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The first case of Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in the year
2012, which spread rapidly and increased to more than 2200 in 2018. This highly pathogenic virus with
high mortality rate is among one of the major public health concerns. Saudi Arabia remains to be the most
affected region with the majority of MERS-CoV cases, and currently, no effective drugs and vaccines are
available for prevention and treatment. A large amount of information is now available regarding the
virus, its structure, route of transmission and its pathophysiology. Therefore, this review summarizes the
current understanding of MERS-CoV’s pathogenesis, treatment options and recent scientific advancements
in vaccine and other therapeutic developments, and the major steps taken for MERS prevention control.

First draft submitted: 21 November 2018; Accepted for publication: 15 March 2019; Published online:
18 April 2018

Keywords: Arabian Peninsula • coronavirus • global • macrophages • MERS • SARS • Saudi Arabia • therapeutic •
vaccine • WHO

Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as a zoonotic virus, whose mode of
transmission is from animals to humans. The origin of the virus is believed to be bats, from which it was then
transferred to camels. Camels are currently regarded as a major host for MERS-CoV. It has also been identified as
the most significant source for human infections [1]. The isolates of MERS-CoV from camels and humans have also
been found to more than 99% identical [2]. While camels have been identified as the primary source of MERS-CoV
infection through both indirect as well as direct contact, the specific route and role of camels in disease transmission
is yet to be identified.

The pathogenic agent of Middle East respiratory syndrome is a new coronavirus which was initially identified
from the respiratory content of a patient who was infected, and died, as a result of infection from a mysterious viral
disease showing pneumonia like symptoms in Saudi Arabia in 2012 [3]. Initially, a group of healthcare personnel
working in a hospital in Jordan contracted a respiratory infection in April 2012, the source of which was not
known [4]. Later in June 2012, an elderly businessman with severe pneumonia associated with kidney failure was
admitted to a Saudi hospital. The coronavirus detected from his sputum was not known before and for a while
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Figure 1. Global map of confirmed MERS-CoV infections, 2012–2018. Figure modified from [15].

it was referred to as human Coronavirus Erasmus Medical Center (hCoV-EMC) [5]. Following that case, another
patient from the Middle East with severe respiratory infection, who was transferred to the UK, was found to be
infected with the same virus. On analyzing and comparing the samples from the Jordan outbreak with the latter
ones, the same virus hCoV-EMC was recognized as causing this new and severe form of respiratory infection. It was
later titled as MERS-CoV [6]. Since its first detection to this date, this virus has spread in countries across Middle
East and Europe [7]. The highest number of cases has been identified in Saudi Arabia. Infections in European
countries have been brought in by travel from the Middle East [7,8].

From 2012 through the end of December 2018, the number of confirmed cases of MERS-CoV globally reported
to the WHO was 2279 with 806 associated deaths, which corresponds to a fatality rate of approximately 35.36%.
Saudi Arabia was on the top of the list of countries with 1901 reports of confirmed cases, including 732 related
deaths with a fatality rate of approximately 39% [9]. Due to its high mortality rate (∼36%) [9,10] and pathogenicity,
nonavailability of vaccine or any other definite treatment, MERS-CoV is considered a major challenge to global
health and presents a pressing need for the research and development of definite therapeutic options and adequate
management to prevent its infection [11,12].

The interest in coronaviruses was reignited after the 2002 outbreak of Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV) and 2012 outbreak of MERS-CoV. Researchers have tried to understand pandemic
potential of MERS-CoV by studying its emergence and ecology. Studies are being carrying out to assess how
this virus causes disease so that novel therapeutics and vaccines can be developed. The mode of transmission of
MERS-CoV is yet to be established, but it is assumed to have come from bats [13]. Camels found in the Arabian
Peninsula may serve as intermediate hosts for human infection [14].

This review will focus on studies trying to elucidate mechanisms by which MERS-CoV escapes host-immune
system and causes disease. We will also examine the recent advances in the development of novel therapeutics and
vaccines.

Figure 1
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Characteristics of coronavirus & major proteins
Coronaviruses are positive stranded RNA viruses, and while most of these infect animals, particularly bats, a minor
number can also cause human diseases [16]. Human coronaviruses can be broadly divided into types, α and β

coronavirus [17]. MERS-CoV is from the β-coronavirus family [18]. It has four major surface proteins that help the
virus to enter the cells viz. envelope protein (E), spike (S) protein, nucleocapsid (N) protein and membrane (M)
protein. The spike (S) protein is a transmembrane glycoprotein made up of S1 and S2 subunits. The S protein is
crucial for virus entry through binding and fusion to host cells. The S1 subunit has a receptor binding domain
(RBD) that binds with the DPP4 receptor of the host [18,19]. The S2 subunit contains heptad repeats H1 and H2
which forms the main membrane fusion unit [20]. The E protein is required for assembly, intracellular transport
and budding of virus [21]. The M protein has its role in viral morphogenesis and assembly [22]. N proteins and S, E
and M proteins interact to form complete virus particles [23]. In addition to these structural proteins, MERS-CoV
has two large polyproteins called pp1a and pp1ab. These proteins are broken down by proteases to form various
nonstructural essential proteins, such as enzymes [24,25]. Recent studies have revealed that these viral structural and
nonstructural proteins can be exploited as novel targets for therapeutic purposes [26–28].

Clinical presentation
The infection caused by MERS-CoV has an average incubation time of 5 days (2–14 days range). The host,
in this time period, shows no symptoms of infection. The clinical symptoms of the disease range from mild
symptoms of upper respiratory infection like cough, fever and myalgia to severe forms such as pneumonitis, as
well as respiratory failure. Patients may also suffer from abdominal pain, appetite loss, nausea, diarrhea, vomiting
and other gastrointestinal symptoms. The less commonly occurring symptoms include hemoptysis and diarrhea
without any hint of fever [29]. Studies advocate that chronic illnesses, such as chronic heart disease, kidney disease,
diabetes and hypertension, increase the risk of MERS-CoV infection and its severity [30], though further proof is
required.

MERS-CoV can alter antigen presentation, host immune response and modulate the apoptotic pathways and
mitogen-activated protein kinase pathways [7].

Pathogenesis
Before the discovery of MERS-CoV, SARS-CoV was considered the most pathogenic coronavirus. However, the
higher pathogenicity of MERS-CoV was apparent by the higher number of deaths caused by this virus. Similar
to the virus of SARS, MERS-CoV infects and replicates in the human airway epithelial cells and suppresses the
production of interferons [31,32]. However, unlike SARS-CoV, the MERS virus exhibits wider tissue tropism [33,34].
MERS-CoV can also induce pro-inflammatory cytokines but lacks in production of innate antiviral cytokines
compared with SARS-CoV. Suggesting MERS-CoV induces delayed pro-inflammatory response and attenuates
innate immunity, which suggests that MERS-CoV is more lethal compared with SARS-CoV [35–37]. Primarily the
MERS virus interacts with the host DPP4 receptor through its spike (S) protein after entering the respiratory tract.
DPP4 receptors are present on the epithelial surface of various human organs such as, the lungs, kidneys, liver, bone
marrow, thymus and intestines [38]. The systemic distribution of DPP4 facilitates the dissemination of virus in the
human body. Expression of DPP4 on the respiratory tract is mainly on type I and type II pneumocytes, endothelial
cells, nonciliated bronchial epithelial cells and a few forms of hematopoietic cells [39,40]. The abundance of the
receptor DPP4 is greater on the epithelial cells lining the lower airways and alveoli and lesser on the epithelial surface
of upper conducting airways and nasal cavity [41]. Recent findings have suggested that a prior existing pulmonary
ailment might increase the chances of such individuals contracting MERS, as chronic pulmonary diseases results
in enhanced DPP4 expression [40].

CoV nsp1 is a serious virulence factor, which facilitates the biological actions of MERS-CoV. Studying the nsp1
can advance our understanding of pathogenicity of MERS-CoV and facilitate development of better therapeutics.
Host gene expression in infected cells is suppressed by MERS-CoV nsp1, which also promotes virus assembly or
budding in in vitro, leading to efficient virus replication, suggesting nsp1 is also critical for MERS-CoV replication
and promotes production of virus particles in the host [42]. The severity of MERS-CoV infection is relatively
more in patients with co-morbid conditions, such as chronic lung disease, renal failure, diabetes and others with
compromised immune systems [9].

The understanding of MERS-CoV pathogenesis has been limited due to nonavailability of patient autopsy or
pathological samples from the patients. Our understanding of the disease pathogenesis is based entirely on in

future science group www.futuremedicine.com 239



Review Choudhry, Abdulaal, Bakhrebah et al.

vitro studies. Studies were conducted on animal models and human lung cell lines, and the account from a single
autopsy [43]. In vitro studies revealed that MERS-CoV can easily replicate in several cultured human cells, as well
as, in the differentiated and nondifferentiated human epithelial cells [34,44]. The antigens of MERS-CoV were
found on the macrophages in the alveoli of the infected human lung explants, ciliated and nonciliated bronchial
epithelial cells, endothelial cells and pneumocytes [33,45]. These findings were in sync with the findings made in the
single autopsy where MERS-CoV antigen was detected on pneumocytes, endothelial cells and epithelial cells of the
airways and few on macrophages [43,45].

Macrophages are the important phagocytic cells of innate immune system which help remove the pathogenic
substances from the body and present their antigens to the T cells. The cytokines as well as chemokines pro-
duced by the macrophages help in destroying the pathogens, adjusting the immune system and maintaining tissue
homoeostasis [46]. However, in MERS, the virus-infected macrophages contribute considerably to the develop-
ment of disease symptoms [47]. The infection with MERS-CoV of human epithelial cells induces the release of
pro-inflammatory chemokines and cytokines from the monocyte-derived macrophages. It is believed that these
chemokines/cytokines cause inflammatory changes and tissue injury through infiltration of immune cells in the
lower respiratory tract [47]. The patients suffering from MERS clinically manifest pneumonia, which is progressive
in nature and has a large number of macrophages and neutrophils found in the fluids present in the lungs [3,48].
Studies conducted on rhesus macaques have shown the lung tissue infiltration of macrophages and neutrophils
on MERS-CoV infection, though their respiratory symptoms were milder as compared with humans [49]. Many
scientists believe that this sequestration of immune cells contribute to the development of lymphopenia seen in
patients with MERS. The progress in the severity of pneumonia and respiratory dysfunction in the MERS patients
is also attributed to cytokine/chemokine induction [30,50]. Zhou et al. found that MERS-CoV can efficiently
replicate inside macrophages and, hence, can overcome the host immune system. [47]. Thus, these phagocytes act
like reservoirs and means of transportation for these viruses, helping to replicate and disseminate, such as the HIV
virus [51].

Infection of epithelial cells with the MERS virus induce slow, but significant, IFN type I and II responses [36].
Macrophages release pro-inflammatory chemokines and cytokines such as IL-1β, IL-6 and IL-8 upon MERS-
CoV infection [37]. Similarly, MERS-CoV infection in blood monocyte-derived macrophages and dendritic cells
leads to the release of chemokines and cytokines, for example, IL-2, IL-3, CCL-2, CCL-3 and RANTES [37,48].
Infection of activated T cells induces apoptosis via different pathways which may also explain the occurrence
of lymphopenia [52]. With the present available knowledge, it is difficult to describe the exact pathogenesis of
MERS-CoV, but it seems that viral replication in the macrophages results in extreme cytotoxicity and triggers the
induction of pro-inflammatory chemicals which may lead to MERS-associated complications.

A small number of epithelial, pneumocytes, lymphoid aggregates and inflammatory cells of submucosal glands
were positive for MERS spike protein in nonhuman primates (NHPs). Whereas, MERS spike antigen were
positive in epithelial layers of submucosal bronchial glands, lungs of NHPs and in some cells in BALTs [53]. Dual
Immunohistochemistry method was applied using monoclonal antibody against MERS spike protein and CD26,
the staining showed that MERS was found in CD26 positive cells but were negative in NHPs [53].

Two NHPs, the common marmoset and rhesus macaque model were established for MERS-CoV infection by
three different research groups [49,54–59]. The clinical symptoms included respiratory disease which was mild in
nature and could be diagnosed with radio imaging and computed tomography [54,56,59] and respiratory disease
of severe nature showing fatal clinical symptoms requiring euthanasia [54,59]. Exposure to the MERS-0 infectious
clone (icMERS-0) strain in Rhesus monkeys is reported to cause respiratory disease, wherein virus antigen has been
detected. Respiratory disease in such cases was found to be transient and mild in nature, which resolved by 30 days
from infection. Pulmonary disease was also found to be mild upon MERS-CoV infection in NHPs. Earlier studies
found ocular, intratracheal or intranasal exposure of MERS-EMC isolate to cause lethal disease. However, it has
been argued that lethality was due to manipulations of marmoset, which have higher sensitivity than macaque
species [54,57]. Cases of mild to moderate symptoms even after higher viral titer have also been reported in other
studies [56]. Small animals, such as hamsters and mice, have been found to be resistant to MERS-CoV infection
and development of models of severe respiratory disease has been a challenge [60].

Therapeutics against MERS-CoV infection
The identification of highly pathogenic MERS-CoV suggests that coronaviruses present an incessant and long-term
hazard to humans. Development of effective therapeutic and prophylactic agents to contain their infections is an
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urgent need, and yet currently no antiviral treatments against MERS-CoV are available. MERS-CoV is known to
interact with host cell surface receptor DPP4 or CD26 with its spike S protein, which subsequently leads to its
entry in the host cell [61]. Our knowledge regarding the exact mechanisms that follow thereafter is still limited and
requires more research. Due to lack of definite treatment, supportive therapy remains the only solution. Present
development consists of the previous experiences of other coronavirus diseases like SARS-CoV, which have been
studied in in vitro and in vivo models. Tremendous efforts are being made in this direction and various antiviral
and related therapies have been identified. Use of humanized monoclonal antibodies, convalescent plasma and
therapeutic peptides has been shown efficacious. Repurposing of the currently available drugs is also being tried to
extend their efficacy against MERS-CoV. Some potential options are discussed in detail below.

Repurposing of drugs
The concept of using clinically available drugs to treat new diseases is known as repurposing. In this method, a new
target profile is created for the existing drugs through screening of large molecular databases. Owing to advances
in computational approaches and development of effective antiviral agents, repurposing has become faster. Using
high-throughput screening, researchers have been able to screen large libraries of drugs against novel targets and
evaluate their antiviral activity in vitro [62,63]. Some of repurposed drugs have shown potent antiviral activity against
MERS-CoV, for example, ribavirin, nitazoxanide and hexachloropene [64]. Some other studies have repurposed the
drugs by using a combination of two or more existing drugs. Wilde et al. combined alisporivir with ribavirin for
enhanced antiviral activity against MERS and SARs-CoV [65]. In another study on MERS-CoV infected marmosets,
hybrid of ritonavir/lopinavir and IFN-β1b had positive effect [66].

Convalescent plasma
Convalescent plasma therapy utilizes plasma or whole blood from people who have been infected with viral diseases
and recovered. This therapy has been used during outbreaks when no particular medicines or vaccines are available
for treatment [67]. The use of convalescent plasma has been indicated to be an efficient therapeutic strategy for
diseases like MERS-CoV [68]. Studies have been carried out to confirm its feasibility and safety in treating MERS;
however, the data are insufficient. There are a few drawbacks of this therapy, as often large-scale screening is required
to obtain sufficient amount of antibodies from potential donors [69].

Monoclonal & polyclonal antibodies
Monoclonal antibodies have been commonly used in the diagnosis of various diseases. Therapeutics based on
monoclonal antibodies have been used successfully in the therapy of various diseases [70,71]. The potential of this
approach was acknowledged against coronaviruses during the SARS outbreak [72,73]. And when the other deadly
coronavirus attacked humans, this previous knowledge helped greatly in the improving the response against the
risk of MERS-CoV.

Initial studies suggested that MERS-CoV RBD domain in S1 glycoprotein represents a suitable target for the
development of neutralizing monoclonal antibodies [62,74–76]. Hence, the idea to develop neutralizing mouse mAbs
as a strategy to prevent the entry of MERS-CoV into host cells was led by Du et al. [75]. mAbs were made by
vaccinating mice with IgG1 Fc to which recombinant MERS-CoV S1 was fused [75]. Consequently, Mersmab1, the
most effective murine mAb was developed that targeted MERS-CoV RBD, and successfully neutralized MERS-
CoV infection in Vero E6, Huh-7 and Calu-3 cells [76]. These studies indicated the potential of humanized mAbs
as efficient curative agents against infection caused by MERS-CoV. Around April 2014, three independent studies
first reported to have developed complete humanized MERS-CoV neutralizing mAbs [77,78]. All these humanized
mAbs specifically targeted the MERS-CoV RBD glycoprotein. The efficacy of human mAbs against MERS-CoV
infection was first exhibited by Qiu et al. [79]. They were able to completely treat MERS-CoV infection of lethal
nature with a single dose of humanized mAbs in the hDPP4 transgenic mouse [79].

Development of humanized monoclonal antibodies against emerging viral diseases requires a significant produc-
tion cost and poses as a major drawback. To overcome this obstacle and to reduce the cost, extremely powerful
neutralizing mAbs which can be given in smaller doses without compromising the efficacy is needed. One strategy
to achieve this could be to design humanized mAbs with exceptional binding attraction and targeting them against
the potential targets, such as RBD.

future science group www.futuremedicine.com 241



Review Choudhry, Abdulaal, Bakhrebah et al.

Peptides as potential antiviral therapeutic agents
Recently, interest has been generated in the development of peptide therapeutics as potential drug targets for
different pathogens. Currently, more than 140 peptide therapeutics are lined up for clinical evaluation presenting
peptide research as a component of pharmaceutical research [80]. As compared with chemical drugs, peptide drugs
show high specificity toward the target as well as little side effect and drug tolerance [19]. Many peptide therapeutics
have shown positive results against viral infections, for instance RVFV-6 peptide against rift valley fever virus and
Kn2-7 peptide derived from scorpion venom against HIV-1 [81–83]. Antimicrobial peptides are cited as potential
novel antiviral therapeutics against coronaviruses [84]. Antimicrobial peptides are produced by host immune system
upon initial exposure to pathogens. These are gene encoded and positively charged peptides that are selectively
toxic against their targets [85,86]. This selectivity is due to their positive charge which attacks the negatively charged
membrane bilayer of microbes [87]. The antimicrobial peptides block the receptors present on the host cell’s surface,
which in turn inhibit different steps of viral fusion and replication causing virolysis and activation of host’s adaptive
immune response [88].

Future perspective
Since the emergence of MERS-CoV, research has greatly enhanced our knowledge of the pathogenesis caused by
it and other contemporary coronavirus, such as SARS-CoV. The efforts toward development of vaccines against
this deadly virus have also been continuously increasing leading to the emergence of promising interventions. The
two viruses, in other words, SARS and MERS have some common challenges in the development of an efficacious
vaccine. As evident from reports, the aged population is more vulnerable to MERS-CoV. The lesson learnt from
preclinical studies of SARS-CoV suggests that vaccines fail to protect aged animals, while being effective in young
ones. Similarly, in clinical settings, the risk of mortality is even higher in individuals with chronic conditions or an
immunocompromised state. An effective vaccine, thus, should offer universal protection, including the vulnerable
populations. To do so, there is a need to evaluate the promising vaccines in the comorbid chronic conditions
and the immunocompromised rodent models. Since the virus can comfortably replicate in macrophages, the risk
of vaccine-derived immunopathology cannot be negated and must be considered using heterologous challenge
models. Further, balance must be struck between protection and excessive immune activation while evaluating a
successful vaccine candidate. The vaccine development against MERS-CoV is mostly influenced by the SARS-CoV.
However, to aid the development of better vaccines, there is need to further enhance the knowledge of pathology of
MERS-CoV and outline critical differences between SARS and MERS-CoV. mAbs offers a window of opportunity,
as a few candidates have shown potency in in vitro testing. However, care needs to be taken in humanizing
mAbs so as to minimize the antimouse antibody response. Epitopes identified from mouse neutralizing mAbs
can be neutralized for humanizing MERS-CoV. mAbs targeting RBD are reported to have higher potency than
therapies directed against other S protein regions of MERS-CoV, as these could recognize critical residues for DPP4
binding. However, changes in such critical residues may render these mAbs ineffective and lead to development
of escape mutant strains of the virus. As discussed, a few promising peptides have also been developed against
MERS-CoV. The antiviral activity, stability and solubility of these peptides can be further improved similar to the
peptides developed against HIV. This will lead to the development of optimized next generation peptides having
better inhibitory action directed against MERS-CoV. Alternatively, as a novel approach, the peptide inhibitors can
be combined with mAbs (e.g., RBD specific). The combination can be evaluated for the synergistic effect against
divergent and resistant strains. Studies are also needed to explore novel delivery technologies and optimizing vaccine
immunity with a suitable combination of adjuvants. In summary, there have been encouraging results in the area
of the development of MERS-CoV vaccines in preclinical settings. However, there are challenges related to efficacy,
safety and drug delivery that need further consideration before proceeding to clinical trials. Focused research in this
direction can help reduce the disease burden caused by MERS-CoV and prevent outbreaks, especially among the
aged and immunocompromised population.
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