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Most HIV-1 vaccines elicit neutralizing antibodies that are active against highly sensitive (tier-1) viruses or rare
cases of vaccine-matched neutralization-resistant (tier-2) viruses, but no vaccine has induced antibodies that can
broadly neutralize heterologous tier-2 viruses. In this study, we isolated antibodies from an HIV-1-infected indi-
vidual that targeted the gp41membrane-proximal external region (MPER) thatmay have selected single-residue
changes in viral variants in theMPER that resulted in neutralization sensitivity to antibodies targeting distal epi-
topes on theHIV-1 Env. Similarly, a single change in theMPER in a second virus from another infected-individual
also conferred enhanced neutralization sensitivity. These gp41 single-residue changes thus transformed tier-2
viruses into tier-1 viruses that were sensitive to vaccine-elicited tier-1 neutralizing antibodies. These data dem-
onstrate that Env amino acid changes within theMPER bnAb epitope of naturally-selected escape viruses can in-
crease neutralization sensitivity to multiple types of neutralizing antibodies, and underscore the critical
importance of the MPER for maintaining the integrity of the tier-2 HIV-1 trimer.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

HIV-1 neutralization sensitivity occurs on a continuum, with some
virus strains highly neutralization sensitive (tier-1 viruses)while others
are more neutralization-resistant (tier-2 viruses). Transmitted/founder
(T/F) HIV-1 strains are uniformly tier-2 viruses (Seaman et al., 2010;
Derdeyn et al., 2014; Haim et al., 2011). The sensitivity of T/F viruses
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. This is an open access article under
is shaped by easy-to-induce antibodies that can neutralize tier-1 virus-
es, thus selecting for neutralization-resistant founder viruses (Moody et
al., 2015; Moore et al., 2009; Richman et al., 2003;Wei et al., 2003). The
structural correlate of neutralization sensitivity is the exposure of epi-
topes such as the second (V2) and third (V3) variable loops on tier-1 vi-
ruses that are not exposed on tier-2 viruses (Mascola and Montefiori,
2010; McCoy and Weiss, 2013). FRET analysis has demonstrated that
the HIV-1 envelope can oscillate between an “open” neutralization-
sensitive state (tier-1) and a “closed” more neutralization-resistant
(tier-2) state (Munro et al., 2014). However, our understanding of the
contribution of specific Env sequences to overall trimer conformation
is incomplete.
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HIV-1 Env is comprised of three gp120 monomers, each non-cova-
lently linked with a transmembrane gp41 subunit. The gp120 subunits
interact with target cell surface CD4 and a co-receptor to mediate viral
entry (Berger, 1997; Wyatt and Sodroski, 1998). The membrane-proxi-
mal external region (MPER) is a highly conserved 23 amino acid stretch
that is located in the heptad region-2 (HR-2) at the base of gp41, prox-
imal to the transmembrane domain. The MPER plays a critical role in
membrane fusion during viral entry into the host cell (Montero et al.,
2008). The high sequence diversity and glycan shield of HIV-1 Env
limit the breadth of most neutralizing antibodies, but broadly neutraliz-
ing antibodies (bnAbs) targeting the gp120, MPER and gp120-gp41
bridging regions have been identified (de Taeye et al., 2016; Burton
and Mascola, 2015). BnAbs take years to develop during natural HIV-1
infection, have attributes that are disfavored by the host immune sys-
tem, and have yet to be generated by any vaccine strategy (Haynes et
al., 2012; Mascola and Haynes, 2013). One fundamental challenge has
been the development of native-like Env trimers capable of expressing
bnAb epitopes while shielding non-neutralizing epitopes. Recently, ex-
amples of native-like Env trimers, stabilized soluble gp140 SOSIP tri-
mers that have truncated gp41 ectodomains (Sanders et al., 2015),
have been developed and these trimers are able to induce autologous
tier-2 neutralizing antibodies but have yet to elicit bnAbs. SOSIP trimers
do not include theMPER (Sanders et al., 2015), and therefore would not
be expected to elicit antibodies against that epitope.

CAP206 is a South African CAPRISA 002 cohort participant, whowas
infected by a clade C virus and at 81 weeks post-infection developed
neutralization breadth that was mediated by MPER-reactive antibodies
in the plasma (Gray et al., 2009).We previously isolated anMPER-reac-
tive neutralizing mAb from CAP206 by single memory B cell sorting
(Morris et al., 2011). This mAb, CAP206-CH12 utilized the same VH

and VΚ gene segments, VH1–69 and VΚ3–20, and had a similar binding
footprint as bnAb 4E10. Study of Env sequences in CAP206 from soon
after infection to over 2.5 years revealed accumulation of amino acid
changes within the CAP206 MPER (K677 N, W680R, and K683Q). We
have also identified a similar gp41 MPER change in another clade C
African individual, CH505, who developed bnAbs against the CD4-bind-
ing site (CD4bs) of gp120 (Liao et al., 2013b). Here, we show that these
MPER changes determine HIV-1 neutralization sensitivity in both
infected individuals. MPER antibodies isolated early during infection
from CAP206 did not neutralize the viruses with MPER changes that
displayed enhanced neutralization sensitivity, indicating that early
autologous MPER-targeting antibodies could have selected for the MPER
amino acid changes.

2. Materials and Methods

2.1. Study Subjects

Plasma and PBMCs were isolated from serial blood samples that
were collected from subtype C HIV-1 infected, antiretroviral therapy-
naïve individuals CAP206 and CH505 (Liao et al., 2013b; Gray et al.,
2009; Morris et al., 2011). Plasma and PBMC samples were stored at
−80 °C and in liquid nitrogen tanks, respectively. HIV-1 viral envelope
sequences were obtained from plasma over the course of infection
(L. Morris, Unpublished). Ethical approval for studies using CAP206
specimens was obtained from the Universities of KwaZulu-Natal and
the Witwatersrand. All work related to human subjects was in compli-
ance with Institutional Review Board protocols approved by the Duke
University Institutional Review Board and the local ethics boards
where the individuals were recruited.

2.2. Site-Directed Mutagenesis

Specific amino acid changes to HIV-1 envelopes were introduced
using QuikChange Site-Directed Mutagenesis Kit and Quik Change
Lightning Site-Directed Mutagenesis Kit (Aligent Technologies, Santa
Clara, CA). Mutations were confirmed by sequence analysis.

2.3. Neutralization Assays

Neutralizing antibody assays in TZM-bl cells were performed as
described (Montefiori, 2005). Recombinant monoclonal antibodies were
tested against autologous and heterologous HIV-1 Env-pseudotyped
viruses in eight serial threefold dilutions starting at 100 μg/mL or
50 μg/mL as described (Montefiori, 2005; Seaman et al., 2010). IC50

values were calculated using the five-parameter logistic nonlinear re-
gression model. The virus subtypes in the panel were selected to be con-
sistent with previous publications (Huang et al., 2012; Seaman et al.,
2010; Wu et al., 2010). Rhesus plasma neutralization titers were tested
against the same HIV-1 Env-pseudotyped viruses in serial dilutions
using non-heat inactivatedplasma and titerwas calculated as the recipro-
cal plasma dilutions causing a 50% reduction of relative light units (ID50).

2.4. Isolation and Expression of VHDHJH and VLJL Genes

The VHDHJH and VLJL gene-segment pairs of the isolated antibodies
were amplified by reverse transcription followed by semi-nested PCR
(RT-PCR) (Liao et al., 2009; Tiller et al., 2008) performed on flow-sorted
or limited dilution memory B cell cultures (Bonsignori et al., 2011). Anti-
gen-specific flow sorting was performed using HIV-1 Env CON-S gp140,
an HIV-1 envelope known to react with all clades of HIV-1 positive sera
(Tomaras et al., 2008), or MPR.03 peptide (KKKNEQELLELDKWASL
WNWFDITNWLWYIRKKK) tetramers as described (Morris et al., 2011).
Initial screening of memory B cell cultures was performed with CAP206
T/F gp140 Env. Antibodies were produced in bulk cultures by transient
transfection of Expi293F cells (Life technologies, Grand Island, NY) with
1 mg of each heavy- and light-chain genes synthesized in pcDNA plas-
mids (GeneScript, Piscataway, NJ) per 1 L transfection as described (Liao
et al., 2009). Rhesus macaque memory B cell sorting, gene amplification
and antibody production was performed as described (Bradley et al.,
2016; Wiehe et al., 2014).

2.5. Single Cell PCR Sequencing, Next-Generation Sequencing and Sequence
Annotation

A PCR purification kit (Qiagen, Valencia, CA) was used to purify all
single cell PCR products of Ig VHDHJH and VLJL genes. PCR products
were sequenced in forward and reverse directions using ABI 3700 in-
strument and BigDye sequencing kit (Applied Biosystems).

Base calling for each sequence was performed using Phred (Ewing
and Green, 1998). Forward and reverse strands of the Ig genes were as-
sembled into one final nucleotide sequence based on quality scores at
each base position and genetic information was inferred by using
SoDA (Munshaw and Kepler, 2010).

For high throughput DNA sequencing of Ig V(D)J genes, genomic
DNA samples were isolated from 9 serial aliquots of PBMCs from
CAP206 sampled from the following weeks post HIV-1 transmission:
4, 15, 22, 33, 68, 120, 146, 198 and 254 weeks using Using QIAamp
DNA mini kit. Heavy chain V gene segment family specific primers and
a consensus J gene segment primer were multiplexed and used to
amplify the rearranged VHDHJH Ig heavy chain sequences as previously
described (Boyd et al., 2009). Six barcodedV(D)J libraries from indepen-
dent aliquots of DNA template from each time pont were amplified,
pooled and sequenced using the 454 platformwith Titanium chemistry
(Roche) (Boyd et al., 2009).

2.6. Identification of Clone Members and Inference of UCA

Clonal relatedness of VHDHJH and VLJL sequences was determined
using an algorithm and the UCAs were inferred as described (Kepler et
al., 2014; Munshaw and Kepler, 2010).
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2.7. CH82 Antibody Blocking Assay

Antibody blocking assays were performed with CH82_UCA, CH82,
CH133, PG9, PG16, PGT121, PGT125, PGT128 and 2G12. Three hundred
eight-four-well ELISA plates (Costar #3700) were coated with CAP206
month 0 T/F gp140 overnight at 4 degree C and blocked with assay
diluent (PBS containing 4% (weight/volume)whey protein/ 15%Normal
Goat Serum/0.5% Tween20/ 0.05% Sodium Azide) for 1 h at room tem-
perature (RT). Antibodies CH82_UCA, CH82, CH133, PG9, PG16,
PGT121, PGT125, PGT128 and 2G12, starting at 100 μg/mL and diluted
two-fold, were incubated in triplicate wells. Biotinylated mAb CH82
was added at (0.1 μg/mL), the EC50 determined by a direct binding of
biotinylated-CH82, for 1 h at RT. Biotin-CH82 binding was detected
with streptavidin-HRP (Thermo Scientific; Waltham, MA) at 1:30,000
(1 hour RT) followed by SureBlue Reserve TMB Microwell Peroxidase
Substrate (Kirkegaard & Perry Laboratories, Inc.; Gaithersburg, MD). Re-
action was stopped with 0.33 N HCL and plates were read at 450 nm.
After background subtractions, percent inhibition was calculated as fol-
lows: 100-(mAb triplicate mean / no inhibition control mean) ∗ 100.
2.8. Antibody Autoreactivity

The polyreactivity of MPER-reactive antibodies was assayed in the
AtheNA multi-lyte system (Zeus Scientific).
2.9. Recombinant HIV-1 Proteins

HIV-1 Envs for ELISA and SPR assays included HIV-1 MN recombi-
nant gp41 (Immunodiagnostics), HIV-1 group M consensus gp120
(CON-S) (Liao et al., 2006), HIV-1 clade C consensus (ConC) gp120,
ConC gp120 N332A mutant, Env immunodominant region peptide
sp400 (RVLAVERYLRD-QQLLGIWGCSG-KLICTTAVPWN-ASWSNKSLNK),
gp41 MPER region peptide SP62 (QQEKNEQELLELDKWASLWN) and
GCN4 gp41 Inter (Frey et al., 2010). CAP206 autologous transmitted/
founder env and 6 additional envs from the first 30 months of infection
were obtained from serial blood samples by single genome amplifica-
tion (Keele et al., 2008), codon optimized (Andre et al., 1998) and de
novo synthesized (GeneScript) as gp140 or gp120, and cloned into
pcDNA3.1/hygromycin (Invitrogen). Recombinant Env glycoproteins
were produced in 293F cells in serum-free media transfected with
HIV-1 gp140 or gp120 expressing pcDNA3.1 plasmids, purified from
the supernatant of transfected 293F cells using Galanthus nivalis lec-
tin-agarose (Vector Labs) column chromatography, and stored at
−80 °C. ELISA was performed as described (Liao et al., 2011; Liao et
al., 2013a).
2.10. Rhesus Macaque Immunizations

12 Indian origin Macaca mulatta were immunized every 6 weeks
either sequentially (n = 6) or with a swarm (n = 6) of 100 μg of 7
gp140 Envs isolated from the first 30 months of infection from
CAP206 (T/F, 2 month, 6 month, 12 month, 21 month, 24 month and
30 month Envs) formulated with adjuvant MF59 (Novartis) in a 1:1
ratio in 1mL. Blood sampleswere collected 2weeks after each immuni-
zation. All rhesus macaques were housed at Bioqual. All rhesus
macaques were maintained in accordance with the Association for As-
sessment and Accreditation of Laboratory Animals with the approval
of the Animal Care and Use Committees of the NIH andHarvardMedical
School. Researchwas conducted in compliancewith the AnimalWelfare
Act and other federal statutes and regulations relating to animals and
experiments involving animals and adheres to principles stated in the
Guide for the Care and Use of Laboratory Animals, NRC Publication,
2011 edition.
3. Results

3.1. Amino Acid Changes in the gp41 MPER Increase Global Neutralization
Sensitivity

We performed sequencing of HIV-1 env soon after infection through
2.5 years in CAP206 using single-genome amplification (SGA) (Bradley
et al., 2016). Examination of the C-terminal MPER sequences revealed
three amino acid changes (K677 N, W680R, and K683Q) in HIV-1 Envs
isolated at 12 months and beyond (Fig. 1A). The month 21 and month
30 viruses with the W680R mutation were resistant to neutralization
by theMPER bnAb 4E10 (Fig. 1A). Analysis of 5129HIV-1 Env sequences
from the Los Alamos National laboratory (LANL) HIV-1 sequence
database revealed limited variability at positions 677 and 683, and con-
servation of the tryptophan at MPER position 680 with 99.4% of the se-
quences having W680 (Fig. 1B). In contrast, this position varied in
sequences isolated longitudinally from CAP206, with tryptophan or ar-
ginine at position 680; only 87.8% of CAP206 sequences had W680
(Fig. 1B; lower panel). In all CAP206 sequences that had the W680R
change, there were also coincidental changes of positions 677 and 683
to neutral amino acids, indicating that preserving the charge of the C-
terminus of the MPER may be important for interactions with the viral
membrane (Fig. 1C). Although rare, there were 51 Env sequences in
the LANL database that had W680 changes. Like the change in
CAP206, the majority of changes at position 680 were to positively
charged amino acids (34 of 51), but there were select examples of
changes to neutral or negatively charged residues (Fig. 1D). In the
MPER sequences that changed to a positive residue at position 680
there was also an increase in a neutral change at position 683, but
variation at positions 677 and 683 was observed (Fig. 1D).

Changes in the MPER have been shown to alter virus sensitivity to
neutralizing antibodies and fusion inhibitors (Blish et al., 2008;
Nakamura et al., 2010; Shen et al., 2010; Ringe and Bhattacharya,
2012), so to examine the role of these changes in HIV-1 immune escape,
we tested sensitivity of all 7 CAP206 pseudoviruses to neutralization by
purified IgG from 5 HIV-1 clade C infected individuals (Table 1). All 7
CAP206 viruses, including viruses with the W680 changes, were resis-
tant to neutralization with geometric mean titers N100 μg/mL and
remained classified as tier-2, difficult-to-neutralize, viruses (Table 1).
We used site-directed mutagenesis to introduce the 3 individual natu-
rally occurring changes alone and in combination (NRQ) into the
CAP206 T/F virus. We also altered the highly conserved tyrosine in
this region (Y681D) to examine its role in antibody escape; this residue
was not a natural viral variant present in CAP206. All of the MPER mu-
tant viruses demonstrated increased neutralization sensitivity to a
panel of 5 HIV-1-infected plasma IgG samples, and all MPER mutant vi-
ruses, with the exception of CAP206 T/F W680R, exhibited a transition
from a tier-2 to a tier-1 phenotype (Table 1). Although the CAP206 T/F
W680R virus remained classified as tier-2, this virus demonstrated
over a 3-fold enhancement in neutralization sensitivity as measured
by the geometric mean titer of neutralization compared to the CAP206
T/F virus (Table 1). Relative infectivity of the CAP206 T/F and 5 mutant
viruses was assessed by determining the tissue culture infectious dose
50 (TCID50) which is the viral stock dilution that results in approxi-
mately 150,000 RLU in TZM-bl cells. Only the CAP206 T/F Y681Dmutant
virus showed reduced infectivity by this measure, having a 2-log reduc-
tion in TCID50 (Fig. S1).

We sequenced the transmitted/founder virus and evolved Envs of
another clade C HIV-1-infected individual, CH505, who produced
bnAbs targeting the CD4 binding site. We identified a viral variant of
the CH505 T/F virus with a single change (W680G) four weeks after
transmission (w4.3) with no other amino acid changes when compared
to the predominant T/F virus (Gao et al., 2014; Liao et al., 2013b). This
was a single variant identified from 53 SGA sequences from week 4
post-transmission. We determined that the CH505 T/F virus was a
tier-2 virus, whereas the CH505 w4.3 mutant with W680G was a
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Fig. 1.Amino acid changes in the gp41MPER of CAP206 Envs after infection. (A) Amino acid alignment of theMPER region (669–683, HXB2) of the CAP206 T/F and 6mutant Envs isolated
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more neutralization-sensitive tier-1b virus (Table 1). These data dem-
onstrate that MPER mutations within CAP206 and CH505 T/F virus
backbones enhanced the global neutralization sensitivity and transform
the tier-2 T/F virus into an easy-to-neutralize tier-1 virus.
3.2. Isolation of HIV Env-Targeting Antibodies during Infection fromCAP206

We previously isolated a neutralizing MPER-reactive antibody,
CAP206-CH12, from CAP206 (Morris et al., 2011). To identify additional
antibodies that targeted theHIV-1 Env in CAP206, we performed single-
cell PCR on HIV-1-specific memory B cells sorted from peripheral blood
memory B cells 4–254weeks post transmission usingMPR.03 tetramers
and group M consensus Env CON-S. We also utilized limiting dilution
cultures (Bonsignori et al., 2011) of single memory B cells and se-
quenced wells that exhibited CAP206 T/F gp140 reactivity. Using these
methods, we isolated 41 monoclonal antibodies (mAbs) from CAP206
and confirmed HIV-1 Env reactivity by ELISA (Table S1). Fifteen of the
41 mAbs utilized the heavy chain variable gene segment (VH) 1–69
and 9 also used the kappa chain variable gene segment (Vκ) 3–20;
these are the same V-gene segments utilized by the neutralizing
MPER-reactive mAb CAP206-CH12 and the broadly neutralizing MPER
antibody 4E10 (Table S1; Fig. 2A). The reactivity of other mAbs that
used VH1–69 and Vκ3–20 was not limited to MPER but included addi-
tional gp41 and gp120 epitopes (Fig. 2A).
Two of the mAbs isolated by single-cell PCR that utilized VH 1–69
and VK 3–20, CH82 and CH82.2, have clonally related VHDHJH and VKJK
sequences (Table S1). We pyrosequenced genomic DNA isolated from
9 PBMC samples over the first 3 years of infection of CAP206, and iden-
tified additional members of this clonal lineage from multiple time
points 33–146 weeks post transmission, from which we inferred the
unmutated common ancestor (UCA, CH82 UCA (Fig. 2B). CH82 UCA,
CH82.2 and CH82 all bound the consensus C (ConC) gp120 protein
and binding was reduced when the critical glycan site within the V3
loop at position 332 was mutated (N332A; Fig. 2C). To compare the
binding epitope of CH82 to glycan dependent bnAbs, we tested variable
loop 2 (V2)-reactive bnAbs, PG9, PG16, and V3-glycan bnAbs PGT121,
PGT125, and PGT128 for their ability to block CH82 binding to the
CAP206 T/F gp140 (Fig. 2D). V3-glycan dependent bnAb PGT128
blocked 73% of CH82 binding at 100 μg/mL, binding was also blocked
by other V3-glycan dependent bnAbs, PGT121 and PGT126, 53% and
46%, respectively (Fig. 2D). V1/V2-glycan dependent mAbs PG9 and
PG16 did not block CH82 binding by N35%.

The CAP206 evolved viruses with theW680R change were detected
21 months post-infection. For this reason, we sought to isolate MPER
antibodies at earlier time points that may have provided selective pres-
sure in this region. Two antibodies (DH643, CH12.2) that reacted with
gp41, GCN4-inter (a gp41 intermediate state mimic), and MPER pep-
tides were isolated 17 weeks post infection from CAP206 by single-
cell PCR after sorting memory B cells from CAP206 that were positive



Table 1
Neutralization sensitivity of CAP206 and CH505 viruses to a panel of purified IgG from
clade C plasma (Tier phenotyping).

IC50 (μg/mL) in TZM-bl cells

Virus ID
CAP206 viruses SA-C2 SA-C8 SA-C62 SA-C72 SA-C74 GMT Tier
CAP206 T/F 647 333 142 549 5000 609 2
CAP206.6.mo 316 88 264 520 499 286 2
CAP206.12mo 294 304 70 466 589 280 2
CAP206.21mo 584 461 269 1203 5000 847 2
CAP206.24mo 448 287 178 434 555 353 2
CAP206.30mo 667 514 154 765 5000 726 2

CAP206 mutant viruses
CAP206 T/F K677N 9 6 3 154 18 13 1B
CAP206 T/F W680R 165 229 100 202 235 178 2
CAP206 T/F Y681D 17 41 71 37 5 24 1B
CAP206 T/F K683Q 12 8 4 300 18 18 1B
CAP206 T/F NRQ 11 7 4 151 18 13 1B

Control viruses
MW965.26 1.14 1.70 1.40 1.14 1.14 1.29 1 A
Q23.17 25 16 432 151 19 55 1B
CAP45.2.00.G3 71 209 337 56 662 179 2
C.DU156.12 352 278 811 207 393 365 2

Virus ID
CH505 viruses HIVIG-C SA-C102 SA-C82 SA-C36 SA-C8 GMT Tier
CH505 T/F 556 2222 790 118 1110 663 2
CH505 w4.3 62.2 9 36 5 2 12 1B

Control viruses
C.MW965.26 2.99 1 7 2 3 3 1A
C.DU156.12 46.7 432 352 119 110 156 2
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forMPR.03 peptides (Fig. 2E). CH12.2 used the same antibody gene seg-
ments (VH1–69, Vκ3–20) utilized by MPER-targeting bnAbs CAP206-
CH12 and 4E10, and was determined to be an early member of the
CH12 bnAb clonal lineage (Morris et al., 2011). Antibody DH643 used
unrelated gene segments (Table S1). CH12.2 and DH643 had limited so-
matic hypermutation (SHM), with heavy chain mutation frequencies of
2.7% and 3.6%, respectively. Both antibodies interacted weakly with
CAP206 gp140 recombinant Envs, but CH12.2 had increased reactivity
with CAP206 Envs thatwere natively deglycosylatedwith PNGase treat-
ment (Fig. 2F). DH643 did not bind to any forms of the CAP206 21, 24 or
30 month Envs (Fig. 2F).

3.3. CAP206 Viruses with MPER Changes that Confer Neutralization Sensitiv-
ity Are Resistant to Neutralization by Early MPER-Targeting Antibodies

Like the MPER bnAbs 4E10 and CH12, CH12.2 and DH643, isolated
early after infection, were cross-reactive with host proteins that are
common autoantigens in autoimmune disease (SSA, SSB and Jo1), but
only DH643 reacted weakly with cardiolipin (Fig. 3A & B). To assess
neutralization by MPER antibodies, we used the TZM-bl assay and the
TZM-bl/FcγRI assay that employs TZM-bl epithelial cells transfected
with CD64 (FcγRI), thus enabling the cells to bindMPER bnAbs and aug-
ment their ability to associate with the virion prior to receptor-mediat-
ed activation (Perez et al., 2009). By using a cell line that provides
antibodies a kinetic advantage for interaction with the transiently-
exposed MPER epitope, this assay has enhanced sensitivity for MPER
antibodies (Perez et al., 2009). Antibodies DH643 and CH12.2 did not
neutralize any viruses in the TZM-bl neutralization assay, but DH643
neutralized 4 autologous viruses and CH12.2 neutralized 3 autologous
viruses and 1 heterologous virus in TZM-bl cells that expressed FcγR1/
CD64 (Fig. 3C & D). Both antibodies neutralized the CAP206 T/F virus
but could not neutralize any of the evolved variants after month 21
that contained W680 changes; these antibodies did not neutralize the
CAP206 T/F variants with the K677N, W680R, Y681D, and the NRQ
changes (Fig. 3E). These observations raise the possibility that the ob-
served changes in the MPER that conferred enhanced neutralization
sensitivity were escape mutants from these early MPER-targeting
antibodies.

3.4. Enhanced Neutralization of MPER Mutant Viruses by gp120-Targeted
Antibodies from CAP206 and CAP206 Env-Immunized Macaques

V3-targeting CH82 lineage antibodies did not mediate any tier-2
autologous or heterologous neutralization and CH82 and CH82.2 only
could neutralize tier-1 viruses (Table S2).Given the observed global
increase in neutralization sensitivity for viruses with changes in the
MPER, we tested the CH82 clonal antibody lineage and an additional
V3-targeting antibody isolated from CAP206, CH259, for their ability
to neutralize the CAP206MPERmutant viruses. Clonal lineagemembers
CH82 and CH82.2, alongwith the CH82 lineage unmutated common an-
cestor (UCA), and CH259 did not neutralize CAP206 T/F virus. CH82.2,
CH82 and CH259 all weakly neutralized the virus with a W680R muta-
tion, potently neutralized the CAP206 T/F Y681D virus (Fig. 4A & S2).
Similar to the CAP206 viruses, the CH505 T/F virus was resistant to neu-
tralization by CH82 UCA, CH82.2, CH82, and CH259, but the CH505w4.3
virus was sensitive to neutralization by all 3 CH82 clonal lineage mAbs
and CH259 (Fig. 4B).

Next, we tested if vaccine-elicited antibodies from CAP206-immu-
nized rhesus macaques neutralized viruses with MPER changes that
conferred enhanced neutralization sensitivity. Two groups of rhesus
macaques were immunized with 7 CAP206 Env proteins sequentially
or in a swarm every 6 weeks (Fig. S3A). We have previously demon-
strated that the swarm immunized group elicited tier-1 neutralizing an-
tibodies in all animals and a single animal had tier-2 neutralizing
antibodies to the CAP206 virus isolated at 6 months (Bradley et al.,
2016). After two immunizations, plasma neutralization was detected
against heterologous tier-1 viruses MN and MW965 for both the se-
quential and swarm immunized animals (Fig. 4C). We tested plasma
neutralization of the autologous CAP206 T/F virus and the CAP206
Y681Dmutant virus that displayed enhanced neutralization sensitivity.
Only sporadic weak neutralization of the tier-2 CAP206 T/F could be de-
tected in the immunized animals, butmuch higher titers of neutralizing
antibodies to the tier-1 CAP206 Y681D virus was detected in all animals
(Fig. 4C). We isolated 3 gp120 reactive mAbs DH423-DH425 from
macaque 5096 2weeks after the 4th immunization, and a 4th gp120 re-
active mAb, DH426, was isolated from animal 5160 after the 3rd immu-
nization. All four mAbs were IgG isotype and used a VH gene segment
from VH family 4 (Table S3). DH424–426 reacted with a linear epitope
in V3 and DH423 recognized a conformation-dependent epitope in
gp120 (Fig. S3B).

The isolated antibodies were unable to neutralize the CAP206 T/F
virus, but DH424, DH425 and DH426 neutralized the CAP206 T/F
W680R virus, and all 4 isolated mAbs neutralized the CAP206 T/F
Y681D virus in the TZM-bl neutralization assay (Fig. 4D). DH423-
DH426 also neutralized the heterologous CH505 w4.3 virus, but lacked
the ability to neutralize the CH505 T/F virus (Fig. 4E). Additionally,
these antibodies neutralized the heterologous tier-1 virus C. MW965
and DH423 could also neutralize B. MN (Fig. 4E). These data demon-
strated that viruses with MPER changes are sensitive to autologous
CAP206 tier-1 neutralizing antibodies and easy-to-induce vaccine-
elicited tier-1 gp120-targeting antibodies.

3.5. MPER Amino Acid Changes Increase Viral Neutralization Sensitivity to
Antibodies against Multiple Epitopes and Alter gp120 Conformational
Preference

Next, we tested neutralization of the CAP206 T/F and MPER mutant
viruses by antibodies that targeted different Env epitopes and that
were known to neutralize heterologous tier-1 or limited numbers of
tier-2 pseudoviruses (Fig. 5A). Antibodies that targeted gp41 outside
of the MPER did not neutralize the CAP206 T/F virus or any of the
MPER mutants (DH628, DH629, and DH645). V2-targeting antibodies
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CH58 and CH59 isolated from RV144 vaccines also did not neutralize
CAP206 T/F or any mutants; in contrast, the V2 antibody 697D was
able to neutralize the CAP206 W680R and Y681D mutant viruses but
it failed to neutralize the CAP206 T/F virus. Antibodies that target the
V3 loop (CH14, CH48 and 19B) also exhibited enhanced neutralization
of the MPER mutant viruses—when compared with the CAP206 T/F
virus, CH14 more potently neutralized K677N, W680R, and Y681Dmu-
tant viruses; CH48 more potently neutralized W680R and Y681D mu-
tant viruses; and 19B was only able to neutralize the Y681D mutant
virus. The CD4-binding site targeting mAb F105 was unable to neutral-
ize any of the viruses, but CH13, which also targets the CD4-binding
site, potently neutralized the CAP206 Y681D mutant virus. Lastly,
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Fig. 3.MPER antibodies isolated early after infection were autoreactive and could not neutralize late viruses with MPER amino acid changes. (A) Intensity of binding autoantigens in the
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antibody 17B, which binds preferentially to the CD4-induced, CCR5 co-
receptor binding site epitopes on Env, could neutralize theW680Rvirus,
and even more potently, the Y681D mutant virus. Thus, changes at po-
sitions 680 and 681 result in greater binding of antibodies that have
been shown to bind to more open Env conformations, suggesting that
these changes in the MPER allow Env to sample more open states that
resemble the CD4-bound conformation where the CCR5 binding site is
exposed (Fig. 5A). Similar enhanced neutralization sensitivity to V3
(CH14, CH48 and 19B), CD4bs (CH13) and CD4-induced coreceptor
(17B) targeting antibodies were observed for the CH505 w4.3 virus
that had aW680G change in theMPER (Fig. 5B).We also tested neutral-
ization of the MPER mutant viruses by bnAbs that target gp41 and
gp120 epitopes on HIV Env. Among the CAP206 mutant viruses, only
the Y681D mutant showed enhanced neutralization sensitivity to
MPER bnAb 4E10 when compared to neutralization of the T/F virus
(Fig. 5C). The CH505 w4.3 virus also exhibited enhanced neutralization
sensitivity to 4E10, andwasmore sensitive to the CD4bs bnAbs b12 and
CH103 (Fig. 5D). These data demonstrate that the CAP206 W680R and
Y681D viruses and the CH505 w4.3 virus, which has a W680G change,
exhibit enhanced neutralization sensitivity to weakly-neutralizing het-
erologous antibodies that target distal epitopes (V2, V3 and CD4bs) in
gp120. In contrast, therewasminimal impact of thesemutations on sen-
sitivity to bnAbs.
Next, we tested the ability of small molecules that mimic CD4 to in-
hibit infection of the viruses (Fig. 5E) (Melillo et al., 2016). The CAP206
T/F virus was inhibited by CD4 mimetics BNM-III-170 and BNM-IV-147
at IC50s of 55.4 μM and 11.2 μM, respectively. The CAP206 T/F Y681D
mutant virus exhibited increased sensitivity to both molecules with
IC50 values of 2.9 μM and 2.5 μM. The CAP206 T/F W680R mutant had
a more modest two-fold increase in sensitivity to both molecules. The
CH505 T/F virus was resistant to BNM-III-170 but was inhibited by
BNM-IV-147with an IC50 of 77.1 μM. The CH505w4.3 viruswith a single
W680G change became sensitive to BNM-III-170 andwas over 30 times
more sensitive to BNM-IV-147 (Fig. 5E). These results suggest that
changes in the gp41 MPER can confer enhanced Env reactivity to CD4-
mimetic compounds, consistent with a greater propensity for Envs
with these mutations to sample more open trimer conformations,
which results in enhanced neutralization sensitivity.

4. Discussion

In this study, we identified amino acid changes in the gp41 MPER of
CAP206 Envs thatmodulate neutralization sensitivity by antibodies that
targetmultiple HIV-1 Env epitopes. Changes in theMPER of the CAP206
Env can be detected as early as 12 months after infection, and when
introduced into the CAP206 T/F virus, they converted the virus
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neutralization phenotype from a neutralization-resistant tier-2 virus to
a more easy-to-neutralize tier-1 virus. Additionally, we isolated MPER-
targeting antibodies during the first 6 months of infection that could
have selected these viral escape mutants. This includes antibody
CH12.2 which was an early member of the CH12 bnAb lineage (Morris
et al., 2011). Similarly, a T/F viral variant (W680G) from another bnAb
individual, CH505, also conferred enhanced antibody neutralization
sensitivity. Using bnAbs and narrow neutralizing antibodies, we dem-
onstrated that antibodies that target the V2, V3 and CD4bs displayed
enhanced neutralization of MPER-mutant viruses.
Changes in the gp41 and cytoplasmic domain outside of the MPER
have been demonstrated to increase resistance to neutralization by
gp120 antibodies (Watkins et al., 1996; Back et al., 1993; Haim et al.,
2011) and modulate sensitivity to MPER-reactive bnAbs (Shen et al.,
2010; Blish et al., 2008; Shen et al., 2009; Ringe and Bhattacharya,
2012). Natural polymorphisms are extremely rare for W680; however
naturally occurring variants resistant to the MPER bnAb 4E10 have
been isolated and shown to be capable of mother-to-child transmission
(Blish et al., 2008; Nakamura et al., 2010). The precise mechanisms of
how the MPER changes enhance neutralization sensitivity remains
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unclear. Prolonged epitope exposure due to changes in fusion kinetics,
Env dissociation, Env expression and changes in infectivity may play a
role in global enhancement of neutralization sensitivity, but were
not sole factors for neutralization sensitivity in previous studies
(Nakamura et al., 2010; Blish et al., 2008; Ringe and Bhattacharya,
2012; Vishwanathan and Hunter, 2008; Munoz-Barroso et al., 1999).
MPER residue W680R and Y681D changes in CAP206 and W680G
change in CH505 increase neutralization sensitivity to CD4-induced an-
tibody 17b indicated that these two mutations acted by exposing the
coreceptor binding site and other gp120 epitopes.

Consistent with previous studies we found that the MPER polymor-
phisms have different neutralization sensitivities depending on the
genetic background of the virus. The CAP206 month 21 and month 30
viruses with the NRQ mutations remained difficult-to-neutralize tier-2
viruses, but when this mutation was introduced in the T/F virus it con-
verted it to tier-1 (Nakamura et al., 2010). Moreover, we showed that
two clade C T/F viruses have varying degrees of sensitivity to MPER
changes; these changes in sensitivity are likely due in part to the fact
that the conserved amino acid tryptophan is large and hydrophobic. Re-
placement of this tryptophan at position 680 in CH505 T/F with the less
hydrophobic residue glycine confers greater neutralization sensitivity
than we observed with the larger charged arginine residue as we ob-
served in the CAP206 T/F. These results indicated that the properties
of the amino acid changes in the MPER and compensatory mutations
elsewhere in the Env can determine themagnitude of the neutralization
phenotype change.
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Changes at amino acid position 680 in CAP206were always associat-
ed with changes at positions 677 and 683, and in the LANL database,
when position 680 is mutated to a positively charged residue there is
higher prevalence of a neutral (Q) change at position 683. These 3 resi-
dues are solvent exposed within the second amphipathic helix and the
coordinated changes of these positions may be important for interac-
tions with distal Env regions or fusion dynamics and this mutation pat-
tern has been observed in other viral sequences (Nakamura et al., 2010;
Sun et al., 2008). Furthermore, amino acid residues 679–683 of the HIV-
1 gp41MPER have a cholesterol recognition amino acid consensusmotif
and disruption of this motif may inhibit viral fusion or stabilization of
the Env within the viral membrane (Vishwanathan and Hunter, 2008).
ThemotifWLWYIK overlapswith epitopes recognized byMHC class I al-
leles, but WLGYIK or WLRYIK do not. Thus, in addition to neutralizing
antibody escape, changes atW680 could result in escape from cytotoxic
T-lymphocyte responses early in infection before a potent neutralizing
antibody response (Kundu et al., 1998; Colleton et al., 2009; Reinis et
al., 2007).

DH643 and CH12.2 are MPER-targeting mAbs isolated 17 weeks
post-infection and only neutralized viruses in TZM-bl cells that
expressed FcγR1/CD64. MPER nAbs interact with the viral membrane
in order to have the kinetic advantage to access the MPER after viral
docking (Dennison et al., 2009). DH643 and CH12.2 that could not neu-
tralize in the TZM-bl assay were autoreactive, but had little to no reac-
tivity with lipids; this suggests that further somatic hypermutation
would be required to gain lipid reactivity and the ability to neutralize vi-
ruses without the assistance of FcγR1 on the cell surface. That CH12.2,
an early CH12 clonal lineage member, required FcγR1-TZM-bl cells to
demonstrate neutralization, indicates the usefulness of using this cell
line to identify MPER-targeted bnAb precursors (Zhang et al., 2016).

The enhanced sensitivity of theseMPERmutant viruses to gp120 an-
tibodies and CD4-mimetic molecules demonstrate the importance of
gp41 MPER residues near the viral membrane in maintaining the
stability of the closed native trimer state. Structural studies of viruses
containing these changes may provide insights into how these gp41
alterations affect Env conformations and present conserved epitopes
more effectively. Moreover, eliciting MPER-targeting antibodies, like
DH463 and CH12.2 that arose early and did not require high somatic
hypermutation, that selected MPER changes that induce more open,
easy-to-neutralize, trimer conformations by vaccination may contribute
to viral clearance and protection. In particular, this scenario could be im-
portant in the setting ofmaternal-to-child transmission (MTCT) of HIV-1
where inducing these types of MPER-targeting antibodies that select
MPER-changes that transform tier-2 viruses to tier-1 viruses in pregnant
women could lead to lower transmission rates. Indeed, a previous study
characterized aW680Rmutation thatwas transmitted byMTCT thatwas
resistant to the bnAb 4E10 (Nakamura et al., 2010), and a recent analysis
has shown that a correlate of decreasedMTCT transmission riskwas high
plasma tier-1 neutralizing antibodies (Permar et al., 2015). Future
studies will be required to determine if antibodies can be elicited by
vaccination that can select viral mutants that induce transition of
neutralization-resistant viruses to neutralization-sensitive.
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