
 

 

 

 

Title: Genetics of Cardiac Aging Implicate Organ-Specific Variation 
Authors: James Brundage1, Joshua P. Barrios1,2, Geoffrey H. Tison1,2,5,6,*, James P. 
Pirruccello 1,2,3,4,5,6,* 

 
Affiliations: 
1Division of Cardiology, University of California San Francisco, San Francisco, CA, USA.  
2Bakar Computational Health Sciences Institute, University of California San Francisco, 
San Francisco, CA, USA. 
3Institute for Human Genetics, University of California San Francisco, San Francisco, 
CA, USA.  
4Cardiovascular Genetics Center, University of California San Francisco, San Francisco, 
CA, USA.  
5Cardiovascular Research Institute, University of California San Francisco, San 
Francisco, CA, USA. 
6Center for Biosignal Research, University of California San Francisco, San Francisco, 
CA, USA. 
 
* = equally supervised this work 
 
Corresponding Author:  
James P. Pirruccello 
Box 3118 
555 Mission Bay Blvd S 
San Francisco, CA 94158 
Email: james.pirruccello@ucsf.edu 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.24310874doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.08.02.24310874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Abstract:  
Heart structure and function change with age, and the notion that the heart may 

age faster for some individuals than for others has driven interest in estimating cardiac 
age acceleration. However, current approaches have limited feature richness (heart 
measurements; radiomics) or capture extraneous data and therefore lack cardiac 
specificity (deep learning [DL] on unmasked chest MRI). These technical limitations 
have been a barrier to efforts to understand genetic contributions to age acceleration. 
We hypothesized that a video-based DL model provided with heart-masked MRI data 
would capture a rich yet cardiac-specific representation of cardiac aging.  

In 61,691 UK Biobank participants, we excluded noncardiac pixels from cardiac 
MRI and trained a video-based DL model to predict age from one cardiac cycle in the 4-
chamber view. We then computed cardiac age acceleration as the bias-corrected 
prediction of heart age minus the calendar age. Predicted heart age explained 71.1% of 
variance in calendar age, with a mean absolute error of 3.3 years. Cardiac age 
acceleration was linked to unfavorable cardiac geometry and systolic and diastolic 
dysfunction. We also observed links between cardiac age acceleration and diet, 
decreased physical activity, increased alcohol and tobacco use, and altered levels of 
239 serum proteins, as well as adverse brain MRI characteristics.  

We found cardiac age acceleration to be heritable (h2g 26.6%); a genome-wide 
association study identified 8 loci related to linked to cardiomyopathy (near TTN, TNS1, 
LSM3, PALLD, DSP, PLEC, ANKRD1 and MYO18B) and an additional 16 loci (near 
MECOM, NPR3, KLHL3, HDGFL1, CDKN1A, ELN, SLC25A37, PI15, AP3M1, HMGA2, 
ADPRHL1, PGAP3, WNT9B, UHRF1 and DOK5). Of the discovered loci, 21 were not 
previously associated with cardiac age acceleration.  Mendelian randomization revealed 
that lower genetically mediated levels of 6 circulating proteins (MSRA most strongly), as 
well as greater levels of 5 proteins (LXN most strongly) were associated with cardiac 
age acceleration, as were greater blood pressure and Lp(a). A polygenic score for 
cardiac age acceleration predicted earlier onset of arrhythmia, heart failure, myocardial 
infarction, and mortality. 

These findings provide a thematic understanding of cardiac age acceleration and 
suggest that heart- and vascular-specific factors are key to cardiac age acceleration, 
predominating over a more global aging program. 
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Introduction 
The heart undergoes a decline in function with age including atrial enlargement 

and concentric left ventricular (LV) remodeling 1,2. At a cellular level, cardiac aging has 
been characterized by disabled macroautophagy, loss of proteostasis, genomic 
instability and epigenetic alterations contributing to mitochondrial dysfunction, 
dysregulated neurohormonal signaling, and inflammation 3. While the number of 
senescent cells increases with age, this appears to be variable across tissues 4. Further, 
the aging process does not appear to occur at equal rates over chronological time for all 
people. For example, DNA methylation clocks have estimated calendar age in cells from 
multiple tissue types, with “ticks” of the clock moving faster during periods of 
development and stress 5,6. There are some whose hearts have features consistent with 
an age older than their chronological age, which has been termed cardiac age 
acceleration7. Better characterization of cardiac age acceleration may help to identify 
individuals at risk of early heart disease and to identify druggable pathways to 
decelerate or reverse cardiac aging.  

Cardiac age acceleration has been studied in adults using data ranging from 
proteomics to electrocardiography (ECG) and magnetic resonance imaging (MRI). Many 
sources demonstrate associations with lifestyle factors such as tobacco use, alcohol 
consumption, adiposity; and to downstream cardiovascular disease risk7–10.  

Several studies have linked cardiac age acceleration to common genetic 
variants, though genetic characterizations of cardiac age acceleration are influenced by 
the data type and modeling approach used to estimate age. For example, Se-Hwee Oh, 
et al, found evidence linking plasma proteomic markers to cardiac age acceleration 11. 
Libiseller-Egger, et al, estimated cardiac age acceleration from ECG and linked this 
measure to seven genetic loci at genome-wide significance, including those near TTN 
and SCN5A/SCN10A 10. Shah, et al, used standard cardiovascular measurements 
derived from MRI to estimate cardiac age acceleration in the UK Biobank 9, additionally 
linking genetic loci near ELN, PI15, and PLCE1 to cardiac age acceleration. These loci 
had little overlap with those from ECG-estimated cardiac age acceleration,  which might 
be expected if the component of cardiac age that can be embedded in the ECG differs 
from that in the cardiac MRI. Raisi-Estabragh, et al, expanded this analysis to 
incorporate radiomics features from MRI 8,12. Goallec, et al, generalized this to an end-
to-end deep learning model incorporating both ECG and MRI videos. Despite explaining 
more variance in age and achieving a high heritability of 37.9% for age acceleration 
(Supplementary Table 1), this end-to-end deep learning model—trained on videos 
containing the heart and surrounding tissues such as adipose, lungs, skeletal muscle, 
and bones—identified fewer loci for cardiac age acceleration, including one locus near 
TTN and three intergenic loci7.  

In the present work, we sought to derive a model of age acceleration in which the 
model is blinded to non-cardiac structures, hypothesizing that such an approach would 
enhance the cardiovascular specificity of genetic contributions to cardiac age 
acceleration. In particular, we hypothesized that a two-stage deep learning approach 
would combine the strengths of cardiac-specific data with the flexible learning 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.24310874doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24310874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

capabilities of an end-to-end deep learning model: first, by training a model to mask out 
non-cardiac tissues from MRI CINEs, and second, by estimating cardiac age 
acceleration from those masked images. 
 
Methods 
Study population 

The study was conducted within the UK Biobank, a cohort of 502,638 participants 
recruited from 2006 to 2010, aged 40-70 at recruitment. An imaging substudy was 
ongoing at the time of this analysis, and at the time of model training, 70,805 
participants had MRI data available. Analyses were considered exempt by the UCSF 
Institutional Review Board (IRB), #22-37715. UK Biobank analyses were conducted 
under application #41664. Baseline characteristics of the cohort used for training and 
validation of the model can be found in Supplemental Table 2. 
 
MRI Preprocessing 

The long-axis 4-chamber cardiac MRI images in the UK Biobank were 
represented as 208x208 pixel images, with 50 images over the course of one cardiac 
cycle per imaging substudy participant. The pixel values were stored with up to 16 bits 
of range (0-65,535). Prior to analysis, these pixel values were reformatted into the 0-1 
range, and any image that was not originally 208x208 pixels was zero-padded to that 
dimension. While some participants underwent imaging at two separate imaging visits, 
only data from the first imaging visit was analyzed for each participant. 
 
MRI Segmentation 

198 four-chamber long-axis cardiac MRI stillframe images were manually 
segmented by a cardiologist (JPP) and used to train a deep learning model to perform 
semantic segmentation. A deep learning image segmentation model was constructed 
using a U-Net architecture 13. The PyTorch version 2.0.1 built-in implementation of 
ConvNeXt-Small was used as the encoder for the model, with weights that had been 
pre-trained on ImageNet1K (obtained from PyTorch’s torchvision package) 14,15. The 
encoder was modified to accept 1-channel input, instead of its default 3-channel input, 
by averaging the kernel weights in the input layer. At each of the four downsampling 
layers of the ConvNeXt encoder, a skip connection was created to the corresponding 
upsampling layer of the decoder. Each layer of the decoder used a pixelshuffle step 
followed by convolution, batchnorm, and the GELU non-linearity 16. The skip 
connections from the corresponding downsampling layer of the encoder were 
incorporated using an attention-block to incorporate the skip-connection data from the 
encoder with the output of the prior layer of the decoder. All non-pretrained layers were 
initialized with PyTorch’s kaiming_normal function. The loss function for training was the 
linear combination of focal loss and Dice loss at a 20:1 ratio described in Segment 
Anything 17. The AdamW optimizer with weight decay 0.0001 was used with the PyTorch 
OneCycleLR cyclic learning rate scheduler, with learning rate ranging from 1e-5 to a 
maximum or 2e-3 during training18. 
 
Cardiac Age Acceleration 
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We next jointly used both the raw imaging data and the segmentation output to 
measure accelerated heart aging. A deep learning model was trained to regress age 
from cardiac MRI CINEs masked to include only cardiac tissue: specifically, all pixels in 
each image that were not within the atria or ventricles were set to a pixel intensity value 
of 0. The trained model was then used to generate predicted age for each MRI included 
in the dataset.  

The calendar age was then subtracted from predicted age, resulting in a value 
termed the cardiac age delta. A common problem faced in age regression problems, 
including cardiac age and brain age, is that trained models tend to overestimate age for 
participants below the mean age, and underestimate age for participants above the 
mean age, a concept termed regression dilution bias. Here, we adjust for regression 
dilution bias, similar to Raisi-Estabragh et al., and we refer to this adjusted value as 
cardiac age acceleration (Supplemental Figure 1A-C). To correct the cardiac age 
acceleration values, a linear regression model was used to estimate the cardiac age 
delta in the training set via equation 1:  
 

�� � ������� � Ω����� � ������� 
 
where � is the cardiac age delta, ������ is the slope, Ω����� represents calendar age 
and ������represents the intercept. From the formula, it is evident that age prediction 
can occur in the absence of information about calendar age, but age acceleration 
requires calendar age. The alpha and beta parameters were then used to generate a 
predicted cardiac age delta from each participant in the test set, which was subtracted 
from the predicted heart age to correct for regression dilution bias via equation 2: 
 

	
��
�������������
���� � ������� � �������� � Ω���� � ������� 
 
where �����is predicted heart age, ������ and ������ are slope and intercept from the 
training set equation 1 respectively, and  Ω����is calendar age of the test set participant. 
This process was performed for each fold cross validation. 
 
Dataset Splitting/Cross Validation 

The dataset was split into multiple training, testing and validation groups for 
different experiments, detailed below.  

The goal of model cross validation was to generate predictions for every 
participant in the dataset, without the model being contaminated by data in the training 
set. To accomplish this, the dataset was split into a training/testing set of 61,691 
participants, a validation set of 3,195 participants, and a smaller holdout set of 674 
participants. 5,245 participants had MRIs become available after the initial training 
process, and were added to the analysis, but were not included in the original dataset 
split: these were included as a second holdout set and contributed to downstream 
analyses but not to model evaluation.  

The training/testing set was subdivided into 10 groups, G0-G9. During model 
training, each one of the groups was excluded from the training data in turn. This 
resulted in an approximate 90:10 ratio of training to testing MRIs during model training, 
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building a total of 10 models. For all 10 models, the shared validation set was used to 
monitor model progress and select the best-fit weights for each of the 10 models. 
Following training, inference was performed using each model on the group that was 
not included in its training set. For example, for the G0 fold, there were 55,571 MRIs in 
the training set (consisting of groups 1-9). During training, that model was validated 
against the shared validation set, and then applied to the 6,190 MRIs in the G0 set. This 
process was repeated for each of the 10 models.  

By using this approach, each participant received a prediction from a model that 
did not use its data for training—an approach designed to minimize overfitting. To 
ensure these models performed consistently, each model was also tested on the 
holdout set that was not used in any of the training, testing, or validation described 
above (Supplemental Table 3). For downstream analyses, CINEs included in the 
holdout and validation sets used predictions from the G0 fold model.  
 
Cardiac Age Model Training 

The age prediction model was trained using the PyTorch 1.13.1 library in python 
15. Baseline augmentations were carried out in PyTorch, and included zero-padding the 
MRI CINEs to shape 208x208 pixels with 50 frames. MRIs from the training set were 
further augmented using Kornia 0.7.0  augmentations, by rotating the heart in a range of 
±180 degrees, with the translation set between 0.0 and 0.5 and altering the CINE with a 
gamma between 0.5 and 2.0 19.  A ResNet18 based R2 Plus 1D convolutional neural 
network (CNN), with weights initialized from training on the Kinetics dataset was used, 
as detailed by Tran et al. 20. Architecture details and validation can be found in Tran et 
al. In brief, the architecture took a 4-dimensional tensor as input in the form 1 (single 
color channel) x Number of Frames x Height x Width, followed by 16 (2+1)D 
convolutional blocks, a global average pooling layer and a fully connected layer. Each 
(2+1)D block was comprised of a 2D spatial convolutional layer with a 3x3 kernel size, 
batch normalization, rectified linear unit (ReLU) followed by a 1D temporal convolutional 
layer, another batch normalization and ReLU. The architecture with Kinetics weights are 
publicly available via the PyTorch library.  

Models were trained with a mean squared error (MSE) loss function, ADAM 
optimizer and a one cycle learning rate scheduler 21. The initial learning rate was set at 
0.001 and was selected by a learning rate finder process 18. Weight decay was set at 
0.0001. Automatic mixed precision was used to accelerate model training. Gradient 
clipping was also used via PyTorch’s clip_grad_norm_ to improve regularization and 
prevent exploding gradients with a max norm of 1 and norm type 2. 

Besides the cardiac specific model mentioned above, a model was also trained 
without masking, allowing it to learn from cardiac and non-cardiac structures. The 
unmasked model was trained only with a single fold of the training and testing set. All 
other training methods including architecture, hyperparameters and loss were all the 
same as the cardiac specific model.  
 
Model Evaluation 

The models were evaluated using mean absolute error (MAE), the mean of the 
absolute value of the difference between the true age and predicted age. They were 
also evaluated by Pearson correlation, a measure of linear correlation between the 
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predicted age and the calendar age. Finally, they were also evaluated by R2, which is 
the square of the Pearson correlation coefficient for a one-parameter model with 
intercept. 
 
Alignment Filtering 

To assess MRI quality, an augmentation-based approach was used to identify 
MRIs that likely had poor alignment of all four heart chambers, or poor segmentation of 
the heart. To estimate MRI quality, an MRI and its associated segmentation mask 
underwent a rotational transformation. The rotated MRI was then used to generate a 
new segmentation mask for each frame of each CINE. A DICE score was calculated 
between the original rotated segmentation mask and the new segmentation mask 
generated from the rotated MRI were compared for all four heart chamber 
segmentations for each frame 22. The mean of those DICE scores was calculated for 
each CINE. The resultant mean DICE scores for the four heart chambers were then 
used in principle component analysis (PCA). All MRIs with a component 1 or component 
2 greater than one standard deviation from the mean were visualized and given a 
quality score of pass or fail. By this standard 10,054 MRIs were manually visualized and 
rated. As the value of each principal component decreased, a higher percentage of 
MRIs received a passing quality score. 2,872 participants received a failing MRI 
alignment quality score and were excluded from GWAS analysis. An overview of this 
process is displayed in Supplemental Figure 2. 
 
Arrhythmia Filtering 

To avoid detecting age acceleration due to simply identifying abnormal cardiac 
motion from arrhythmia, participants whose 12-lead ECG (obtained during the imaging 
visit on the same day as the MRI) reported an automated read of atrial fibrillation or 
flutter were excluded (1,412 excluded). 
 
Adjusting for MRI Derived Phenotypes 

To determine the extent to which standard cardiac measurements (e.g., left 
ventricular ejection fraction) could account for cardiac age acceleration, linear 
regression was performed in participants with both imaging-derived phenotypes (from 
UK Biobank category 157) and cardiac age acceleration measurements. These 
measurements included 85 total cardiac measurements, including volumes from all four 
chambers, wall thickness and strain at up to 16 points throughout the left ventricle. For a 
complete list of phenotypes included, see Supplemental Table 4 The variance in 
cardiac age acceleration explained by the classical measurements was assessed. 
 
Continuous PheWAS 

To explore associations between continuous phenotypes collected in the UK 
Biobank and cardiac age acceleration, a linear model was fit between continuous 
phenotypes and cardiac age acceleration including MRI serial number, sex and age at 
MRI acquisition as covariates.  11,399 phenotypes were tested (a phenome-wide 
association study [PheWAS]). Categories of phenotypes tested included serum 
measurements, measurements extracted from imaging, measurements of diet, lifestyle 
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and activity. They also included levels of 1,463 serum proteins collected at enrollment 
and determined by the Olink proteomics assay 23. Results were adjusted for multiple 
comparisons using the false discovery rate (FDR) method, with the FDR threshold set at 
0.05. For investigation of serum biomarkers, we use the Bonferroni threshold to select a 
subset of biomarkers for further exploration.  
 
Disease PheWAS 

Associations between prevalent disease and disease incident to the MRI were 
also investigated. For prevalent disease, a linear model was fit for each disease 
recorded in the UK Biobank and cardiac age acceleration including MRI serial number, 
age at MRI and sex as covariates. For incident disease, a Cox model was fit using the 
same covariates. Results were adjusted for multiple comparisons using the FDR 
method, with the FDR threshold set at 0.05. UKBiobank fields and ICD codes used to 
create disease definitions are included in Bulk Data Table 7.  
 
Genome Wide Association Study 

Common genetic variants that contribute to the cardiac age acceleration 
phenotype were discovered using REGENIE version 3.2.7 with imputed variants 
provided by the UK Biobank. Quality control based on genetic information was 
performed per the Supplemental Methods. In brief, REGENIE runs in two steps; the 
fitting of a whole genome model from a subset of markers and then the testing of a 
larger set of markers conditional on the predictions of the step 1 model using a leave 
one chromosome out (LOCO) approach to minimize proximal contamination. GWAS 
covariates included age, sex, the MRI serial number, the genotyping array and the first 
ten principal components of ancestry.  
 
MAGMA  

Tissue data were taken from GTEx v8 24,25. scRNA-seq data for left ventricular 
cardiomyocytes were taken from Chaffin, et al after reprocessing by PlaqView  26. GTEx 
v8 RNA sequencing gene reads were combined with the GTEx sample attributes 
metadata and then processed in EdgeR 27. The edgeR::DGEList function was called to 
ingest the data. Then the edgeR::calcNormFactors function was called for 
normalization. Genes with an expression count of less than 100 were then removed. 
The data were loaded into voom 28. Iterating over each tissue as a target (with weight 
1), all other tissues were considered non-target and weighted by -1 times the number of 
samples contributing to that tissue divided by the total number of samples. Tissues with 
the same prefix (e.g., “Artery”) were excluded from the non-target tissue set for each 
target that had a prefix. The design matrix compared expression between the non-target 
tissues (assigned to negative weights) and the target tissue (assigned to weight +1), 
with model fitting performed by voom::eBayes. A gene set was created for each target 
tissue by filtering to keep genes with log fold change between target and non-target 
tissues of greater than two and false discovery rate (FDR)-adjusted P-value < 0.01.   
 
Olink cis-pQTL identification  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.24310874doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24310874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Cis-lead SNPs from Sun, et al, ascertained in 35,571 European-ancestry 
participants from the random baseline cohort (batches 1-6), were previously 
described23. Sample filtering included retaining variants with INFO > 0.7, minor allele 
count > 50, and excluding samples with sex mismatch, sex chromosome aneuploidy, 
and excess heterozygosity. GWAS was performed with REGENIE v2.2.129. A genome-
wide Bonferroni correction was applied (5E-08 accounting for 1,463 proteins), retaining 
SNPs with P < 3.4E-11. Cis SNPs were defined as being within 500kb of the gene 
encoding region of their respective protein. These significant cis pQTLs (from Sun et al 
Supplementary Table 6) were retained as exposure markers for Mendelian 
randomization. Olink assay information can be found in Supplemental Methods.  
 
Trait Exposure Identification 

For each of the selected traits (Supplemental Methods), a GWAS was 
performed in UK Biobank participants excluding those who underwent imaging, and 
those within 3 degrees of freedom of participants with imaging, in REGENIE v2.2.129. 
The lead SNPs of each GWAS were used as the exposure markers for Mendelian 
randomization.  
 
Mendelian randomization  

Mendelian randomization (MR) was performed for each of the Olink proteins and 
traits listed above using the TwoSampleMR R package v0.5.830. For single-variant traits, 
the Wald ratio was the only method used. For multi-variant traits, weighted median, 
inverse variace weighted, Egger, weighted mode and simple mode methods were 
tested. In addition, Steiger testing was performed to assess whether the variant was 
more strongly associated with its instrument than the outcome (to reduce the risk of 
identifying relationships driven by reverse causation or pleiotropy)31. 
 
Polygenic Risk Score 

A polygenic score for the heritable component of cardiac age acceleration was 
constructed using 1.1 million HapMap3 SNPs with PRScs-auto using a linkage 
disequilibrium reference panel that was made publicly available by the PRScs authors ( 
https://www.dropbox.com/s/t9opx2ty6ucrpib/ldblk_ukbb_eur.tar.gz ) 32,33. In auto mode, 
PRScs estimates polygenic score weights without requiring cross-validation for 
hyperparameter tuning in an additional test set.  
 
Results 
Performance of cardiac age model on segmented heart CINEs 

We first trained a deep learning model to identify all cardiac pixels in four-
chamber long-axis MRI CINEs, and used that model’s output as a mask to exclude non-
cardiac structures when training a second deep learning model to estimate calendar 
age. The masking ensured that the deep learning model could not use non-cardiac data 
in the MRI to estimate cardiac age. 70,805 individuals received a cardiac age 
acceleration measurement (mean 0.0, standard deviation 3.6, Figure 1). During the 10-
fold cross validation, the models achieved an average MAE of 3.28 and RMSE of 4.17 
(Supplemental Table #5). Calendar age was associated with predicted age with an 
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average Pearson R of 0.843 and R2 of 0.71 (Supplemental Table #5, Supplemental 
Figure 1A). These metrics were comparable when each model was tested on the 
universal holdout set (Supplemental Table #3). For more information regarding the 
impact of adjustment for regression dilution bias, see Supplemental Results.  

We sought to understand the degree to which the deep learning-derived cardiac 
age acceleration measurements could have been accounted for more simply by using 
common clinical measurements derived from the MRI, such as left ventricular ejection 
fraction (LVEF) or left ventricular mass. In a subset of up to 30,031 participants with 
cardiac MRI-derived measurements, a linear model including all of the MRI-derived 
measurements (see Methods) accounted for 10.4% of the variability in cardiac age 
acceleration, suggesting that only a small portion of cardiac age acceleration could be 
accounted for with standard clinical measurements. 
 
Continuous Trait PheWAS of Cardiac Age Acceleration Summary 

We then sought to understand the relationship between cardiac age acceleration 
and other measurements including anthropometric values, biomarkers, measures of 
activity and behavior, and imaging-derived phenotypes. Cardiac age acceleration was 
associated with continuous measurements obtained in the UK Biobank. A total of 66,521 
MRIs passed alignment and arrhythmia quality control (Supplemental Figure #3). Of 
the 11,399 continuous phenotypes compared, 2,803 had significant associations with 
cardiac age acceleration after FDR correction. Like previous literature, cardiac age 
acceleration was associated with elevated systolic blood pressure (0.146 standard 
deviation (SD) change per SD increase in cardiac age acceleration, p=4.4E-18) and 
diastolic blood pressure (0.164 SD, p=1.9E-24) 7,9.  All other results in the continuous 
PheWAS will be reported as the SD change in the phenotype per SD change in cardiac 
age acceleration. The continuous PheWAS results can be found in Bulk Data Table #1 
and are highlighted in the following sections. 
 
Continuous PheWAS of Cardiac MRI Image Derived Phenotypes 

Cardiac age acceleration was associated with structural and functional changes 
detectable on cardiovascular MRI, including altered systolic and diastolic function and 
increased chamber sizes (Figure 2, Supplemental Data Table 1). In the left ventricle 
(LV), cardiac age acceleration was associated with increased global radial strain (0.064 
SD, p=8.5E-30), global longitudinal strain (0.019 SD, p=4.0E-04), wall thickness (0.100 
SD, p=5.2E-52) and ejection fraction (0.02 SD, p=1.0E-3), and decreased global 
circumferential strain (-0.015 SD, p=6.2E-03), end diastolic volume (-0.080 SD, p=3.2E-
33), end systolic volume (-0.060 SD, p=8.8E-21) and stroke volume (-0.064 SD, 
p=9.2E-26). The same trends were seen in the right ventricle (RV) (Figure 2, 
Supplemental Data Table 1). In the left atrium (LA) it was associated with signs of 
decreased function, including associations with increased minimum volume (0.03 SD, 
p=1.3E-08), decreased ejection fraction (-0.05 SD, p=4.9E-21) and stroke volume (-0.06 
SD, p=2.0E-29). In the right atrium (RA), it was associated with increased maximum 
volume (0.02 SD, p=4.7E-3) and stroke volume (0.02 SD, p=1.2E-3). In the ascending 
aorta it was associated with decreased distensibility (-0.16 SD, p= 5.0E-129) and 
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increased maximum area (0.15 SD, p=3.1E-146). Similar significant changes were seen 
in the descending aorta (Figure 2, Supplemental Data Table 1).  

 
Continuous PheWAS of Lifestyle Factors and Activity 

Lifestyle factors were significantly associated with cardiac age acceleration. 
Consumption of substances known to increase risk of heart disease were associated 
with cardiac age acceleration: acceleration was linked to greater tobacco use (0.09 SD 
per pack year of smoking, p=2.5E-24) and alcohol consumption (0.08 SD per weekly 
standard drink, p= 1.2E-42). Similarly, it was associated with increased body mass 
index (BMI) (0.023 SD, p=1.0E-07), waist circumference (0.046 SD, p=2.5E-23) and 
multiple measures of fat content on abdominal MRI (Supplemental Figure 4, 
Supplemental Data Table 2).  

Cardiac age acceleration was inversely associated with physical activity 
measured by wearable accelerometry (Supplemental Data Table 3), including 
moderate to vigorous physical activity on wearable accelerometry (-0.05 SD, p=7.0E-14) 
34. In contrast, cardiac age acceleration was associated with increased “sedentary” 
activity (0.02, p=6.1E-4) 34. In a separate linear model, cardiac age acceleration was 
lower in a group completing greater than 150 min/week of moderate to vigorous 
physical activity (MVPA) after adjustment for age and sex (-6.3e-04 SD, p=4.5E-14). 
This held true even in those whose activity occurred over only 1-2 days out of the week 
(a “weekend warrior” pattern; -6.3E-4 SD, p=1.7e-13) 35. Finally, self-reported increased 
duration of sleep was associated with cardiac age deceleration (-0.14 SD, p=4.3e-4).  
 
Continuous PheWAS of Brain MRI and Carotid Ultrasound Image Derived Phenotypes 

We examined associations of cardiac age acceleration with changes on brain 
MRI. Generally, brain MRI derived phenotypes of brain aging were associated with 
cardiac age acceleration. The T1 MRI showed associations between cardiac age 
acceleration and decreased volume of grey matter (-9.30E-02 SD, p= 1.9E-44) and 
increased CSF volume (5.50E-02 SD, p=2.1E-21), which is likely related to grey matter 
atrophy (Supplemental Figure 5, Supplemental Data Table 4). It was associated with 
decreased volume of white matter, though the association is weaker (-2.10E-02 SD, 
p=6.6E-05) (Supplemental Figure 5, Supplemental Data Table 4). Age acceleration 
was also associated with increased volume of hyperintensities on T2 imaging (3.80E-02 
SD, p= 8.9E-14), with the strongest effect size in the periventricular region (6.80E-02 
SD, p=6.4E-35) (Supplemental Figure 6, Supplemental Data Table 4). It was 
associated with decreased cerebral blood flow in all brain regions on arterial spin 
imaging (Supplemental Figure 7, Supplemental Data Table 4). Cardiac age 
acceleration was also associated with increased quantitative susceptibility mapping 
(QSM) from susceptibility weighted MRI in the caudate, hippocampus, putamen, 
pallidum and thalamus but not in the nucleus accumbens or substantia nigra 
(Supplemental Figure 8, Supplemental Data Table 4). It was also associated with 
carotid artery intimal media thickness on carotid ultrasound (Supplemental Figure 9, 
Supplemental Data Table 4).  
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We hypothesized that systolic blood pressure may be a shared cardiac and brain 
aging risk factor that may contribute to the above associations. A sensitivity analysis 
which repeated the continuous PheWAS but included systolic blood pressure as a 
covariate was still significant for associations between the brain MRI phenotypes and 
cardiac age acceleration (Supplemental Data Table 4). Inclusion of systolic blood 
pressure increased the model R2 suggesting that if systolic blood pressure mediates 
associations between cardiac age acceleration and brain imaging phenotypes, it is only 
partially (Supplemental Data Table 4).   
 
Continuous PheWAS of Circulating Blood Markers and Metabolites 

Cardiac age acceleration was also associated with markers of greater bone 
marrow function, including higher levels of circulating hemoglobin (0.066 SD, p= 1.9E-
36), reticulocytes (0.029 SD, p= 9.8E-13), monocytes (0.039 SD, p= 6.3E-22) and 
neutrophils (0.034 SD, p= 1.3E-17) (Supplemental Data Table 5, Supplemental 
Figure 10).  
Cardiac age acceleration was associated with circulating markers of cardiometabolic 
risk, including higher levels of hemoglobin A1c (0.051 SD, p= 6.5E-35) and glucose 
(0.046 SD, p= 8.7E-28) and markers of inflammation such as C-reactive protein (0.026 
SD, p= 2.7E-10), Gamma glutamyl transferase (0.035 SD, p= 4.2E-17), glycoprotein 
acetyls (0.038 SD, p= 3.6E-13) and Alkaline Phosphatase (0.034 SD, p= 3.2E-16) 
(Supplemental Data Table 5, Supplemental Figure 10-11). Cardiac age acceleration 
was associated with decreased insulin-like growth factor 1 (-0.025 SD, p= 4.6E-09).  

Cardiac age acceleration was associated with metabolomic measurements 
consistent with a healthy diet, such as greater levels of monounsaturated fats (0.027 
SD, p= 2.6E-07) (which is likely indicative of increased fat intake generally), a lower 
degree of unsaturation of the fats measured in the serum (-0.025 SD, p=4.6E-6), and a 
lower percentage of linoleic acid of total fatty acids (-0.049 SD, p= 1.8E-20) 
(Supplemental Data Table 5). It was associated with decreased Omega 6 fatty acid 
percentage of total fatty acids (-0.041 SD, p= 8.7E-15), but not percentage of Omega 3 
of total fatty acids (-0.0075 SD, p= 0.15) (Supplemental Data Table 5). It was also 
associated with increased valine (0.014 SD, p= 6.4E-3), tyrosine (0.021 SD, p= 5.6E-5) 
and spectrometer corrected alanine (0.017 SD, p= 1.0E-3), but decreased histidine (-
0.021 SD, p= 5.5E-5) and glycine (-0.032 SD, p= 6.6E-09), each of which is directionally 
consistent with associations between serum levels of these amino acids and CVD36–38 

(Supplemental Data Table 5). 
 
Association of Cardiac Age Acceleration with Serum Proteins 

We tested associations between cardiac age acceleration and serum proteins 
collected at UK Biobank enrollment. Of the 1,463 proteins tested, cardiac age 
acceleration was significantly associated with 239 serum proteins at a false discovery 
rate of 5%, 20 of which were also Bonferroni significant (Supplemental Figure 12, Bulk 
Data Table 1). Some biomarkers of note include natriuretic peptide B (NPPB), 
NTproBNP, Growth Differentiation Factor 15 (GDF15), Prostasin (PRSS8) and 
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Asialoglycoprotein Receptor 1 and some protective biomarkers such as Carbonic 
Anhydrase 14 (CA14), Carbonic Anhydrase 6 (CA6) and Kit Ligand (KITLG). To explore 
disease patterns related to discovered biomarkers, they were also clustered by disease 
association, which is explored in more detail in the Supplemental Results. 
 
Disease PheWAS of Cardiac Age Acceleration 

To explore the impact of prior disease on cardiac age acceleration, we explored 
associations between cardiac age acceleration and prevalent disease at the time of 
imaging (Supplemental Figures 15 , Supplementary Data Table 6, Bulk Data Tables 
2). Cardiac age acceleration was associated with prevalent cardiovascular specific 
diseases such as dilated cardiomyopathy (DCM) (Effect size of 0.65, p=2.7E-04), aortic 
stenosis (0.42, p= 7.2E-07), mitral regurgitation (0.28, p= 2.1E-05), atrial fibrillation 
(0.29, p= 6.0E-27), and coronary artery disease (0.23, p= 1.4E-35). It was also 
associated with risk factors such as hypertension (HTN) (0.28, p= 6.9E-227), 
hyperlipidemia (HLD) (0.12, p= 4.6E-34), and type 2 diabetes (0.27, p= 2.5E-41); 
diseases that share cardiovascular risk factors such as chronic obstructive pulmonary 
disease (COPD) (0.17, p= 3.5E-11) and stroke (0.21, p= 1.6E-05); and inflammatory 
conditions such as systemic lupus erythematosus (SLE) (0.37, p= 1.1E-04) 
(Supplemental Data Table 6).  

To explore future disease risk of participants with cardiac age acceleration, we 
explored associations between cardiac age acceleration and disease incident to 
imaging (Supplemental Figure 16, Supplemental Data Table 7, Bulk Data Table 3). It 
was most strongly associated with incident hypertrophic cardiomyopathy (hazard ratio of 
2.58, p=  6.57E-07. It is also associated with mitral valve disease (1.30, p= 1.03E-07) 
and aortic valve disease (1.40, p= 1.41E-09) and atrial fibrillation or flutter (1.18, p= 
1.60E-06). Greater cardiac age acceleration was also associated with an increased risk 
of all-cause mortality (1.22, p= 2.16E-07) (Supplemental Data Table 7). 

A sensitivity analysis was performed which showed that a Cox model to predict 
heart failure from cardiac age acceleration incident to MRI including age and sex as 
covariates was significant (1.08, p=5.6E-6) and as still significant after the addition of 
LVEF and RVEF as covariates (1.07, p=6.9E-5). Further results exploring the impact of 
accounting of MRI IDPs on disease prediction can be found in the Supplemental 
Results. 
 
GWAS of Cardiac Age Acceleration 

Next, we conducted analyses testing the relationship between common genetic 
variants and cardiac age acceleration. Cardiac age acceleration as characterized by our 
model had an estimated heritability of 25.9%. Given the moderate heritability of cardiac 
age acceleration, a genome wide association study (GWAS) was conducted in 64,076 
participants passing quality control (Supplemental Figure #3).  24 independent loci 
were found to be associated with cardiac age acceleration at P<5e-08 (Figure 3A). Of 
these, 20 loci had not previously been associated with cardiac age acceleration 7,9.  

At several loci, the nearest gene to the most strongly associated variant had a 
known role in contractility or sarcomere function, including TTN (titin), PALLD 
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(pallidin)39, PLEC (plectin)40, DSP (desmoplakin)41,42 and MYO18B (myosin 18b)43. 
Another subset of genes may play active roles in cardiac development (MECOM44–47, 
ANKRD148, ADPRHL149–51, WNT9b52). Other loci were near genes relevant to arterial 
structure and function (PI1553, ELN/elastin)54, cellular senescence (CDKN1A/p2155–58, 
HMGA259–61, SLC6A662–64) and proteostasis (KLHL365,66, UHRF167).  

To further explore likely pathways impacted by cardiac age acceleration, MAGMA 
was used to map GWAS loci to known gene sets. Cardiac age acceleration was 
associated with gene sets related to valve morphology and function; muscle stretch, 
cardiac morphogenesis and elasticity. When gene sets were analyzed based on tissue 
type from GTEx25, the most relevant tissue types were heart and arterial tissues (Figure 
4A). Within cardiac single-cell databases, cardiac age acceleration was most strongly 
linked to genes expressed in cardiomyocytes and endocardial cells (Figure 4B).  
 
Mendelian Randomization of Cardiac Age Acceleration 

Next, we used two-sample Mendelian randomization to explore putatively causal 
relationships between common exposures like blood pressure, blood counts and lipids 
(see Methods for full list) and cardiac age acceleration. To avoid sample overlap, a 
GWAS was run on each exposure in a subset of UK Biobank participants without 
imaging and excluding those within three degrees of kinship of participants with cardiac 
MRI. We found evidence supporting a causal relationship between greater systolic 
(0.29, p= 4.7E-14) and diastolic blood pressure (0.31, p= 1.0E-14) and greater age 
acceleration. Similar observations were made for increased hemoglobin (0.10, p= 
6.75E-05), hematocrit (0.11, p= 6.75E-05), which was concordant with the observational 
findings. Finally, greater cardiac age acceleration was associated with higher levels of 
lipoprotein(a) (0.02, p= 4.8E-03). Associations with LDL (p=0.01), apolipoprotein B 
(p=0.02), and apolipoprotein A (p=0.02) were not significant after accounting for multiple 
testing (Supplemental Data Table #9, Bulk Data Table 5). 

A proteomic MR was conducted in which cis-genetic instruments for 992 proteins 
were tested against the outcome of cardiac age acceleration (Bulk Data Table 4). 
Genetically mediated serum levels of 11 proteins were associated with cardiac age 
acceleration (Table 2). Cardiac age acceleration was causally associated with 
decreased serum levels of proteins associated with cardiac structure and development 
(R-spondin368, HER-269) but increased levels of proteins was associated with 
development of atherosclerosis (Furin70,71, Latexin72). It was also causally associated 
with serum levels of proteins that may mediate immune impact on cardiovascular 
disease such as decreased cathepsin C73–78 and increased dectin-279,80.  The strongest 
protein in the MR associated with cardiac age deceleration was with peptide methionine 
sulfoxide reductase, overexpression of which prolongs lifespan in drosophila, but has 
variable effects on lifespan in mice 81. Increased dectin-2 was significantly associated 
with cardiac age acceleration in both the continuous PheWAS and the MR. HER-2, R-
spondin-3 and Furin were associated with increased cardiac age acceleration in the 
continuous PheWAS, but were causally associated with cardiac age deceleration in the 
MR.  
 
Polygenic Predictors of Cardiac Age Acceleration 
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We sought to explore both the cardiac specificity and disease relevance of the 
GWAS findings by constructing a polygenic score that estimated cardiac age 
acceleration. The cardiac age acceleration polygenic predictor was significantly 
associated with disease outcomes in a held-out set of 395,620 individuals in the UK 
Biobank unrelated within 3 degrees of kinship to those who underwent MRI 
(Supplemental Data Table #10, Bulk Data Table 6). The polygenic risk predictor 
created from the cardiac age acceleration GWAS was associated with atrial septal 
defect (HR 1.14 per SD change in PRS, p= 2.07E-3). It was also associated with atrial 
fibrillation (HR 1.08, p= 3.02E-41), conduction system disease (HR 1.06, p= 4.69E-16), 
bradyarrhythmia (HR 1.06, p= 6.81E-13), coronary artery disease (HR 1.05, p= 7.44E-
22), heart failure (HR 1.07, p= 2.48E-17), hypertension (HR 1.05, p= 3.33E-30) and 
hyperlipidemia (HR 1.04, p= 9.86E-12) (Supplemental Data Table #10). The polygenic 
score was also associated with mortality (HR 1.02, p= 5.09E-05) (Supplemental Data 
Table #10).  
 
Masking Increases Specificity of Cardiac Age Acceleration 

To gain more insight into the impact of masking versus differing modeling 
approaches compared to prior literature, a single fold of the dataset was trained without 
masking, i.e., permitted to train on non-cardiac structures in addition to cardiac 
structures. It achieved an MAE of 2.70, a Pearson R of 0.8978 and an R2 of 0.81, a 
value similar to that previously achieved in a modeling approach that incorporated ECG 
and 2-, 3-, and 4-chamber MRI data without masking (Supplemental Table #1). 

To test whether our approach of masking out non-cardiac tissue contributed to 
the phenotype specificity, a sensitivity analysis was performed to evaluate age 
acceleration from a model trained on unmasked MRIs. While such an approach yielded 
a higher heritability, the GWAS based on these un-masked measurements yielded only 
4 significant loci, and only one locus was shared with the cardiac specific model (near 
TTN) (Supplemental Figure #18, Supplemental Data Table 8), further supporting the 
importance of masking for the discovery of genetic variation relevant to cardiac-specific 
aging.  
 
Discussion 

Here, we studied cardiac age acceleration—the apparent divergence between 
the estimated age of the heart and chronological age—in 66,521 UK Biobank 
participants. By combining an end-to-end deep learning-based age regression model 
with a segmentation model that excluded non-cardiac structures, we identified cardiac 
age acceleration to be a heritable phenotype with a high degree of cardiovascular 
specificity. 

The modeling approach was designed to capture dynamic information about 
cardiac structure and function, while preventing the model from learning from adjacent 
non-cardiac tissues. The present approach blended the strengths of previous 
approaches that estimated age acceleration from cardiac-specific measurements with 
the expressive power of end-to-end deep learning models to facilitate the extraction of 
age-relevant information from raw pixel intensity and motion data. The information 
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presented to the model can be visualized as a 208x208px image animated over 50 
timepoints during the cardiac cycle (2.2 million points). Because we set the pixel 
intensities for non-cardiac structures to 0 with our initial deep learning model, the data 
available to the age regression model was limited to heart size, pixel intensities, and the 
apparent motion of cardiac structures and the blood pool. These constraints deprived 
the model of useful but non-specific ancillary information and worsened performance for 
the training task (estimating chronological age). However, sensitivity analyses confirmed 
that these constraints imbued the model with cardiovascular specificity, compared to a 
more liberal approach that permitted non-cardiac structures to be seen by the model. 

Importantly, the information contained within our cardiac age acceleration 
measurements could not simply be accounted for by standard measurements of cardiac 
structure and function: LV strain and wall thickness, aortic measurements, and 
volumetric measurements from all four cardiac chambers together explained only 10% 
of the variance in cardiac age acceleration. Still, cardiac age acceleration was 
associated with adverse cardiac structure and function—and remained predictive of 
subsequent cardiovascular diagnoses including aortopathy, valvular heart disease, and 
cardiomyopathies even after accounting for traditional LV measurements. Similarly, a 
polygenic score for cardiac age acceleration was predictive of adverse cardiovascular 
consequences but not of many non-cardiovascular age related diseases like back pain, 
lung cancer or Parkinson’s Disease (Bulk Data Table 2 and 3).  

Notably, cardiac age acceleration appeared to serve as a readout of 
cardiovascular fitness and healthy dietary habits. For example, individuals with greater 
levels of moderate-to-vigorous physical activity as quantified by accelerometry had 
reduced cardiac age acceleration. While a more complete understanding of the 
mechanisms by which activity reduces cardiac age acceleration will require future study, 
we did note that greater genetically mediated circulating levels of the protein product of 
RSPO3, a myokine secreted during skeletal muscle contraction, were inversely 
associated with cardiac age acceleration in the proteomic Mendelian randomization 
analysis. Similarly, serum levels of Omega-6, linoleic acid, and increased degree of 
unsaturation of serum lipids were inversely associated with cardiac age acceleration. 
These are consistent with dietary recommendations regarding consumption of 
polyunsaturated fats from the American Heart Association. Adverse behavioral traits, 
including elevated tobacco and alcohol use to shortened sleep duration, were also 
linked to cardiac age acceleration. Through these findings, cardiac age acceleration 
appeared to serve as an embodiment of previously latent information about 
cardiovascular fitness, which may have implications for future efforts to 
comprehensively quantify cardiovascular health. 

Predisposition to accelerated cardiac aging was found to be heritable and linked 
to 20 additional genetic loci beyond those that were previously identified. These loci 
were notable for their cardiovascular specificity: although the deep learning model was 
forced to estimate age exclusively from cardiac structures, it was nevertheless possible 
that the main genetic determinants of age acceleration in those structures could have 
been global senescence and repair-related loci. However, most of the loci appeared to 
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be specific to the cardiovascular system: three loci harbored genes linked to monogenic 
cardiovascular diseases (TTN and DSP for cardiomyopathy and ELN for aortopathy); 
four additional loci were near genes with known roles in contractility or sarcomere 
function (TNS1, PALLD, PLEC, and MYO18B); and several other loci were near genes 
linked to cardiac development (MECOM, ANKRD1, ADPRHL1, WNT9B). Tissue-specific 
gene set analyses underscored the link between cardiac age acceleration and cardiac 
and proximal arterial tissues (Figure 3C); these links were further refined with single-
nucleus RNA sequencing analyses that highlighted cardiomyocytes and endothelium as 
the relevant cell types in the heart (Figure 3B) and vascular smooth muscle cells, 
endothelial cells, and fibroblasts in the aorta. These findings suggest that cardiac age 
acceleration’s heritable component is predominantly—but not exclusively—linked to 
variation in its constituent organ systems, rather than to a global aging program. 

Still, there were several notable relationships beyond the cardiovascular system. 
In the GWAS, we identified several loci that may play a more global role in cellular 
growth and senescence (CDKN1A/p21, HMGA2, SLC6A6/LSM3) or proteostasis 
(KLHL3, UHRF1) in multiple tissues. Furthermore, inflammatory diseases present 
before imaging were associated with accelerated cardiac aging (including lupus and 
rheumatoid arthritis), as were elevated circulating levels of inflammatory markers such 
as C-reactive protein. Circulating levels of the protein encoded by CLEC6A, Dectin-2, 
and its genetic prediction were both associated with accelerated cardiac aging at P<1E-
03. Dectin-2 ligand binding initiates a signal transduction cascade in the pro-
inflammatory NFκB/IL-1β pathway. Through these lines of evidence, several sources of 
inflammation were linked to cardiac age acceleration. 

There was also a pattern of association between cardiac age acceleration and 
adverse changes in brain imaging phenotypes, including findings consistent with 
diminished cerebral blood flow, gray matter atrophy, increased carotid atherosclerosis, 
and cerebral small vessel disease. These relationships were not accounted for by risk 
factors such as blood pressure. These observations add to the growing evidence for a 
shared heart-brain axis, but because the phenotypes were measured 
contemporaneously in the same individuals, future efforts will be required to gain insight 
into causal relationships. 

We propose three areas of future interest. First, there is value in continuing to 
increase the richness of the data that is available to the models, but enforcing cardiac 
specificity is critical. Second, we expect that significant effort will be required to make 
the measurements generalize beyond the specific imaging devices on which the models 
were trained; doing so will be important for generalization and to allow for ongoing 
characterization of these phenotypes beyond the biobank setting. Third, we expect that 
some features driving the model estimates of cardiac age acceleration could be 
parameterized into measurements that can be calculated with more traditional 
measurement techniques; if so, these features are likely to be more interpretable. Most 
importantly, some may play a biological role that can be studied independently. 

We also note several limitations of our current approach. The calculation of 
cardiac age acceleration as the difference between calendar age and DL predicted age 
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remains an estimate of structural and functional decline as captured by the DL model. 
While we believe that it is a stronger proxy than from clinical features alone, it is limited 
both by what is captured in the MRI and what is extracted by the DL model. Cardiac age 
acceleration was estimated using 4-chamber long-axis images from cardiovascular MRI 
in one cohort (UK Biobank) using one device manufacturer. The models were not able 
to incorporate data from unseen portions of the heart, and are not expected to 
generalize to other modalities or even to data from other devices without fine-tuning. 
The cohort was predominantly composed of middle-aged individuals with genetic 
identities similar to Europeans.  

In conclusion, cardiac age acceleration is a heritable, cardiovascular-specific 
phenotype that embodies information about fitness and disease risk that is not captured 
in traditional cardiac measurements. 
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Figures 
Figure 1: Study overview 

Top: Representative four chamber full MRI, the same MRI with segmentation applied, 
and the MRI with non-cardiac structures masked out. Bottom: Representative examples 
from individuals of the same age and sex with cardiac age deceleration (A), no cardiac 
age acceleration (B) and cardiac age acceleration (C). Heart images reproduced by kind 
permission of UK Biobank ©. 
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Figure 2: Cardiac structural associations 

Left: Associations between LV radial strain, circumferential strain, longitudinal strain and 
wall thickness displayed by AHA segments. Red segments had a significant positive 
association while blue segments had a significant inverse association. Right: A plot of 
effect sizes between cardiac age acceleration and image derived phenotypes from the 
cardiac MRI. Red dots reach statistical significance after FDR correction. Beta: standard 
deviation change in each measurement per standard deviation change in cardiac age 
acceleration.  
 

 
d 

rd 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.02.24310874doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24310874
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Figure 3: GWAS Manhattan plot for cardiac age acceleration 

Manhattan plot of the GWAS of cardiac age acceleration. Lead SNPs are labeled with 
the nearest gene.  
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Figure 4: MAGMA gene set associations 

 
Top: Associations between MAGMA gene sets and cardiac cell types from Chaffin, et 
al.26 Bottom: Associations between MAGMA gene sets and tissue expression from 
GTEx. 
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Tables 
Table 1: Lead SNPs from the GWAS of cardiac age acceleration 

SNP CH BP EA OA Beta P value 
Nearest 
Gene 

rs2042995 2 179558366 T C -0.093 8.4E-46 TTN 
rs10165160 2 218694962 C G -0.033 1.3E-08 TNS1 
rs7612736 3 14276238 G A 0.046 7.7E-12 LSM3 
rs144856067 3 168698634 A AT 0.050 1.5E-08 MECOM 
rs11383131 3 169177556 A AC -0.036 2.3E-10 MECOM 
4:169726307_GA_
G 

4 169726307 GA G -0.031 2.4E-08 PALLD 

rs7733331 5 32828846 T C -0.039 6.2E-12 NPR3 
rs61511837 5 137066469 C T -0.044 6.3E-10 KLHL3 
6:7491551_AT_A 6 7491551 AT A -0.032 2.8E-08 DSP 
rs140386312 6 22619557 G GT -0.049 1.8E-14 HDGFL1 
rs3176326 6 36647289 G A 0.056 3.6E-16 CDKN1A 
rs113395463 7 73478524 A G 0.077 2.3E-18 ELN 
rs17089329 8 23390046 C G -0.044 1.8E-10 SLC25A37 
rs993318 8 75786660 A G 0.043 1.8E-14 PI15 
rs11786896 8 145018354 C T -0.077 1.9E-09 PLEC 
rs10762576 10 75896601 A C 0.039 2.7E-10 AP3M1 
rs10748555 10 92682060 C A 0.040 4.1E-13 ANKRD1 
rs10878359 12 66404624 T C -0.032 1.4E-08 HMGA2 
rs41306688 13 114078558 A C -0.110 2.5E-13 ADPRHL1 
rs2517955 17 37843681 C T 0.044 2.5E-14 PGAP3 
rs75230966 17 44967530 G A -0.077 1.2E-19 WNT9B 
rs2779165 19 4915447 G C 0.039 3.9E-08 UHRF1 
rs2206909 20 53270624 C T 0.035 3.7E-08 DOK5 
rs133889 22 26160105 G C -0.035 1.8E-10 MYO18B 
SNP dbSNP identifier where available; CH chromosome; BP GRCh37 base position; EA 
effect allele; OA other allele; Beta REGENIE effect size of the effect allele, in units of the 
rank-based inverse normal transform which approximates a standard deviation change; 
P-value two-tailed REGENIE p value. 
 
Table 2: Mendelian randomization of serum protein expression 

Gene  Beta  SE  Adjusted p-value  
FURIN  0.1215  0.0302  0.0213  
LXN  0.1324  0.0333  0.0213  

CLEC6A  0.0414  0.0105  0.0213  
CTSC -0.0379  0.0096  0.0213  

HYOU1  0.1178  0.0307  0.0252  
ERBB2  -0.1464  0.0399  0.0397  
RSPO3  -0.1259  0.0354  0.0498  
CCN3  0.0819  0.0232  0.0498  
PAM  -0.0402  0.0115  0.0498  
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FES  -0.1443  0.0416  0.0498  
MSRA  -0.3412  0.0988  0.0498 

Gene the gene associated with serum expression of each protein. Beta effect size for 
the two-sample Mendelian randomization of cardiac age acceleration and single SNP 
cis-pQTLs for each protein; SE standard error; Adjusted p-value false discovery rate 
adjusted p-values. 
 
Data Availability 
GWAS summary statistics for cardiac age acceleration and model weights, along with 
training and quality control code are available at https://zenodo.org/records/12802434. 
At publication, final GWAS summary statistics will be added to the GWAS Catalogue, 
and any code changes will be updated.  
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