), the covariance matrix of the estimation error

in (12), the filtering PDFs p(xt|y1:t), the predictive PDFs p(xt+1|y1:t), and the set
{ςτ

t , ητ
t , µτ

t }, for t = 1, . . . , N.

The backward recursion in Theorem 3 is used to obtain the smoothing PDF in (19). For this
purpose, p(yt:N|xt) is converted into a GMM structure of the random variable xt. Then,
the Gaussian sum reduction algorithm is applied to the GMM structure of p(yt:N|xt) to obtain:

p(yt:N |xt) =
Sred

∑
k=1

δk
t|tNxt

(
zk

t|t, Uk
t|t
)

, (54)

where Sred is the number of Gaussian components kept after the Gaussian reduction
procedure and δk

t|t, zk
t|t, and Uk

t|t are the corresponding weight, mean, and covariance
matrix. This reduced GMM structure is used to obtain the smoothing PDFs. However,
for the next recursion in the backward filter, reconverting the reduced GMM structure into
the backward filter form to obtain the reduced version of the backward-measurement-update
step in (42) is required. This conversion process between the backward filter and GMM
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structure is summarized in Lemma A3 in Appendix A. In Algorithm 2, the steps for
implementing the backward filter are summarized.

Algorithm 2: Backward-filtering algorithm for quantized output data

1 Input: The initial backward measurement p(yN |xN) given in (39), e.g., SN|N , εk
N|N ,

λk
N|N , Fk

N|N , GkT
N|N , and Hk

N|N . The set {ςτ
t , ητ

t , µτ
t } for t = 1, . . . , N computed in

Algorithm 1.
2 for t = N − 1 to 1 do
3 Backward Prediction
4 Set St|t+1 = St+1|t+1.
5 for k = 1 to St|t+1 do
6 Compute and store εk

t|t+1, λk
t|t+1, Fk

t|t+1, GkT
t|t+1, and Hk

t|t+1 according to
Theorem 3.

7 end
8 Backward Measurement Update:
9 Set St|t = KSt|t+1.

10 for ` = 1 to St|t+1 do
11 for τ = 1 to K do
12 Compute the index k = (`− 1)K + τ.
13 Compute and store εk

t|t, λk
t|t, Fk

t|t, GkT
t|t , and Hk

t|t according to Theorem 3
14 end
15 end
16 Compute the GMM structure of p(yt:N |xt) using Lemma A3 in Appendix A.

Perform the Gaussian sum reduction algorithm according to [73] to obtain the
reduced GMM structure of p(yt:N |xt) given in (54).

17 Compute and store the backward filter form of the reduced version of
p(yt:N |xt) using Lemma A3 in Appendix A.

18 end
19 Output: The backward prediction p(yt+1:N |xt) and the backward measurement

update p(yt:N |xt) for t = N, . . . , 1.

3.8. Smoothing Algorithm with Quantized Data

In order to obtain the smoothing PDF in (19), the GMM structure p(yt:N |xt) in the
random variable xt given in (54) is used. This GMM structure is multiplied by the time-
update equation p(xt|y1:t−1) of the filtering algorithm given in (34). Then, the smoothing
PDF is obtained from the following:

Theorem 4 (Gaussian sum smoothing). Consider the system in (4)–(6). Given p(xt|y1:t−1),
p(xN |y1:N) and p(yt:N |xt), then the smoothing PDF at time t = N is given by p(xN |y1:N),
and for t = N − 1, . . . , 1, the PDF p(xt|y1:N) is a GMM given by:

p(xt|y1:N) =

St|N

∑
k=1

εk
t|NNxt(x̂k

t|N , Σk
t|N), (55)

where St|N = Mt|t−1Sred, Mt|t−1 and Sred are given in (34) and (54), respectively, and εk
t|N , x̂k

t|N ,

and Σk
t|N are given in Appendix D.

Proof. Consider the definition of Bayesian smoothing given in (19), the time-update equa-
tion p(xt|y1:t−1) obtained from (34), and the reduced version of the measurement-update
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step in the backward filter p(yt:N |xt) defined in (54). For t = N − 1, N − 2, . . . , 1, it
is obtained:

p(xt|y1:N) ∝
Mt|t−1

∑
τ=1

Sred

∑
`=1

γτ
t|t−1δ`t|tNxt

(
z`t|t, U`

t|t
)
Nxt(x̂τ

t|t−1, Στ
t|t−1). (56)

Defining g(xt) = Nxt(z
`
t|t, U`

t|t)Nxt(x̂τ
t|t−1, Στ

t|t−1), the following equation is derived:

g(xt) =

exp
{
−1

2

[
φ`

1t + φτ
2t − φ`τ

3t

]}
Nxt

((
L`τ

t

)−1
ρ`τ

t ,
(

L`τ
t

)−1
)

(2π)
n
2

√
det
{

L`τ
t
}

det
{

U`
t|t
}

det
{

Στ
t|t−1

} , (57)

where L`τ
t , ρ`τ

t , φ`
1t, φτ

2t, and φ`τ
3t are defined in (A32), (A31), (A34), (A35), and (A33),

respectively. Next, expressing the double summation in (56) as a single one with a new
index k = (`− 1)Mt|t−1 + τ, it is obtained:

p(xt|y1:N) ∝
St|N

∑
k=1

ε̄ k
t|NNxt(x̂k

t|N , Σk
t|N), (58)

where St|N = Mt|t−1Sred and ε̄ k
t|N , Σk

t|N , and x̂k
t|N are given in (A30), (A28), and (A29),

respectively. Finally, the smoothing PDF in (55) is obtained by computing the normalized
wights as (A27), and this completes the proof.

Provided p(xt|y1:N) in (55) as a GMM, the state estimator given in (11) and the covari-
ance matrix of the estimation error in (13) can be computed as follows:

x̂t|N =

St|N

∑
k=1

εk
t|N x̂k

t|N , (59)

Σt|N =

St|N

∑
k=1

εk
t|N
[
Σk

t|N + (x̂k
t|N − x̂t|N)(x̂k

t|N − x̂t|N)
T
]
. (60)

In Algorithm 3, the steps to implement the Gaussian sum smoothing are summarized.

Algorithm 3: Gaussian sum smoothing algorithm for quantized output data

1 Input: The PDFs p(xt|y1:t−1) and p(xN |y1:N) obtained from Algorithm 1 and
p(yt:N |xt) obtained from Algorithm 2.

2 Save the PDF p(xN |y1:N).
3 for t = N − 1 to 1 do
4 Set St|N = Mt|t−1Sred.
5 for ` = 1 to Sred do
6 for τ = 1 to Mt|t−1 do
7 Compute the index k = (`− 1)Mt|t−1 + τ.
8 Compute and store εk

t|N , x̂k
t|N , and Σk

t|N according to Theorem 4.
9 end

10 end
11 Compute the state estimation (11) and the covariance matrix of the estimation

error in (13) according to (59) and (60).
12 end
13 Output: The state estimation in (11), the covariance matrix of the estimation error

in (13), and the smoothing PDFs p(xt|y1:N), for t = 1, . . . , N.
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3.9. Computing the Smoothing Joint PDF p(xt+1, xt|y1:N)

In Theorems 2–4, the filtering and smoothing problems for quantized data are solved.
However, many strategies for the identification of state-state space systems [8,9] require
the joint PDF p(xt+1, xt|y1:N), which for the quantized output data case is given by
the following:

Theorem 5. Consider the system in (4)–(6), the PDF p(xt|y1:t) and the backward prediction
equation p(yt+1:N |xt+1) given in Theorems 2 and 3, respectively, and the PDF p(xt+1|xt) given
in Equation (5). Then, for t = N − 1, . . . , 1, the joint PDF p(xt+1, xt|y1:N) is the GMM given by:

p(xt+1, xt|y1:N) =
St,t+1

∑
k=1

αkNχt

(
χ̂k

t|N , Ek
t|N
)

, (61)

where St,t+1 = Mt|tSt+1|t+1, Mt|t and St+1|t+1 are given in (33) and (42), respectively, αk, χ̂k
t|N ,

and Ek
t|N are given in Appendix E, and χt is the extended vector given by:

χT
t = [xT

t+1 xT
t ]

T . (62)

At time t = N, the joint PDF p(xN+1, xN |y1:N) is given by (61) with:

SN+1|N+1 = 1, ε`N+1|N+1 = 1, λ`
N+1|N+1 = 1,

F`
N+1|N+1 = 0, G`T

N+1|N+1 = 0, H`
N+1|N+1 = 0.

(63)

Proof. Using Bayes’ theorem, the joint PDF p(xt+1, xt|y1:N) can be obtained as:

p(xt+1, xt|y1:N) =
p(yt+1:N |xt+1)p(xt+1|xt)p(xt|y1:t)

p(yt+1:N |y1:t)
, (64)

where p(yt+1:N |y1:t) is a normalization constant. The required PDFs p(xt|y1:t) and
p(xt+1|xt) and backward-prediction equation p(yt+1:N |xt+1) are given in (33), (5) and (42),
respectively. Using Lemma A2, p(xt|y1:t) in (33) can be rewritten as:

p(xt|y1:t) =

Mt|t

∑
τ=1

γτ
t|t√

det
{

2πΣτ
t|t
} exp

{
−1

2

(
xT

t

(
Στ

t|t
)−1

xt − 2JτT
t xt + Lτ

t

)}
, (65)

where JτT
t and Lτ

t are defined in (A44) and (A45), respectively. Considering p(yt+1:N |xt+1),
p(xt|y1:t), p(xt+1|xt), and the extended vector of the state given in (62), the argument of
these three functions can be written as follows:

A1 = χT
t

[
0 0

0
(

Στ
t|t
)−1

]
χt − 2

[
0 JτT

t
]
χt + Lτ

t , (66)

A2 = χT
t

[
F`

t+1|t+1 0
0 0

]
χt − 2

[
G`T

t+1|t+1 0
]
χt + H`

t+1|t+1, (67)

A3 = χT
t

[
Q−1 −Q−1 A

−ATQ−1 ATQ−1 A

]
χt (68)

− 2
[
uT

t BTQ−1 −uT
t BTQ−1 A

]
χt + uT

t BTQ−1But,
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Then, adding these expressions, the following equation is derived:

p(xt+1, xt|y1:N) ∝
Mt|t

∑
τ=1

St+1|t+1

∑
`=1

γτ
t|tε

`
t+1|t+1λ`

t+1|t+1

(2π)n
√

det{Q}det
{

Στ
t|t
} (69)

× exp
{
−1

2

(
χT

t F `τ
t χt − 2G`τT

t χt +H`τ
t

)}
,

where F `τ
t , G`τT

t , and H`τ
t are defined in (A41), (A42), and (A43), respectively. Complet-

ing the square and expressing the double summation as a single one with a new index
k = (`− 1)Mt|t + τ, it is obtained:

p(xt+1, xt|y1:N) ∝
St,t+1

∑
k=1

ᾱkNχt

(
χ̂k

t|N , Ek
t|N
)

, (70)

where St,t+1 = Mt|tSt+1|t+1, ᾱk is defined in (A39), and χ̂k
t|N and Ek

t|N are defined in (A37)
and (A38), respectively. Finally, the smoothing joint distribution in (64) for t = N − 1, . . . , 1
is derived by computing the normalized wights as in (A36). Notice that, for t = N,
the smoothing joint PDF p(xN+1, xN |y1:N) = p(xN+1|xN)p(xN |y1:N) is obtained as (61)
considering the expressions given in (63). Then, the proof is finished.

In Algorithm 4, the steps to implement the Gaussian sum smoothing for computing
the joint PDF p(xt+1, xt|y1:N) are summarized.

Algorithm 4: Gaussian sum smoother to compute p(xt+1, xt|y1:N) for quantized
output data

1 Input: The PDF p(xt|y1:t) obtained in Algorithm 1, p(yt+1:N |xt+1) computed in
Algorithm 2, and the PDF p(xt+1|xt) given in Equation (5).

2 for t = 1 to N − 1 do
3 Set St,t+1 = Mt|tSt+1|t+1.
4 for ` = 1 to St+1|t+1 do
5 for τ = 1 to Mt|t do
6 Compute the index k = (`− 1)Mt|t + τ.
7 Compute and store αk, χ̂k

t|N , and Ek
t|N according to Theorem 5.

8 end
9 end

10 end
11 Compute and store p(xN+1, xN |y1:N) according to Theorem 5 with SN+1|N+1,

ε`N+1|N+1, λ`
N+1|N+1, F`

N+1|N+1, G`T
N+1|N+1, and H`

N+1|N+1 given in (63).
12 Output: The smoothing PDFs p(xt+1, xt|y1:N), for t = 1, . . . , N.

4. Numerical Example

In this section, a numerical example to illustrate the benefits of this paper proposal
is presented. Furthermore, a practical simulation example is studied: the problem of
estimating the tank liquid level in a two-tank system is addressed. Typically, a numerical
simulation approach is used for testing new algorithms and designs in applications of state
estimation [74], control [75], and system identification [63], among others. This approach
is used to evaluate the performance of the estimation algorithms, in order to avoid safety
problems that can occur in a real-world processes.

To evaluate the performance of the proposed filtering and smoothing methods for
quantized data, a comparison with three classical techniques is presented: standard Kalman
filtering and smoothing [76], quantized Kalman filtering and smoothing [49,77], and par-
ticle filtering and smoothing [31]. Notice that it is also possible to implement a version
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of particle filtering and smoothing algorithms using the approximation of p(yt|xt) given
in (21). However, in the numerical examples run for filtering, the computation time was
high. In order to validate the approximation in Theorem 1, the standard particle filtering
and smoothing algorithms with a large number of particles were used, where p(yt|xt)
was computed using the integral in (20) from the MATLAB function mvncdf, which com-
putes the multivariate normal cumulative distribution function. The true filtering and
smoothing PDFs were considered to be provided by the particle filter and smoother with
20,000 particles, which was defined as the ground truth.

In the following examples, the discrete-time system in state-space form given in (1)–(3)
is used with:

yt = ∆qround
{

zt/∆q
}

, (71)

where the quantizer is defined in terms of the round function in MATLAB and the quantiza-
tion step ∆q. The infimum and supremum values of the sets Ji defined in (8), qi−1 and qi,
can be calculated for the infinite-level quantizer as qi−1 = yt − 0.5∆q and qi = yt + 0.5∆q
for i = . . . , 1, 2 . . . , L, . . . .

The experiments were carried out on a computer with the following specifications:
processor: Intel(R) Core(TM) i5-8300H CPU @ 2.30 GHz, RAM memory: 8.00 GB, operating
system: Windows 10 with MATLAB 2020b.

4.1. Example 1: First-Order System

In this example, the following state-space system was considered:

xt+1 = 0.9xt + 1.0ut + wt, (72)

zt = 2.0xt + 0.5ut + vt, (73)

where wt ∼ Nwt(0, 1) and vt ∼ Nvt(0, 0.5). Furthermore, the input was considered to
be drawn from Nut(0, 2) and x1 ∼ Nx1(1, 1). In Figure 5, the filtering PDFs for some
time instants are shown. The quantization step used in this example and the number of
Gaussian components to approximate p(yt|xt) were considered to be ∆q = 7 and K = 10,
respectively. Furthermore, Sred = K.

−4 −2 0 2
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0.5

1 t = 3
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x t
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t)

−4 −2 0 2
0

0.5

1 t = 9
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−6 −4 −2 0
0

0.5

1 t = 25

KF PF GSF

−6 −4 −2 0
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x t
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0.5
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−6 −4 −2 0
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0

0.5
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x t
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0
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Figure 5. Example 1. Filtering PDFs at some instants of time for ∆q = 7, K = 10, and 100 particles.
GT stands for ground truth. QKF, KF, PF, and GSF stand for quantized Kalman filter, Kalman filter,
particle filter, and Gaussian sum filter, respectively.

Figure 5 shows that the filtering PDFs obtained with our proposal, the Gaussian sum
filter, were that best fit to the ground truth. In contrast, the PDFs obtained with the Kalman
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filter, quantized Kalman filter, and particle filter were different from the ground truth.
Notice that the results obtained using the particle filter with 100 particles were good at
t = 3, 9, 40, whilst the resulting PDFs for t = 25, 32, 59, 72, 82, 99 differed slightly more
from the ground truth. However, the performance of particle filtering can be improved by
increasing the number of particles, which produces an increment in the execution time.

To compare the accuracy of the state estimation, 100 Monte Carlo trials were run,
and the mean-squared error between the true state and the estimation obtained by the
Kalman filter, quantized Kalman filter, Gaussian sum filter, and particle filter is computed
as follows:

MSE =
1
R
R
∑
k=1

∥∥∥xt − x̂t|t
∥∥∥2

2
, (74)

where xt is the true state (which in a real-word system is not available, but in simulations, it
can be used to analyze the performance of the estimation techniques), x̂t|t is the estimation

of the state system, and ‖·‖2
2 denotes the squared Euclidean norm. In Figure 6, the box

plots corresponding to 100 Monte Carlo runs for ∆q = {3, 5, 7} are shown.
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1

1.5
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M
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0

0.5
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1.5

2

2.5

∆q = 7

Figure 6. MSE between the true and estimated state for ∆q = {3, 5, 7}. KF, QKF, GSF, and PF stand
for the Kalman filter, quantized Kalman filter, Gaussian sum filter, and particle filter, respectively.

Figure 6 shows that the MSE between the true state and the estimation obtained with
the Kalman filter and quantized Kalman filter increased fast as ∆q increased. However,
the MSE increased slowly for the state estimation obtained with the Gaussian sum filter
and particle filter.

In Figure 7, the smoothing PDFs at time t = 100 are shown. The quantization step
was considered to be chosen from ∆q = {3, 5, 7}, and the number of Gaussian components
to approximate p(yt|xt) was chosen from K = {6, 8, 10}. Furthermore, the number of
Gaussian components kept after the reduction procedure was considered as Sred = K.
In order to obtain the adequate number of particles to compare the particle smoother with
the Gaussian sum smoother, 100 Monte Carlo simulations were carried out to obtain the
number of particles that yielded smoothing PDFs that were as close to the true PDFs as
the Gaussian sum smoother using K = {6, 8, 10}. For comparison purposes, the particle
smoother execution time corresponding to the time required to implement the particle
smoother algorithm using the number of particles that produces a similar result to the
Gaussian sum smoother with K components is defined as Par(K). The L2-norm of the
difference between the true and the estimated PDFs as the measure of similarity was used:

‖q− q̂‖2 =

[
M

∑
k=1
|q− q̂|2

]1/2

, (75)

where q represents the true PDF and q̂ represents the estimated PDF, which was chosen so
that ‖q− q̂‖2 < 1× 10−6. The approximated number of particles (labeled in each PDF in
Figure 7) was used to compare the execution time of both algorithms, the Gaussian sum
smoother and particle smoother, and the results are shown in Table 2. Figure 7 shows
that the smoothing PDFs obtained with our proposal using a small number of Gaussian
components and the PDFs obtained using the particle smoother with a large number of
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particles fit the ground truth. In contrast, the PDFs obtained with the Kalman smoother
and quantized Kalman smoother were different from the ground truth. Furthermore,
the execution time in Table 2 shows that the required time to perform the Gaussian sum
smoother was less compared to the time to perform the particle smoother, which needs a
large number of particles to produce a result similar to the Gaussian sum smoother.
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Figure 7. Smoothing PDF at time t = 100, for K = {6, 8, 10}, where K increases to the right, and for
∆q = {3, 5, 7}, where ∆q increases upwards. GT stands for the ground truth. GSS, KS, QKS, and PS
stand for the Gaussian sum smoother, Kalman smoother, quantized Kalman smoother, and particle
smoother, respectively.

Table 2. Time in seconds required to perform the smoothing algorithm for the scalar system. Par(K)
represents the number of particles (labeled in Figure 7) that produce a similar result to the Gaussian
sum smoother with K components. KS, QKS, GSS, and PS stand for the Kalman smoother, quantized
Kalman smoother, Gaussian sum smoother, and particle smoother, respectively.

KS QKS GSS PS

∆q - - K = 6 K = 8 K = 10 Par(6) Par(8) Par(10)

7 0.0379 0.1494 0.4158 0.4221 0.4735 2.0420 3.3538 4.0462

5 0.0048 0.0044 0.2695 0.3706 0.4588 3.0074 3.5665 4.0192

3 0.0033 0.0043 0.2609 0.3491 0.4618 4.2471 5.5501 6.3408

From the results shown in Figures 5–7 and Table 2, it can be concluded that:

• The filtering and smoothing PDFs are non-Gaussian, although the process and output
noises in (1) and (2) are Gaussian distributed;

• The accuracy of the standard and quantized Kalman filtering and smoothing decreased
as the quantization step increased;

• The state estimates obtained with particle filter and smoother were similar to the results
obtained using the Gaussian sum filter and smoother. However, the characterization
of the filtering and smoothing PDFs using the Gaussian sum filter and smoother
were better than the PDF obtained by the particle filter and smoother. Notice that
a correct characterization of a PDF is important when high-order moments need to be
computed, especially in system identification tasks;

• In order to implement the Gaussian sum filter and smoother, the parameters K (the
number that defines the quality of the p(yt|xt) approximation) and Sred (the Gaussian
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components kept after the Gaussian sum reduction algorithm) need to be chosen
by the user. These parameters can be found in a simulation study by the trial and
error approach and should be set by a trade-off between the time complexity and the
accuracy of the estimation. A large value of K produces an accurate estimate, but a
high computational load;

• The larger the quantization step is, the larger the number of Gaussian components,
K, needed to approximate p(yt|xt) in order to obtain an accurate approximation.
However, for a large quantization step, the number K needed to obtain a good approxi-
mation of the filtering and smoothing PDFs is relatively small compared to the number
of particles required to obtain similar results using the particle filter and smoother;

• The maximum number of Gaussian components kept after the Gaussian reduction
procedure is important for the accuracy of the approximation. In the simulations,
Sred = K was used. Furthermore, it was noticed that once an adequate Sred was
defined, incrementing this value did not produce a significant improvement in the esti-
mation. However, this increment in Sred was really critical for the resulting numerical
complexity of the algorithm (and hence, the execution time), which increased since the
Gaussian sum reduction procedure (e.g., Kullback–Leibler reduction) utilized more
time to reduce a large amount of Gaussian components;

• The Gaussian sum smoother execution time for all values of ∆q was small. This
occurred because in each case, a relatively small number of Gaussian components to
approximate p(yt|xt) were used. However, the particle smoother execution time is
variable for different values of ∆q. As ∆q decreased, the L2-norm between the Gaussian
sum smoother and the ground truth decreased, and a larger number of particles to
obtain a comparable L2-norm between the particle smoother and the ground truth
were required.

4.2. Real-World Application: Tank Liquid Level

In this example, the problem of estimating the tank liquid level in a two-tank system
by using the measurements taken by a low-cost sensor based on a variable resistor that is
attached to an arm with a floater is considered; see Figure 8.

h1 h2

f1

f2

Tank 1 Tank 2

Resistive sensor
arm

floater

f12

Pump 1

Pump 2

10

8

6

4

2

Figure 8. Two-tank system. h1 and h2 denote the liquid level in Tank 1 and Tank 2, respectively.
The liquid flows into Tank 1 at a rate f1 and out of Tank 2 at a rate f2. The quantizer has minimum
and maximum values β1 = 2 and βL = 10.

A linearized model of this system can be found in [78]. Here, it was assumed that h2
can be measured and h1 cannot. The discrete-time version of the model in [78] with sample
time 0.1 s was considered:

xt+1 =

[
0.9959 0.0041
0.0041 0.9959

]
xt +

[
0.0998 −0.0002
0.0002 −0.0998

]
ut + wt, (76)

zt =
[
0 1.0

]
xt + vt, (77)
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where xt = [h1 h2]
T and ut = [ f1 − k f2 + k]T with k = 0.4111. The sensor measures

h2 vary its resistance in discrete steps, with minimum and maximum values β1 = 2
and βL = 10. To simulate this system, it was considered that: wt ∼ Nwt(0, 0.001I2),
vt ∼ Nvt(0, 0.0001); the input [ f1 f2]

T was drawn from N
(
[10 2]T , 10I2

)
; the initial condi-

tion x1 ∼ Nx1([10 5]T , 0.01I2). For this example, 100 Monte Carlo runs were simulated.
In Figure 9 (left), the output zt that corresponds to the values of h2 that are nonquantized
and the output yt that corresponds to the measurements given by the sensor (for one of the
Monte Carlo runs) are shown. In this figure, the level of quantization in the measurements
can be observed. In Figure 9 (right), the MSE between the true and estimated state is
shown. It was observed that the proposal presented in this paper, the Gaussian sum filter,
yielded the most accurate estimation of h1, followed by the particle filter, Kalman filter,
and quantized Kalman filter. In this example, K = 50 and 1000 particles were used to
implement the Gaussian sum filter and particle filter, respectively.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

t (time)

Non-quantized output zt Quantized output yt

KF QKF GSF PF

0

2

4

·10−2

M
SE

Figure 9. (Left) The quantized and nonquantized measurements; (right) the MSE between the true
and estimated filtered state. KF, QKF, GSF, and PF stand for the Kalman filter, quantized Kalman
filter, Gaussian sum filter, and particle filter, respectively.

In this example, a relatively high number of Gaussian components (K = 50) were
required to obtain a good estimation of the filtering and smoothing distributions, and hence
of the state. This produced an increment in the execution time since the Gaussian sum
reduction algorithm needed more time to deal with a high number of Gaussian components
in every iteration. This resulted in similar execution times for our proposed algorithm
and the traditional particle filter. However, the execution time of the Gaussian sum filter
and smoother was smaller than the execution time of the ground truth (particle filter and
smoother with 20,000 particles).

5. Conclusions

In this paper, Gaussian sum filtering and smoothing algorithms for linear-time-
invariant state-space systems with quantized output data were developed. An approxima-
tion of the integral equation that defines the probability mass function of the quantized
data given the current state, p(yt|xt), using Gaussian quadrature was considered. This
approximation naturally yielded an explicit mathematical model with a GMM structure for
this probability function. Using the approximation of p(yt|xt) summarized in Theorem 1,
it was possible to solve in closed form the general equations of filtering and smoothing
to deal with quantized data. This fact allowed for a closed-form expression of the system
state estimators given the quantized data x̂t|t and x̂t|N . Via numerical simulations, it was
shown that approximating p(yt|xt) with a small number of Gaussian components was
adequate, yielding an approximation comparable to the true filtering and smoothing PDFs
given by the particle approach (using a large number of particles, namely 20,000 particles).
This reduced number of Gaussian components allowed for a low computational load,
especially when the system order increased. In addition, our results showed overall less
computational load for our proposed techniques since the number of Gaussian components
was considerably less than the number of particles used in particle filtering and smoothing.
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The proposed Gaussian sum filtering and smoothing algorithms can be utilized,
in principle, to develop system identification algorithms and control strategies having
quantized output measurements.
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Appendix A. Technical Lemmata

Lemma A1. The PDF Ny(Cx + µ, R) of the random variable Y ∈ Rp can be rewritten as follows:

Ny(Cx + µ, R) =
1√

det{2πR}
exp

{
−1

2

(
xT Fx− 2GTx + H

)}
, (A1)

where F = CT R−1C, GT = (y− µ)T R−1C, and H = (y− µ)T R−1(y− µ).

Proof. Directly expand the exponential argument and reorder the terms in the
variable x.

Lemma A2. The PDFNx(Aw + ν, Q) of the random variable X ∈ Rn can be rewritten as follows:

Nx(Aw + ν, Q) =
1√

det{2πQ}
exp

{
−1

2

(
xTQ−1x− 2JTx + L

)}
, (A2)

where JT = (Aw + ν)TQ−1 and L = (Aw + ν)TQ−1(Aw + ν).
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Proof. Directly expand the exponential argument and reorder the terms in the
variable x.

Lemma A3. Consider the backward filter function p(yt:N |xt) given in (42). Its GMM structure
is given by:

p(yt:N |xt) =

St|t

∑
k=1

σk
t|tNxt

(
νk

t|t, Ωk
t|t
)

, (A3)

where σk
t|t = σ̄k

t|t/ ∑
St|t
s=1 σ̄s

t|t is the normalized mixing weight and νk
t|t = (Fk

t|t)
−1Gk

t|t and

Ωk
t|t = (Fk

t|t)
−1, are the mean vector and the covariance matrix, respectively, with:

σ̄k
t|t =

εk
t|tλ

k
t|t exp

{
−1

2

(
Hk

t|t − GkT
t|t
(

Fk
t|t
)−1

Gk
t|t

)}
(2π)−

n
2

√
det
{

Fk
t|t
} . (A4)

On the other hand, consider the GMM structure given by (54). Then, the backward filter form
in (42) is obtained using the following:

St|t = Sred,

Fk
t|t =

(
Uk

t|t
)−1

,

εk
t|t = δk

t|t,

GkT
t|t =

(
zk

t|t
)T(

Uk
t|t
)−1

,

λk
t|t =

(
det
{

2πUk
t|t
})−1/2

,

Hk
t|t =

(
zk

t|t
)T(

Uk
t|t
)−1(

zk
t|t
)

.
(A5)

Proof. Directly by using Lemma A1.

Appendix B. Quantities to Perform the Gaussian Sum Filter

For each two-tuple (τ, `), where τ = 1, . . . , K and ` = 1, . . . , Mt|t−1, let k be a new
index, so that k = (`− 1)K + τ. Then:

γk
t|t =

γ̄k
t|t

∑
Mt|t
s=1 γ̄s

t|t
, (A6)

x̂k
t|t = x̂`t|t−1 + K`

t (η
τ
t − κ`τ

t ), (A7)

Σk
t|t = (I − K`

t C)Σ`
t|t−1, (A8)

are the weights, means, and covariance matrices of the measurement-update equation in
the Gaussian sum filter, with the following definitions:

γ̄k
t|t = ςτ

t γ`
t|t−1Nητ

t

(
κ`τ

t , V`
t

)
, (A9)

K`
t = Σ`

t|t−1CT
(

V`
t

)−1
, (A10)

κ`τ
t = Cx̂`t|t−1 + Dut + µτ

t , (A11)

V`
t = R + CΣ`

t|t−1CT , (A12)

where ςτ
t , ητ

t , and µτ
t are defined in Table 1, and:

γk
t+1|t = γk

t|t, (A13)

x̂k
t+1|t = Ax̂k

t|t + But, (A14)

Σk
t+1|t = Q + AΣk

t|t AT , (A15)
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are the weights, means, and covariance matrices of the time-update equation in the Gaus-
sian sum filter.

Appendix C. Quantities to Perform the Backward Filter

For each two-tuple (τ, `), where τ = 1, . . . , K and ` = 1, . . . , St|t+1, let k be a new
index, so that k = (`− 1)K + τ. Then:

εk
t|t = ςτ

t ε`t|t+1, (A16)

λk
t|t = (det{2πR})−1/2λ`

t|t+1, (A17)

θτ
t = ητ

t − Dut − µτ
t , (A18)

Fk
t|t = F`

t|t+1 + CT R−1C, (A19)

GkT
t|t = G`T

t|t+1 + θτT
t R−1C, (A20)

Hk
t|t = H`

t|t+1 + θτT
t R−1θτ

t . (A21)

are the quantities needed to compute the backward-measurement-update equation in the
backward filter, where ςτ

t , ητ
t , and µτ

t are defined in Table 1, and:

εk
t|t+1 = εk

t+1|t+1, (A22)

λk
t|t+1 =

(
det{Q}det

{
Fqk

})−1/2
λk

t+1|t+1, (A23)

Fk
t|t+1 = AT Mqk A, (A24)

GkT
t|t+1 = GkT

t+1|t+1F−1
qk Q−1 A− uT

t BT Mqk A, (A25)

Hk
t|t+1 = Hk

t+1|t+1 − GkT
t+1|t+1F−1

qk Gk
t+1|t+1 + uT

t BT MqkBut − 2uT
t BTQ−1F−1

qk Gk
t+1|t+1, (A26)

are the quantities needed to compute the backward prediction equation in the backward
filter, where Fqk = Fk

t+1|t+1 + Q−1 and Mqk = Q−1 −Q−1F−1
qk Q−1.

Appendix D. Quantities to Perform the Gaussian Sum Smoother

For each two-tuple (τ, `), where τ = 1, . . . , Mt|t−1 and ` = 1, . . . , Sred, let k be a new
index, so that k = (`− 1)Mt|t−1 + τ. Then:

εk
t|N =

ε̄ k
t|N

∑
St|N
s=1 ε̄ s

t|N

, (A27)

x̂k
t|N = (L`τ

t )−1ρ`τ
t , (A28)

Σk
t|N = (L`τ

t )−1, (A29)

are the weights, means, and covariance matrices of the smoothing PDF p(xt|y1:N), where:
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ε̄ k
t|N =

γτ
t|t−1δ`t|t exp

{
−1

2

[
φ`

1t + φτ
2t − φ`τ

3t

]}
(2π)

n
2

√
det
{

L`τ
t
}

det
{

U`
t|t
}

det
{

Στ
t|t−1

} , (A30)

ρ`τ
t =

[(
U`

t|t
)−1

z`t|t +
(

Στ
t|t−1

)−1
x̂τ

t|t−1

]
, (A31)

L`τ
t =

[(
U`

t|t
)−1

+
(

Στ
t|t−1

)−1
]

, (A32)

φ`τ
3t =

(
ρ`τ

t

)T(
L`τ

t

)−1(
ρ`τ

t

)
, (A33)

φ`
1t =

(
z`t|t
)T(

U`
t|t
)−1(

z`t|t
)

, (A34)

φτ
2t =

(
x̂τ

t|t−1

)T(
Στ

t|t−1

)−1(
x̂τ

t|t−1

)
, (A35)

γτ
t|t−1, x̂τ

t|t−1 and Στ
t|t−1 are obtained from the time-update step of Theorem 2 (34), and δ`t|t,

z`t|t, and U`
t|t are obtained from the reduced measurement-update step of the backward-

filtering algorithm in (54).

Appendix E. Quantities to Compute p(xt+1, xt|y1:N)

For each two-tuple (τ, `), where τ = 1, . . . , Mt|t and ` = 1, . . . , St+1|t+1, let k be a new
index, so that k = (`− 1)Mt|t + τ. Then:

αk =
ᾱk

∑
St,t+1
s=1 ᾱs

, (A36)

χ̂k
t|N = (F `τ

t )−1G`τ
t , (A37)

Ek
t|N = (F `τ

t )−1, (A38)

are the weights, means, and covariance matrices of the joint PDF p(xt+1, xt|y1:N), where:

ᾱk =
γτ

t|tε
`
t+1|t+1λ`

t+1|t+1S`τ
t√

det{Q}det
{
F `τ

t
}

det
{

Στ
t|t
} , (A39)

S`τ
t = exp

{
−1

2

(
H`τ

t − G`τT
t

(
F `τ

t

)−1
G`τ

t

)}
, (A40)

F `τ
t =

Q−1 + F`
t+1|t+1 −Q−1 A

−ATQ−1
(

Στ
t|t
)−1

+ ATQ−1 A

, (A41)

G`τT
t =

[
G`T

t+1|t+1 + uT
t BTQ−1 JτT

t − uT
t BTQ−1 A

]
, (A42)

H`τ
t = H`

t+1|t+1 + Lτ
t + uT

t BTQ−1But, (A43)

with:

JτT
t =

(
x̂τ

t|t
)T(

Στ
t|t
)−1

, (A44)

Lτ
t =

(
x̂τ

t|t
)T(

Στ
t|t
)−1(

x̂τ
t|t
)

, (A45)

γτ
t|t, x̂τ

t|t, and Στ
t|t are obtained from the measurement-update step in Theorem 2, and
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ε`t+1|t+1, λ`
t+1|t+1, F`

t+1|t+1, G`T
t+1|t+1, and H`

t+1|t+1 are obtained from the reduced backward-
measurement-update step in Theorem 3.
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