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Expression of P3H2 (Leprel1) and P3H3 (Leprel2) but not P3H1 (Leprecan) is down-regulated in breast cancer by aberrant CpG
methylation in the 50 regulatory sequences of each gene. Methylation of P3H2 appears specific to breast cancer as no methylation
was detected in a range of cell lines from other epithelial cancers or from primary brain tumours or malignant melanoma. Methylation
in P3H2, but not P3H3, was strongly associated with oestrogen-receptor-positive breast cancers, whereas methylation in P3H3 was
associated with higher tumour grade and Nottingham Prognostic Index. Ectopic expression of P3H2 and P3H3 in cell lines with
silencing of the endogenous gene results in suppression of colony growth. This is the first demonstration of epigenetic inactivation of
prolyl hydroxylases in human cancer, implying that this gene family represents a novel class of tumour suppressors. The restriction of
silencing in P3H2 to breast carcinomas, and its association with oestrogen-receptor-positive cases, suggests that P3H2 may be a
breast-cancer-specific tumour suppressor.
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Epigenetics describes heritable changes in gene expression that
occur in the absence of changes in DNA sequence (Herman and
Baylin, 2003). The best characterised epigenetic alteration in
cancer is hypermethylation of CpG rich regions, usually found
in the promoter region of a gene (Jones and Baylin, 2002).
Hypermethylation, along with other epigenetic events often
associated with gene silencing, is crucial in the development of
cancer (Baylin, 2005). The detection of methylation-associated
gene inactivation is today widely used to identify candidate
tumour suppressor genes (Baylin and Ohm, 2006).

The prolyl 3-hydroxylases (P3H), P3H2 and P3H3, were
originally termed Leprel1 and Leprel2 due to their ‘Leprecan-like’
amino-acid sequence identity to Leprecan, now termed P3H1
(Wassenhove-McCarthy and McCarthy, 1999; Jarnum et al, 2004;
Vranka et al, 2004). Along with the collagen prolyl 4-hydroxylases
(c-P4H) and lysyl hydroxylases (LH), the P3H belong to the
2-oxoglutarate dioxygenases (Vranka et al, 2004).

The prolyl 4-hydroxylases (P4H) have been extensively studied
and are known to reside in either the endoplasmic reticulum (ER)
or cytoplasm, where their function is to hydroxylate proline
residues in the X-Pro-Gly sequence in collagens (Kivirikko et al,
1989) or to hydroxylate the 564 proline residue in the a-subunit of
the hypoxia-inducible factor (HIF; Bruick and McKnight, 2001;
Epstein et al, 2001; Ivan et al, 2001). The c-P4H enzymes have a
key function in the biosynthesis of collagen allowing appropriate

folding of the procollagen chains to form a triple helical structure
(Myllyharju, 2003). Furthermore, a decrease in oxygen tension has
been found to result in an up-regulation of P4H genes, P4HA1 and
P4HA2, as they have been found to be transcriptionally activated
by HIF. Although the prolyl hydroxylase reaction does require O2,
it is thought that the over-production of P4HA1 and P4HA2 in
hypoxic conditions compensates for this (Hofbauer et al, 2003;
Fähling et al, 2006).

In comparison to the P4H proteins, the function of the P3H
proteins is less well defined. However, it is known that P3H-
modified residues are more abundant in basement membrane
collagens. Prolyl 3-hydroxylation typically occurs in the Gly-3Hyp-
4Hyp sequence (Gryder et al, 1975; Vranka et al, 2004; Myllyharju,
2005). P3H1 belongs to a family comprising two further genes,
all three proteins sharing conserved catalytic residues of the
2-oxoglutarate and iron-dependent dioxygenases with the c-P4Hs
and LHs (Vranka et al, 2004). P3H2 was initially identified as a
protein mainly localised to the endoplasmic reticulum and Golgi
(Jarnum et al, 2004), but more recently has been demonstrated in
tissues rich in basement membranes, and participates in the
hydroxylation of collagen IV (Tiainen et al, 2008). It has previously
been hypothesised that prolyl 3-hydroxylation occurs after prolyl
4-hydroxylation, thus once the triple helix is formed, the
3-hydroxyproline results in destabilisation (Jenkins et al, 2003;
Mizuno et al, 2004). There are no published reports on the
function of P3H3.

This study examined the epigenetic regulation of P3H1, P3H2
and P3H3 expression in breast cancer cell lines and in a panel
of breast carcinomas. We show that loss of P3H2 and P3H3
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expression results from epigenetic silencing, and is associated with
aberrant hypermethylation in the CpG islands around exon 1 of
both P3H2 and P3H3.

MATERIALS AND METHODS

Cell culture

The following breast carcinoma cell lines were used in this study
and routinely maintained in Dulbecco’s modified Eagle’s media
(Invitrogen, Paisley, UK), supplemented with L-glutamine (5 mM)
and 10% heat-inactivated fetal bovine serum (Invitrogen) in 5%
CO2: MDA MB 231, MDA MB 361, MDA MB 436, MDA MB 468,
MDA MB 453, MCF7, GI101, T47D, NCI, BT474, ZR75, SKBR3 and
CAL51. Primary human mammary epithelial cells (HMEC) were
cultured using the mammary Epithelial Growth Media bullet kit
(Cambrex Corporation, East Rutherford, NJ, USA).

Expression analysis

Total RNA was extracted using the RNeasy kit (Qiagen Ltd., West
Sussex, UK). RNA (500 ng) was used for cDNA synthesis (ImProm-
II Reverse Transcription System; Promega, Southampton, UK).
Expression of P3H1, P3H2 and P3H3 was analysed by RT–PCR
and normalised to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). Primers were designed using Primer3 software (Totowa,
NJ, USA). The primer sequences for RT–PCR were:

P3H1: 50-CTGCAGCACACACCTTCTTC-30 (forward); 50-ACAGC
TTCCTGTGGCTGTTC-30 (reverse), product size, 183 bp;
P3H2: 50-TGATGACTTTGAAGGAGGAGAA-30 (forward); 50-AG
AGCCACAGCACACCTCTT-30 (reverse), product size, 165bp;
P3H3: 50-GACTGCCTGACCCAGTGC-30 (forward); 50-CTGCCA
GATCCAGCTTCTTC-30 (reverse), product size, 153bp;
GAPDH: 50-TGAAGGTCGGAGTCAACGGATTT-30 (forward);
50-GCCATGGAATTTGCCATGGGTGG-30 (reverse), product size,
143 bp.

PCR was performed in a 20 ml volume using 1.8� ReddyMix
PCR Master Mix (Abgene, Epsom, UK). Reaction products were
resolved on a 2% agarose gel stained with ethidium bromide, and
visualised under UV.

For western blotting, cells were lysed with RIPA lysis buffer.
Protein lysate (40 mg) was resolved on 8% SDS–PAGE gel and
proteins were transferred onto nitrocellulose membrane that were
incubated for 1 h with primary antibodies.

Rabbit antibody against P3H2 was described previously (Jarnum
et al, 2004) and was used at a dilution of 1 : 1000. Polyclonal rabbit
antibodies against P3H3 were raised against the peptide
CHQRVQDKTGRAPRVREEL (Biogenes, Berlin, Germany) and
used at a dilution of 1 : 1000. The secondary antibody was
affinity-purified HRP-conjugated goat anti-rabbit and used at a
dilution of 1 : 2000 (Dako, Cambridgeshire, UK). Anti-PCNA
(1 : 10 000) was used as a loading control.

Bisulphite modification

Genomic DNA (gDNA) was extracted from cell pellets using the
DNeasy kit (Qiagen Ltd.). Genomic DNA (500 ng) was used for
bisulphite modification with the Zymo EZ DNA Methylation kit
(Genetix, Hampshire, UK), and eluted in 200 ml dH2O. Included in
each bisulphite modification were unmethylated human DNA, and
CpGenome Universal Methylated DNA (Chemicon International,
Temecula, CA, USA), which were used as negative and positive
controls, respectively.

Methylation analysis of the P3H2 and P3H3 CpG islands

Methylation was analysed by methylation-specific PCR (MSP) and
bisulphite sequencing. Primers were designed using MethPrimer
software (http://www.urogene.org/methprimer/).

Methylation-specific PCR primers for P3H1 were: 50-GTTTTTTA
AGTCGAGGTCGAGTTC-30 (methylated forward); 50-ACTAAA
TACGACAACGCAAACG-30 (methylated reverse), product size,
180 bp; 50-TTTTAAGTTGAGGTTGAGTTTGA-30 (unmethylated
forward); 50-CACTAAATACAACAACACAAACAAA-30 (unmethyl-
ated reverse), product size, 172 bp. Methylation-specific PCR
primers for P3H2 were: 50-AGAGGGTTTCGGGGTATTTC-30

(methylated forward 1); 50-TAAAAACGACTAACCAAACACG
AC-30 (methylated reverse 1), product size, 158 bp; 50-GAGAG
GGTTTTGGGGTATTTT-30 (unmethylated forward 1); 50-CTTT
AAAAACAACTAACCAAACACAAC-30 (unmethylated reverse 1),
product size, 162 bp. 50-TTTTTCGTTTTTTGTTGGGGC-30 (methyl-
ated forward 2); 50-CGAAACGCTAAATCTCACAACTACGAT-30

(methylated reverse 2), product size, 60 bp. 50-TTTTGTTTTTTGT
TGGGGTGG-30 (unmethylated forward 2); 50-CCCCAAAACAC
TAAATCTCACAACTACA-30 (unmethylated reverse 2), product
size, 61 bp. Methylation-specific PCR primers for P3H3 were:
50-GAGGTAAGGTTGGGGTTTTTC-30 (methylated forward); 50-CA
ACCACGTAAACAACTACTACGAT-30 (methylated reverse), product
size, 97 bp; 50-AGGTAAGGTTGGGGTTTTTTG-30 (unmethylated
forward); 50-CCCAACCACATAAACAACTACTACA-30 (unmethyl-
ated reverse), product size, 98 bp.

Methylation-specific PCR was performed in a 20 ml volume using
Thermo-Start PCR Master Mix (Abgene). The standard thermal
cycling conditions were an initial ‘hotstart’ of 8 cycles followed by
a further 30 cycles, with a final extension. PCR products were
resolved on a 2% agarose gel stained with ethidium bromide
(Promega), and visualised under UV.

Bisulphite sequencing

Bisulphite-modified gDNA was used as the template in the PCR
reaction. Primers were designed using MethPrimer software.
Primers for P3H2 were designed spanning the entire predicted
CpG island, with a further 200 bp at 50 and 30 ends.
Primer sequence for P3H2 were:

50-ATTTGTATAATTAGAAGGGAGTTTA-30 (forward); 50-AACA
ACAAAAAAAACTCAAAAAAAC-30 (reverse), product size, 937 bp.

Figure 1 Epigenetic regulation of expression of P3H2 and P3H3 in breast carcinoma cell lines. (A) RT–PCR analysis of P3H1, P3H2 and P3H3 expression
in the indicated breast carcinoma cell lines and normal breast epithelium (HMEC). The control gene GAPDH is also shown. (B) Western blot analysis of
expression of P3H2 and P3H3 in breast carcinoma cell lines. Western blot analysis of the indicated breast carcinoma cell lines was performed as described in
Materials and methods. The control gene PCNA is also shown. Approximate position of molecular weight markers is indicated. (C) Methylation in the CpG
islands of P3H2 and P3H3 correlates with down-regulation of expression. As shown, the CpG island of P3H1 was uniformly unmethylated in each cell line
and in normal breast epithelium (HMEC), consistent with expression analysis (A). The figure shows MSP analysis of the P3H2 CpG island using two primer
pairs. Pair 1 (upper panel of P3H2) detects methylation in the MDA MB 453 and T47D cell lines, both of which lacked detectable expression. Primer pair 2
(lower panel of P3H2) that is located further 30 in the CpG island detected methylation in MDA MB 361, MDA MB 453, MCF7, T47D, BT474 and SKBR3
cell lines, which correlates closely with expression analysis. Methylation-specific PCR analysis of the P3H3 CpG island detects methylation in MDA MB 231,
MDA MB 361, MDA MB 468, MCF7, BT474 and SKBR3, showing a clear correlation between methylation and down-regulation of mRNA. (D) Methylation-
specific PCR analysis of P3H2 and P3H3 genes in ovarian carcinoma cell lines. The P3H3 CpG island is clearly methylated in OVCAR3, JAMA2 and IGROV
cell lines. In contrast, there is no evidence of methylation in the P3H2 CpG island in any of the cell lines analysed.
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For bisulphite sequence analysis of the P3H3 CpG island, three
sets of primers were designed spanning the CpG island, with a
further 200 bp at 50 and 30 ends.
Primer sequences for P3H3 were:

50-TTGTTGTTATTGTTGTTGTTGTTTTT-30 (forward 1); 50-CC
CCACCTAATAATAAACCCTCTAC-30 (reverse 1), product size,
482 bp.
50-ATTTGTAGAGGGTTTATTAGGTGG-30 (forward 2); 50-AAC
CCTAAACTAAAATAAATACAACC-30 (reverse 2), product size,
585 bp.

50-GAGGTAAGGTTGGGGTTTTT-30 (forward 3); 50-CTCAATTTAA
AAAACCAAATAAAAATAATA-30 (reverse 3), product size, 230 bp.

Reactions were performed in a 50 ml volume using Thermo-Start
PCR Master Mix (Abgene). PCR products were resolved on a 1%
agarose gel, with the product of the correct molecular weight
excised from the gel, purified using a Gel Extraction kit (Qiagen
Ltd.), ligated into the pCR2.1 TA vector (Invitrogen) and
transformed into One Shot Top10 Chemically Competent E. coli
(Invitrogen). Typically, eight colonies were picked per cell line,
and sequenced with the reverse primer, using the BigDye

A

P3H2

P3H3

GAPDH

P3H1

U

M

P3H3

U1

M1

P3H2

U2

M2

U

M

P3H1

M
B

 2
31

M
B

 3
61

M
B

 4
36

M
B

 4
68

M
B

 4
53

M
C

F
7

G
I1

01

T
47

D

N
C

I

B
T

47
4

Z
R

75

S
K

B
R

3

C
A

L 
51

H
M

E
C

U
 C

on
tr

ol

M
 C

on
tr

ol

B

P3H2

18
47

T
R

17
5

S
K

O
V

3

O
V

C
A

R
3

O
V

C
A

R
5

O
V

C
A

R
8

JA
M

A
2

A
27

80

A
27

80
 C

IS

A
27

80
 A

D
R

IG
R

O
V

U
 C

on
tr

ol

M
 C

on
tr

ol

U

U

M

MP3H2

P3H3

P3H3
76

PCNA
38

31

102

C

D

38

23
1

46
8

45
3

G
I1

01

T
47

D

B
T

47
4

S
K

B
r3

PCNA

P3H2
102

76

31

23
1

43
6

46
8

45
3

M
C

F
7

M
C

F
7

G
I1

01

B
T

47
4

T
47

D

S
K

B
r3

C
al

51

H
M

E
C

C
A

L 
51

S
K

B
R

3

Z
R

75

B
T

47
4

N
C

I

T
47

D

G
I1

01

M
C

F
7

M
B

 4
53

M
B

 4
68

M
B

 4
36

M
B

 3
61

M
B

 2
31

Methylation of prolyl 3-hydroxylases in breast cancer

R Shah et al

1689

British Journal of Cancer (2009) 100(10), 1687 – 1696& 2009 Cancer Research UK

G
e
n

e
ti

c
s

a
n

d
G

e
n

o
m

ic
s



Terminator v1.1 Cycle Sequencing kit (Applied Biosystems, Foster
City, CA, USA).

Clinical tissue

Genomic DNA was extracted from 184 primary, previously
untreated breast cancers, using the M48 Qiagen DNA extraction
robot, following Tayside Tissue Bank Local Research Ethics
Committee approval. Cancers were subject to histopathological
review before use for DNA extraction to ensure adequate
representation of neoplastic cells. Expression of the oestrogen
receptor, progesterone receptor and HER2 (using antibody CB11,
supplemented by FISH for 2-positive cancers to confirm amplifi-
cation), was measured as part of routine clinical care. Clinical and
pathological data included tumour grade, tumour type, pathology
node status, and relapse-free and overall survival.

Colony formation assay

Plasmids for ectopic expression of P3H2 and P3H3 were as follows:
pEGFP-N1-P3H2 was as previously described (Jarnum et al, 2004).
A full-length P3H3 cDNA in pCMV6-XL6 vector was purchased
from Origene (Rockville, MD, USA) and the insert was subcloned
into pcDNA3.1 as a Not1 fragment. Correct orientation was
determined by sequencing multiple plasmid clones. To assess the
effect on cell proliferation of ectopic expression of P3H2 and P3H3,
cell lines were transfected with 4 mg of the above expression clones
or empty vector alone, using Lipofectamine 2000 (Invitrogen).
Media were changed 24 h after transfection, and transfected cells
were selected in G418 (800 mg ml�1). After 16-day growth,
surviving colonies were fixed in 4% paraformaldehyde, washed
with phosphate-buffered saline, and dH2O, dried, then stained with
liquid crystal violet (Sigma-Aldrich, Dorset, UK) and counted.
Experiments were carried out in triplicate.

Statistical analyses

Assessment between two categorical variables was carried out
using w2- or Fisher’s exact test. Analysis of the cumulative survival
was carried out by the Kaplan–Meier method and differences
between the groups were tested with the log-rank test. All reported
P-values were two sided and considered statistically significant if
Po0.05. Tests were performed using GraphPad Prism version 5.0
software (GraphPad Software Inc, San Diego, CA, USA).

RESULTS

Transcriptional down-regulation of P3H2 and P3H3
in breast cancer cell lines

Using RT–PCR, we analysed the expression of the P3H1, P3H2 and
P3H3 genes in breast carcinoma cell lines (Figure 1A). All three
genes were expressed in HMEC. P3H1 was expressed in all 13
carcinoma cell lines in our panel, but there was no detectable
expression of P3H2 mRNA in MDA MB 361, MDA MB 453, MCF7
and T47D cell lines, with only low levels of expression in BT474
and SKBR3. In the case of P3H3, expression was undetectable in
the MDA MB 231, MDA MB 361, MDA MB 468, MCF7, BT474 and
SKBR3 cell lines (Figure 1A). Next, we analysed protein levels of
P3H2 and P3H3. We used a previously described antibody to P3H2
and generated a new polyclonal antibody to P3H3 and performed
western analysis of the breast carcinoma cell line panel. In general,
protein levels for both P3H2 and P3H3 paralleled mRNA
expression (Figure 1A and 1B). Interestingly, however, P3H3
protein was barely detectable in T47D cells despite readily
detectable expression of P3H3 mRNA, and the level of P3H3
protein was also reduced in MDA MB 453 relative to MDA MB 436,
GI101 and Cal51 despite comparable expression of P3H3 mRNA.

This may reflect other regulatory mechanisms operating at the
level of mRNA translation or protein stability.

Aberrant methylation of P3H2 and P3H3 in breast
cancer cell lines

We identified CpG islands in the 50 sequences of P3H1, P3H2
and P3H3 genes (http://genome.ucsc.edu). To address whether
promoter methylation was the cause of loss of gene expression,
we performed MSP analysis of the CpG islands of P3H1, P3H2 and
P3H3 in each of the breast cancer cell lines. The CpG island of
P3H1 was uniformly unmethylated in each cell line consistent with
expression analysis (Figure 1C). In the case of P3H2 methylation,
initial analysis used primers located in the centre of the CpG island
and these detected methylation in the MDA MB 453 and T47D cell
lines, both of which lacked detectable expression of P3H2.
However, analysis with this primer set did not detect methylation
in some cell lines that lack expression of P3H2. We therefore
designed a second primer set located further 30 in the CpG island.
Analysis of the cell line panel with this primer set detected
methylation additionally in MDA MB 361, MCF7, BT474 and
SKBR3, as well as MDA MB 453 and T47D (Figure 1C), establishing
a good correlation with down-regulation of mRNA. Methylation-
specific PCR analysis in the P3H3 CpG island with a single primer
set detected methylation in cell lines MDA MB 231, MDA MB 361,
MDA MB 468, MCF7, BT474 and SKBR3 (Figure 1C), confirming a
clear correlation between methylation as detected by MSP and
down-regulation of mRNA.

To characterise methylation in greater detail across the P3H2
and P3H3 CpG islands, we mapped each island, using bisulphite
sequencing, in a panel of cell lines previously analysed by MSP
(Figures 2 and 3). These studies closely paralleled the MSP
analysis. For example, in the P3H2 CpG island, the region of the
CpG island sampled by MSP primer pair 1 was methylated only in
the MDA MB 453 and T47D cell lines. In contrast, the region of the
CpG island sampled by MSP primer pair 2 contained methylation
in all cell lines lacking expression of P3H2. Consistent with
methylation-dependent transcriptional silencing, some of the cell
lines expressing P3H2 mRNA show an extremely low frequency of
CpG methylation (Figure 2). In the case of P3H3, methylation was
observed across the entire CpG island consistent with MSP analysis
(Figure 3). As with P3H2, there was an extremely low level of
methylation in some of the cell lines that express P3H3 mRNA
(Figure 3). The entire CpG islands of both P3H2 and P3H3 were
unmethylated in normal mammary epithelium.

Methylation of P3H2 is specific for breast carcinomas

The observation of methylation-dependent transcriptional silencing
in P3H2 and P3H3 prompted us to examine expression and methyl-
ation of the P3H genes in cell lines from other common solid tumour
types. In ovarian, head and neck, vulval, melanoma, glioblastoma
and renal carcinoma cell lines, P3H3 was clearly methylated and, as
in breast cancer, this correlated with down-regulation of the mRNA
(Figure 1D; data not shown). In contrast, we found no evidence for
methylation of P3H2 in analysis of cell lines from multiple other
tumour types, including ovarian and renal adenocarcinomas,
squamous carcinomas of the vulva and head and neck, malignant
melanoma and glioma (Figure 1D; data not shown). These results
imply that whereas P3H3 is widely methylated in human cancers,
methylation in P3H2 is restricted to breast cancer, at least within
the tumour types we have analysed in the present study.

P3H2 and P3H3 genes are methylated in primary
breast carcinomas

Next we tested whether the CpG islands of P3H2 and P3H3 are
methylated in a series of 184 primary breast carcinomas. From
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studies in cell lines described above, MSP analysis with primer set
2 of P3H2 was most strongly associated with down-regulated
expression of the mRNA. To further confirm the utility of this
primer set for methylation detection, we performed preliminary

bisulphite sequencing on eight cancers designated as either
methylated or unmethylated by MSP. These initial studies fully
confirmed that primer pair 2 accurately assessed methylation
status and so this primer pair was used for all subsequent analyses

Set 2Set 1    

MDA MB 231

MDA MB 361

MDA MB 436

MDA MB 468

MDA MB 453

MCF7
GI101

T47D

NCI

BT474

ZR75

CAL51

HMEC

Exon 1

Translation start site

1100 bp1000 bp900 bp800 bp700 bp600 bp500 bp400 bp300 bp200 bp100 bp0 bp

Figure 2 Schematic representation of bisulphite sequence analysis of the P3H2 CpG island in breast carcinoma cell lines and normal breast epithelium
(HMEC). Bisulphite sequencing was performed as described in Materials and methods. Primer pairs 1 and 2 used for MSP are indicated as set 1 and set 2
respectively. The thick black line on the scale indicates the position of exon 1 relative to the CpG island. The position of the part of the P3H2 open-reading
frame within the CpG island is indicated by the broken line above the scale. Vertical lines below the scale represent individual CpG dinucleotides within the
CpG island. The density of methylation for each cell line is represented by a quartile of blocks corresponding to each CpG. Black shading represents up to
25% methylation. Open blocks indicate no methylation. There is dense methylation in the MDA MB 361, MDA MB 453, MCF7, T47D and BT474 cell lines.
There is no methylation in HMEC.

MDA MB 231
MDA MB 361
MDA MB 436
MDA MB 468
MDA MB 453
MCF7
GI101
T47D
NCI
BT474
ZR75
CAL51
HMEC

Exon 1

Translation start site

1300 bp1200 bp1100 bp1000 bp900 bp800 bp700 bp600 bp500 bp400 bp300 bp200 bp100 bp0 bp

Figure 3 Schematic representation of bisulphite sequence analysis of the P3H3 CpG island in breast carcinoma cell lines and normal breast epithelium
(HMEC). Bisulphite sequencing was performed as described in Materials and methods. Primers used for MSP are indicated above the scale. The thick black
line on the scale indicates the position of exon 1 relative to the CpG island. The position of the part of the P3H3 open-reading frame within the CpG island is
indicated by the broken line above the scale. Vertical lines below the scale represent individual CpG dinucleotides within the CpG island. The density of
methylation for each cell line is represented by a quartile of blocks corresponding to each CpG. Black shading represents up to 25% methylation. Open
blocks indicate no methylation. There is methylation in MDA MB 231, MDA MB 361, MDA MB 468, MCF7 and BT474. The CpG island is uniformly
unmethylated in HMEC.
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of the full set of cases (Figure 4). The frequency of methylation for
P3H2 and P3H3 found in the 184 analysed breast samples was 42
and 26% respectively. Several associations were observed between
methylation status and clinicopathological parameters (Table 1).
First, methylation in the P3H2 CpG island was positively associated
with a positive oestrogen receptor status (P¼ 0.0053), whereas
methylation in the P3H3 CpG island showed no such association
(P¼ 0.71) (Table 1). The observation prompted us to determine
whether there was a similar association in breast cancer cell lines.
Other than MDA MB 453, all cell lines methylated in the P3H2 CpG
island (MDA MB 361, MDA MB 453, MCF7, T47D, BT474 and
SKBR3 express the oestrogen receptor). Methylation of the P3H3
CpG island was positively associated with increasing tumour grade
(P¼ 0.02) and with higher Nottingham Prognostic Index
(P¼ 0.02). However, we did not find evidence that methylation
in either gene was associated with clinical outcome (Table 1).

Ectopic expression of P3H2 and P3H3 suppresses
colony-forming ability

Genes found to be hypermethylated in their promoter region are
often considered to be candidate tumour suppressor genes. One

property that such genes may possess is the ability to suppress
proliferation when ectopically expressed in cells lacking endogen-
ous expression. To determine whether this was the case for P3H2
and P3H3, an expression plasmid for P3H2 was introduced into
MCF7 and T47D cell lines and an expression plasmid for P3H3 was
introduced into MCF7 and MDA MB 231, and we assessed the
efficiency of colony formation after 16 days in G418 selection. In
each case, expression of the transfected cDNA efficiently
suppressed colony growth (Figure 5). Using RT–PCR and western
blotting we confirmed that the transfected sequences were
expressed (Figure 5). Ability to suppress proliferation demon-
strated in these assays is consistent with a potential tumour
suppressor function for P3H2 and P3H3.

DISCUSSION

The 2-oxoglutarate dioxygenases are a family of proteins required
for modifications of collagen that are essential for its synthesis,
folding and assembly. The collagen P3H are members of the
2-oxoglutarate dioxygenase family, which catalyse the post-
translational formation of 3-hydroxyproline in Gly-3Hyp-4Hyp
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Figure 4 The P3H2 and P3H3 CpG islands are methylated in primary breast carcinomas. (A) Bisulphite sequence analysis of P3H2 CpG island in eight
randomly selected primary breast carcinomas. The figure shows a schematic representation of the P3H2 CpG island as described in legend for Figure 2.
Vertical lines below the scale represent individual CpG dinucleotides within the CpG island. The density of methylation for each cell line is represented by a
quartile of blocks corresponding to each CpG. Black shading represents up to 25% methylation. Open blocks indicate no methylation. (B) Methylation-
specific PCR analysis of P3H2 in primary breast carcinomas. It is shown with the number of each carcinoma analysed by both MSP and bisulphite sequencing
indicated (underlined in the MSP gel). Unmethylated (CU) and methylated (CM) control DNAs, modified in parallel with primary cancer DNA samples in
each case, are also shown. Cases 277, 424, 431, 446, 453 and 473 were identified as positive for methylation by MSP with primer set 2 as shown, whereas
cases 301 and 326 were negative confirming the sensitivity and specificity of this primer set for methylation detection.
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Table 1 Relationship between (A) P3H2 methylation and clinical parameters and (B) P3H3 methylation and clinical parameters

n U M p OS DFS

(A)
Total 184 107 77 — 0.9136 0.8587

ER status
ER+ 130 67 63 0.0053 0.3681 0.4207
ER� 54 40 14 0.9874 0.5983

PgR status
PgR+ 77 40 37 0.1736 0.0656 0.0677
PgR� 107 67 40 0.5742 0.5379

Menopausal
Pre 35 20 15 0.1021 0.8266 0.7161
Peri 6 6 0 NA NA
Post 141 79 62 0.9941 0.9951
Unknown 2 2 0 NA NA

Tumour grade
1 32 20 12 0.7497 0.9147 0.6178
2 67 37 30 0.3671 0.8012
3 75 45 30 0.2621 0.8066
Unknown 10 5 5

NPI
1 (good) 42 26 16 0.7725 0.9865 0.404
2 (moderate) 79 46 33 0.8471 0.6637
3 (poor) 46 25 21 0.6778 0.1847
Unknown 17 10 7

p53 status
WT 130 73 57 0.4167 0.4665 0.5849
Mutant 54 34 20 0.4091 0.5051

Cell lines
ER+ 1 6 0.029
ER� 6 1

(B)
Total 184 136 48 — 0.7504 0.3621

ER status
ER+ 130 97 33 0.717 0.6233 0.7558
ER� 54 39 15 0.2504 0.1384

PgR status
PgR+ 77 61 16 0.1776 0.8762 0.9168
PgR� 107 75 32 0.3545 0.1295

Menopausal
Pre 35 26 9 0.8508 0.6927 0.5699
Peri 6 5 1 0.6547 0.6547
Post 141 103 38 0.9136 0.5579
Unknown 2 2 0 NA NA

Tumour grade
1 32 29 3 0.02 0.372 0.7803
2 67 48 19 0.9137 0.4962
3 75 54 21 0.4772 0.5206
Unknown 10 5 5

NPI
1 (good) 42 38 4 0.02 0.9638 0.9422
2 (moderate) 79 58 21 0.5954 0.1292
3 (poor) 46 31 15 0.2346 0.446
Unknown 17 8 9

p53 status
WT 130 96 34 1 0.6751 0.99
Mutant 54 40 14 0.4247 0.2493

DFS¼ disease-free survival; ER¼ oestrogen receptor; NA¼ not applicable; NPI¼Nottingham Prognostic Index; OS¼ overall survival; PgR¼ progesterone receptor; WT¼wild
type.
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sequences in collagens, especially type IV and V collagens. The
possible involvement of the P3H genes in human tumourigenesis
was explored because ectopic expression of P3H1 was reported to
cause growth arrest in fibroblasts (Kaul et al, 2000). There are
three P3H proteins encoded in the human genome, P3H1, P3H2
and P3H3. Here, we show that both P3H2 and P3H3, but not P3H1,
are frequent targets for epigenetic inactivation in human breast
cancer. To the best of our knowledge, this is the first to report of
an epigenetic inactivation of any prolyl hydroxylase gene in human
neoplasia.

Breast carcinoma cell lines were screened by RT– PCR and
western blotting for expression of the three P3H genes. Strikingly,
whereas P3H1 was present in all cell lines, expression of both P3H2
and P3H3 was undetectable in several lines at both mRNA and
protein levels. Bisulphite sequencing and MSP of the CpG islands
located in the 50 sequences of each gene revealed a clear correlation
between down-regulated expression and aberrant methylation for
both genes. This implies that methylation-dependent transcrip-
tional silencing is the mechanistic basis for the loss of mRNA
expression, as is the case for a number of tumour suppressor genes
in breast cancer, including p16INK4a, Rassf1a and E-cadherin

among others. Previous expression profiling studies of human
breast cancer show that P3H2 mRNA (Radvanyi et al, 2005;
Richardson et al, 2006) and P3H3 mRNA (van’t Veer et al, 2002)
are down-regulated in breast cancer, consistent with our results.

Taken together, our results suggest that P3H2 and P3H3 are
candidate tumour suppressors in breast cancer, raising the
question of which function(s) are selected against during
tumourigenesis. The collagen prolyl hydroxylases are localised to
the endoplasmic reticulum and their activity is required for proper
collagen synthesis and assembly. Studies of inherited disorders of
collagen biosynthesis suggest that loss of function in P3H proteins
results in dysfunctional collagen; mutations in P3H1 are associated
with oesteogenesis imperfecta type VIII (Cabral et al, 2007) and
loss of function mutations in both P3H1- and P3H-related protein
CRTAP have been described in oesteogenesis imperfecta types II
and III (Baldridge et al, 2008). Evidence implicating collagen
abnormalities in human tumours is afforded by studies showing
methylation-dependent silencing of collagen-encoding genes in
various tumour types (Sengupta et al, 2003; Ikeda et al, 2006).
Type IV collagen, a major substrate for the P3H proteins, is an
important component of the basement membrane, and impaired
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Figure 5 Ectopic expression of P3H2 and P3H3 in cells lacking endogenous expression suppresses cell proliferation. Expression plasmids for each gene or
empty vector alone were introduced into individual cell lines as shown and transfected cells selected in G418. Surviving colonies were stained and counted
after 16 days. (A) Expression of transfected plasmids for P3H2 and P3H3. T47D cells (which lack endogenous P3H2) and MDA MB 231 cells (which lack
endogenous P3H3) were transfected with either control vector (C) or P3H2 and P3H3 expression plasmids respectively as indicated. Cell lysates were
prepared and subjected to western blot analysis as described in Materials and methods. (B) Expression of transfected plasmids for P3H2 and P3H3 in MCF7
cells. MCF7 cells, which lack endogenous expression of both P3H2 and P3H3, were transfected with the indicated expression plasmids. Expression of
transfected plasmids was analysed by RT–PCR as described in Materials and Methods. (C) Representative experiment showing suppression of colony
growth by ectopic expression of P3H2 and P3H3. MCF7 cells (which lack endogenous expression of both P3H2 and P3H3) were transfected with
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expression of type IV collagen has been reported to be an early
event in acquisition of an invasive phenotype in some epithelial
cancers (Ikeda et al, 2006). In this respect, it will clearly be of
interest to determine whether loss of expression of P3H2 and/or
P3H3 affects the properties of the basement membrane in breast
cancer cells and thereby influences cancer-associated phenotypes
such as invasiveness and metastasis. In addition to the possible
effects of loss of P3H2 and P3H3 on collagen, our data demonstrate
that both P3H2 and P3H3 have a direct anti-proliferative effect in
breast cancer, suggesting additional tumour suppressor properties
for each gene. Specifically, ectopic expression of both P3H2 and
P3H3 in cells lacking endogenous expression due to epigenetic
silencing resulted in a decrease in colony formation. Inhibition of
colony formation in such assays has been demonstrated previously
with known tumour suppressors such as p53 (Crook et al, 1994).
Clearly, understanding the mechanism(s) by which the P3H genes
negatively regulate proliferation will require additional studies.

A striking feature of the data is the restriction of methylation in
P3H2 to breast cancer, with no detectable methylation in
carcinoma cell lines in the other tumour types examined. Such
tight specificity of methylation in one gene for a single tumour
type is unusual and raises the potential to use detection of
methylated DNA either in tissue or body fluids as a cancer
biomarker. Verification that P3H2 is methylated only in breast
cancer would make it an attractive candidate gene with potential
utility in diagnosis and screening in breast cancer. The specificity
of down-regulation of P3H2 mRNA in breast cancer may reflect
the association with oestrogen-receptor-positive primary breast
cancers, an association also noted in breast carcinoma cell lines.
Selective methylation of the P3H2 CpG island in oestrogen-
receptor-positive breast cancers is consistent with multiple array-
based expression profiling studies (Miller et al, 2005; Minn et al,
2005; Wang et al, 2005; Hess et al, 2006) and in array analysis
comparing oestrogen-receptor-positive and -negative breast

cancer cell lines (Neve et al, 2006). However, it remains to be
determined whether P3H2 is an oestrogen-inducible gene and what
the mechanistic basis is for the selective methylation of P3H2 in
oestrogen-receptor-positive cases. One possibility is that P3H2 is
an oestrogen-inducible negative regulator of proliferation. This
hypothesis is supported by the demonstration that ectopic
expression of P3H2 in cell lines lacking endogenous expression
suppresses colony survival and growth. A second interesting
association was that methylation in P3H3 was associated with
higher histopathological grade, consistent with a number of
expression profiling studies (van’t Veer et al, 2002; Ivshina et al,
2004; Zhao et al, 2004; Farmer et al, 2005; Miller et al, 2005;
Ginestier et al, 2006; Hess et al, 2006) and with higher Nottingham
Prognostic Index. From the relatively small number of cases of
primary breast cancer analysed (n¼ 184), we did not observe a
significant association between P3H2 or P3H3 methylation and
clinical outcome. However, mRNA analysis implies that down-
regulation of P3H2 is associated with less favourable prognosis in
some breast cancer series (van de Vijver et al, 2002; Pawitan et al,
2006; Desmedt et al, 2007) and recurrence after tamoxifen
(Ma et al, 2004). It will clearly be of interest to determine in
large study populations whether analysis of P3H2 methylation has
prognostic utility in breast cancer.

This is the first demonstration of epigenetic inactivation of prolyl
hydroxylases in human cancer. The prolyl 3-hydroxylases P3H2 and
P3H3 are, therefore, novel candidate tumour suppressor genes in
breast cancer.
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