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Abstract

Purpose: We aimed to develop and validate a radiomics model for differentiating hepatocellular carcinoma (HCQO)
from focal nodular hyperplasia (FNH) in non-cirrhotic livers using Gd-DTPA contrast-enhanced magnetic resonance
imaging (MRI).

Methods: We retrospectively enrolled 149 HCC and 75 FNH patients treated between May 2015 and May 2019 at
our center. Patients were randomly allocated to a training (n=156) and validation set (n=68). In total, 2260 radiomics
features were extracted from the arterial phase and portal venous phase of Gd-DTPA contrast-enhanced MRI. Using
Max-Relevance and Min-Redundancy, random forest, least absolute shrinkage, and selection operator algorithm for
dimensionality reduction, multivariable logistic regression was used to build the radiomics model. A clinical model
and combined model were also established. The diagnostic performance of the models was compared.

Results: Eight radiomics features were chosen for the radiomics model, and four clinical factors (age, sex, HbsAg,
and enhancement pattern) were chosen for the clinical model. A combined model was built using the factors from
the previous models. The classification accuracy of the combined model differentiated HCC from FNH in both the
training and validation sets (0.956 and 0.941, respectively). The area under the receiver operating characteristic
curve of the combined model was significantly better than that of the clinical model for both the training (0.984 vs.
0.937, p=0.002) and validation (0.972 vs. 0.903, p=0.032) sets.

Conclusions: The combined model provided a non-invasive quantitative method for differentiating HCC from FNH
in non-cirrhotic liver with high accuracy. Our model may assist clinicians in the clinical decision-making process.
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Introduction

Focal nodular hyperplasia (FNH) is the second most
common benign tumor of the liver, and it is found at
autopsy with a prevalence of 0.3-3% [1, 2]. It is consid-
ered a hyperplastic reaction resulting from arterial mal-
formation, with 60-80% of cases being asymptomatic
and discovered by chance [3, 4]. A typical FNH is a soli-
tary well-defined, unencapsulated mass, with a charac-
teristic “spoke-wheel” central scar that contains
dystrophic arterial vessels on computed tomography
(CT), magnetic resonance imaging (MRI), and ultrason-
ography (US) [5]. MRI has a higher sensitivity than US
and CT and a specificity of almost 100% for the diagno-
sis of FNH. However, its sensitivity is lower (70-80%),
especially in small FNHs where the central scar is often
missing. Previous reports show 35-70% FNHs do not
have this imaging feature, and atypical findings including
strong hyper-intensity on T2-weighted imaging, a
pseudocapsule mimicking a true capsule, and washout
can result in confusion with HCC [6-8]. Due to atypical
radiological features, correct diagnosis of FNH on CT
and MRI may not even be possible in about 30% and
20% of cases, respectively [3, 9]. The hepatobiliary phase
(HBP) of gadoxetic acid-enhanced MRI (Gd-EOBDTPA-
MRI) provides valuable diagnostic information for differ-
entiation between FNH and HCC. As 10-15% of HCCs
show iso- or hyperintensity on the HBP, and approxi-
mately 73-90% of FNHs show iso- or hyperintensity on
the HBP, differential diagnosis is difficult because of the
overlapping features [10].

However, intractable cases must be diagnosed accur-
ately because they require entirely different medical
management. HCC is the most common primary liver
cancer and the third most common cause of cancer
death worldwide. Once a diagnosis of HCC has been
made, intervention must be initiated. Surgical resection
is a recommended treatment option in patients with re-
sectable HCC in the absence of clinically significant por-
tal hypertension. Other treatments including ablation,
transarterial embolization and radiotherapy, transplant-
ation, and systemic pharmacological treatment also
benefit some HCC patients. Chronic hepatitis B (CHB)
is the leading etiology of HCC worldwide, and most
cases of HBV-related HCC (70-90%) occur in patients
with cirrhosis [11, 12]. However, FNH usually occurs in
livers without cirrhosis. Therefore, the need to differenti-
ate between HCC and FNH in liver with cirrhosis back-
ground is very rare, so our study population was limited
to non-cirrhotic liver. Compared with other liver lesions,
the diameter of the FNH is stable in most patients and
complications are extremely rare [13, 14]. The American
College of Gastroenterology (ACG) Clinical Guidelines
suggest that asymptomatic FNH does not require inter-
vention [15]. Therefore, in atypical cases difficult to
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diagnose on imaging in a non-cirrhotic liver, biopsy is
necessary [7], but it is invasive with a potential for pain
and other complications [16]. Other liver lesions, such
as hepatocellular adenoma (HCA), should be taken into
account in the differential diagnosis. The reported preva-
lence of HCA is between 0.001 and 0.004%, and it is ap-
proximately 10 times less common than FNH. There are
few reports on the differential diagnosis between HCA
and other liver lesions. Hence, HCA was not included in
our study as there were not enough cases. In summary,
a non-invasive method that can distinguish HCC from
ENH is desperately needed.

Radiomics using a large number of quantitative fea-
tures not available to the naked eye, has been used in
tumor molecular classification, differential diagnosis,
treatment selection, therapeutic effect detection, and
prognosis evaluation. To our best knowledge, there are
few studies on the differentiation between HCC and
ENH on MRI using radiomics methods. This study
aimed to develop and validate a radiomics model that is
non-invasive and has high accuracy for differentiating
HCC from FNH in non-cirrhotic liver.

Materials and methods

Patients

In this single-center retrospective study, medical records
were viewed to identify all consecutive cases seen be-
tween May 2015 and May 2019. The inclusion criteria
applied to HCCs were (a) diagnosis with postoperative
pathological evidence, (b) without radiological features
of liver cirrhosis, (c) no previous history of hepatectomy
or radiotherapy, and (d) HCC without blood vessels, bile
duct invasion, or distant metastasis radiologically, which
strongly supported the diagnosis and there was no need
for it to be distinguished from benign disease. The inclu-
sion criteria applied to FNHs were (a) postoperative
pathological evidence or liver biopsy and (b) typical
ENH diagnosis according to the European Association
for the Study of the Liver (EASL) Clinical Practice
Guidelines [7] (to improve the applicability of the
model). The exclusion criteria for both HCCs and FNHs
were as follows: (a) absence of high-quality pretreatment
Gd-DTPA contrast-enhanced MRI (ceMRI) performed
in our center, (b) MRI data obtained at least 2 months
prior to the acquisition of pathological evidence, and (c)
incomplete medical records and unavailability of the re-
quired clinical data. Up to three imaging studies per pa-
tient were included as long as studies were more than 6
months apart.

This study was approved by the Institutional Ethics
Committee of our hospital, and written informed con-
sent was obtained from all study participants. The stud-
ies were performed in accordance with the ethical
standards outlined in the 1964 Declaration of Helsinki
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and its later amendments or

standards.

comparable ethical

MR image acquisition and image processing

MRI examinations were performed using a 3.0 T mag-
netic resonance scanner (Magnetom Verio, Siemens
Healthcare, Erlangen, Germany), an 8-channel phased
array body coil, and a high-pressure syringe. The con-
trast agent was Gd-DTPA (Gd-DTPA, BeiLu Pharma-
ceutical Co., Ltd., Beijing, China), the dosage was 0.2
mL/kg; the speed was 2.5 mL/s, and the follow-up was
rinsed with 20 mL normal saline. Preparation before the
scan included fasting and no drinking for >4 h, psycho-
logical guidance, and breathing training (calm breath-
holding at the end of the breath). Contrast-enhanced
axial T1-weighted images (CE-T1) were acquired using a
three-dimensional volumetric interpolated breath-hold
examination (3D-VIBE) sequence (TR=4.16 ms, TE=2.01
ms, FOV=380x308 mm, matrix=320x320x75%, slice
thickness=3 mm, spacing=3 mm, FA=16, and NEX=1)
with multiphase contrast. Arterial phase (AP), portal
venous phase (PVP), and delayed phase images were ac-
quired after contrast administration at 20-30, 60-70,
and 120-180 s for each patient, with breath-holding in
all phases.

The FNH and HCC lesions were segmented manu-
ally using a 3D-Slicer (version 4.10.2; http://www.
slicer.org). The AP and PVP of T1 images were used
to indicate the volumes of interest (VOIs) by drawing
the outline of tumor tissue layer-after-layer and
avoiding the bile duct and vessels by Radiologists 1
and 2. If there were multiple lesions, only the largest
lesions were segmented. PyRadiomics (version 2.1;
http://www.radiomics.io/) implementation in 3D-Slicer
was utilized for further preprocessing and radiomics
feature extraction. We adopted resampling as a pre-
processing method, which was performed to obtain a
voxel size of 1x1x1 mm?® via trilinear interpolation
before feature calculation [17]. A fixed bin width of
25 was used for the image discretization. Image re-
construction was performed by applying wavelet de-
composition filtering and Laplacian of Gaussian
filtering with sigma values of 0.5, 1.0, and 1.5. Seven
common feature groups were extracted from filtered
and original images in three dimensions, including a
first order, gray-level dependence matrix (GLDM),
gray-level co-occurrence matrix (GLCM), gray-level
run length matrix (GLRLM), gray-level size zone
matrix (GLSZM), neighboring gray tone difference
matrix (NGTDM), and shape (Fig. 1).

Inter-observer and intra-observer agreement
Inter- and intra-observer correlation coefficients (ICC)
were used to evaluate the inter-observer reliability and
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intra-observer reproducibility of feature extraction [18].
Thirty samples were randomly chosen and delineated by
two radiologists. Radiologist 1 delineated the VOIs on
AP and PVP of T1 images twice within 1 week under
the same standard to assess intra-observer reproducibil-
ity, and Radiologist 2 independently delineated the VOIs
once to assess inter-observer agreement by comparing
the results with the radiomics features extracted from
the VOIs delineated by Radiologist 1 [18]. Radiomics
features were selected when the ICC was >0.8. Radiolo-
gist 1 finished the remaining samples.

Radiomics feature selection and model construction
Before radiomics feature selection, z  score
normalization was employed to eliminate different
feature magnitudes by scaling values to a mean of 0
and a standard deviation of 1 [18]. Then, the samples
were randomly grouped into training (n=156) and val-
idation sets (n=68). The training set was used for
radiomics feature selection and construction of the
three models. The validation set was used to evaluate
the diagnostic performance of the three models. We
used two machine learning algorithms: (i) Max-
Relevance and Min-Redundancy (mRMR) and (ii) ran-
dom forests (RF). Each algorithm selects the top 20
features with the highest score or the highest import-
ance features. A correlation analysis was carried out
to exclude the features with high correlation. Least
absolute shrinkage and selection operator (LASSO)
regression was employed for the next step selection
of features, with penalty parameter tuning conducted
by 10-fold cross-validation to compile a radiomics sig-
nature [18-24]. The optimal radiomics signature was
used to create the radiomics model.

Construction of the clinical model and combined model
Univariate analysis was applied to compare the differ-
ences in clinical factors (including clinical information
and MR features) between the two groups, and a mul-
tiple logistic regression analysis was used to build the
clinical model using the significant variables from the
univariate analysis as inputs. Odds ratios (ORs) as esti-
mates of relative risk with 95% confidence intervals (CI)
were obtained for each risk factor. The combined model
was built using the clinical factors in the clinical model
and Rad score in the radiomics model.

Statistics

Statistical analysis was performed using R (version 3.6.3;
R Foundation for Statistical Computing, Vienna,
Austria). Categorical variables were compared using the
X° test or Fisher’s exact test. Continuous variables were
expressed as the median [Q1, Q3] and compared using
the Student’s t test or Mann-Whitney U test. Variables
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Fig. 1 Workflow of this study. Firstly, manual segmentation was performed on arterial and portal venous phases MR image. Secondly, image
preprocessing and feature extraction are carried out in the volume of interest (VOIs), including seven common feature groups: first order, shape,
GLDM, GLCM, GLRLM, GLSZM, NGTDM. Thirdly, in training set, random forest algorithm and MRMR algorithm were used for pre-screening, and
then, correlation analysis and LASSO regression were performed to screen out key features for modeling. Finally, three models were established:
Clinical Model, Radiomics Model and Combined Model, and model performance were evaluated in validation set. Note: GLDM gray-level
dependence matrix, GLCM gray-level cooccurence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size zone matrix, NGTDM
neigboring gray tone difference matrix, mRMR Max-Relevance and Min-Redundancy, LASSO the least absolute shrinkage and selection

that reached statistical significance in the univariate ana-
lysis were considered for the multivariate binary logistic
regression model. mRMR, RF, and LASSO were imple-
mented using “mRMRe,” “randomForest,” and “glmnt,”
respectively. The Delong test was used to measure the
differences in the ROC curves [25]. P<0.05 was consid-
ered statistically significant.

Results
Patient characteristics
Our study selection process is described in Fig. 2.
The cases search in our medical records generated
1261 HCC and 36 FNH with pathological evidence
between May 2015 and May 2019. Of those HCC
candidates, 1058 cases with liver cirrhosis; 3 cases
with previous treatment; 15 cases with blood vessels,
bile duct invasion or distant metastasis; and 36 cases
with unsatisfied images or incomplete records were
excluded. Based on 36 cases of FNH, 45 typical FNH
diagnosed according to the EASL Clinical Practice
Guidelines were added, and 6 cases were excluded
due to unsatisfied images or incomplete records.
Finally, a total of 224 patients with HCC (n=149, 124
men and 25 women; mean age, 56.8+11.9 years) and
FNH (n=75, 30 men and 45 women; mean age, 37.0+
12.1 years) were enrolled. The clinical factors of FNHs
and HCCs in the training and validation sets are shown
in Table 1. All clinical factors showed no significant dif-
ference between sets (P>0.05).

Inter- and intra- observer agreement

We extracted 2260 radiomics features in each patient from
the AP and PVP of the ceMRIL Intra-observer agreement
was 85.3% (mean ICC=0.90). Inter-observer agreement for
all 2260 features reached 78.4% (mean ICC=0.85). Seven
hundred and thirty-one features were excluded.

Radiomics feature selection and model construction

After combining the top 20 engineered features ranked
by the mRMR and RF algorithms, 33 features were iden-
tified from the training set, with seven features selected
simultaneously by two algorithms (Fig. 3). Pearson cor-
relation analysis of the 33 features showed that 11 pairs
of features were highly correlated (coefficients >0.80).
Twenty-two features were subjected to LASSO regres-
sion, and eight features were selected with the best
tuned regularization parameter A of 0.041 under the 1-
SE criterion found by 10-fold cross validation. The
selected features were calculated according to the
following formula to build a radiomics model: Rad
score = —-6.68 * (PVP-glcm-wavelet-HHL-InverseVariance)
— 3.87 * (AP-firstorder-original-10Percentile) — 2.81 *
(PVP-glem-log-sigma-1-5-mm-3D-MaximumProbability)
— 1.65 * (PVP-glem-MaximumProbability) + 0.08 * (AP-
glem-log-sigma-1-0-mm-3D-ClusterShade) + 0.11 * (PVP-
first order-wavelet-HLL-Median) + 0.54 * (AP-firstorder-
log-sigma-0-5-mm-3D-Median) + 1.81 * (AP-shape-ori-
ginal-Elongation). The Mann-Whitney U test of the Rad
score was performed in the training and validation sets,
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4) unsatisfied images or incomplete
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typical FNH diagnosis according to the
EASL Clinical Practice Guidelines(n = 45)
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Fig. 2 Flow chart of patient recruitment in this study. Note: HCC hepatocellular carcinoma in noncirrhotic liver, FNH focal nodular hyperplasia
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and statistically significant differences were found
between the two sets (Fig. 4).

Construction of the clinical model and combined model
Univariate analysis showed that age, sex, HbsAg, MRI
tumor size, MRI tumor number, location, lesion homo-
geneity, and enhancement pattern reached statistical sig-
nificance (P<0.05). Multivariate analysis showed that age
(OR=11.09 [3.13-49.40], P<0.001), sex (OR=5.57 [1.74—
19.85], P=0.005), HbsAg (OR=14.75 [4.43-60.94], P<
0.001), and enhancement pattern (OR=0.21 [0.07-0.52],
P=0.001) were independent predictors for differential
diagnosis of HCC and FNH, and they were used to build
the clinical model. A combined model was also built
using the four clinical factors and Rad score by logistic
regression.

Diagnostic performance of the three models

Good performance of the clinical model, radiomics
model, and combined model for the training set was ob-
served, with an area under the curve (AUC) of 0.937
(95% CI 0.887-0.970), 0.960 (95% CI 0.916—0.985), and
0.984 (95% CI 0.949-0.997), with a classification accur-
acy of 0.853, 0.917, and 0.956, respectively. When com-
paring the AUCs between the three models, the

combined model proved to be significantly better than
the clinical model (P=0.002), but the difference between
the clinical model and radiomics model was not statisti-
cally significant.

Consistent results were obtained in the validation set.
The AUC of the clinical model, radiomics model, and
combined model for the validation set was 0.903 (95%
CI 0.807-0.962), 0.931 (95% CI 0.843-0.978), and 0.972
(95% CI 0.900-0.997), with a classification accuracy of
0.853, 0.868, and 0.941, respectively. When comparing
the AUCs between the three models, the combined
model proved to be significantly better than the clinical
model (P=0.032), but the difference between the clinical
model and radiomics model was not statistically signifi-
cant (Table 2).

Discussion

In this study, we established three models to distinguish
HCC from FNH in non-cirrhotic liver using four clinical
factors and a Rad score, which was combined with eight
radiomics features filtrated from AP and PVP on MRL
In comparison to the clinical model, the combined
model showed overall superiority in the evaluation of ac-
curacy, sensitivity, specificity, and AUC in both the
training and validation sets (Table 2, Fig. 5). The
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Table 1 Clinical factors of the training and validation sets
Clinical factors Training set (n = 156) P Validation set (n = 68)
HCC (n = 104) FNH (n = 52) HCC (n = 45) FNH (n = 23) P P*

Gender, male/female 84/20 18/34 0.001 40/5 12/1 0.002 0.136
Age, <50/>50 years 33/71 45/7 0.001 12/33 19/4 0.001 0.644
Hbsag, negative/positive 21/83 38/14 0.001 16/29 16/7 0.016 0.252
AFP, <400/> 400 ng/ml 99/5 52/0 0261 45/0 23/0 0317
MRI tumour number, single/multiple 89/15 36/16 0.028 40/5 16/7 0.101 0.838
MRI tumour size, cm 4.35 [2.60, 6.25] 2.50[1.90, 3.33] 0.001 440 [3.00, 6.20] 2.70 [2.05, 3.95] 0.006 0.849
Liver steatosis, absent/present 78/26 39/13 1.000 33/12 20/3 0331 0.762
Liver haemangioma, absent/present 88/16 49/3 0.141 42/3 221 1.000 0.235
Location, internal/subcapsular 36/68 30/22 0.010 16/29 11/12 0474 0.829
Margin, ill-defined/well-defined 26/78 11/41 0.739 11/34 3/20 0434 0.734
Shape, not round/round 46/58 29/23 0.234 18/27 16/7 0.040 0.905
Pseudocapsule, absent/present 67/37 28/24 0.270 24/21 13/10 1.000 0448
Lesion homogeneity, 68/36 21/31 0.005 29/16 7/16 0016 0672
Heterogeneous/homogeneous
Lesion with steatosis, absent/present 86/18 49/3 0.082 38/7 22/1 0.337 0.895
Central vascular supply, absent/present 90/14 49/3 0.238 36/9 2172 0.396 0.380
Central scar, absent/present 82/22 37/15 0387 40/5 14/9 0.017 0.734
Enhancement pattern 0.001 0.001 0.56

Early enhancement + washout 82 15 36 7

Early enhancement + no washout 14 35 7 16

Other patterns 8 2 2 0

Note: HCC hepatocellular carcinoma in noncirrhotic liver, FNH focal nodular hyperplasia, HbsAg hepatitis B surface antigen, AFP alpha fetoprotein; P* represents

the P value of comparison between training and validation set

addition of radiomics features improved the perform-
ance of the diagnostic model, but the radiomics model
did not bring significant improvement compared to the
clinical model.

Many previous studies have provided several ways to
differentiate HCC from FNH. Li et al. [26] enrolled 38 pa-
tients with HCC and 65 with FNH to assess the diagnostic
ability of contrast-enhanced US (ceUS) and microflow
(MF) imaging and found that MF imaging had an excel-
lent diagnostic performance in terms of differentiating be-
tween atypical HCC and FNH compared to routine ceUS.
Yu et al. [27] included 42 HCCs and 16 FNHs and per-
formed spectral CT during the arterial and portal venous
phases and found that CT spectral imaging increased the
detectability and accuracy of differentiation between HCC
and FNH. Nie et al. [28] developed and validated a CT-
based radiomics nomogram for preoperative differenti-
ation of FNH from HCC in livers without cirrhosis,
achieving an AUC of 0.917 in the validation group. Several
studies [29-31] have indicated that Gd-EOBDTPA-MRI is
helpful for the diagnosis of FNH, as most FNHs show
high- or iso-signal intensity (SI) compared to liver paren-
chyma in the hepatobiliary phase (HBP). However, Lee
et al. [32] found that 85% of well-differentiated HCCs
were hypointense on HBP, and about 15% of well-
differentiated HCCs were iso- or hyperintense on HBP,

illustrating that there is still some overlap between them,
even in the HBP. In this study, we established a combined
model for differential diagnosis of HCC from FNH in
non-cirrhotic livers. Our model is non-invasive and easy
to implement, and it achieved excellent performance with
an AUC of 0.972 in the validation set.

In our study, the clinical model did not achieve the
best AUC (0.937 and 0.903 in the training and valid-
ation sets, respectively), but it was still relatively high.
Although we included as many of the radiological fea-
tures that we could to help identify the two diseases
as mentioned in the EASL Clinical Practice Guide for
benign liver tumors, such as liver hemangioma, stea-
tosis in lesions, and the liver, they turned out not to
be strong predictors. The presence of a central scar is
a typical feature of FNH, which is identified on MRI
in approximately 30-50% of FNH cases [8]. On the
other hand, about 50% of non-cirrhotic HCCs have a
central scar detectable by MRI, especially in fibrola-
mellar carcinoma [33]. In our study, 32% of FNHs
had a central scar, which was consistent with previous
studies. In our study, the central scar was ultimately
not included in the model.

Our results were consistent with the study reported by
Nie et al. [28]. They also included only one radiological
feature in their model, which was enhancement pattern,
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as we did. The epidemiological and clinical characteris-
tics of these two diseases are also important refer-
ences for differential diagnosis. FNH mainly occurs in
females (up to 90% of cases), with an average age be-
tween 35 and 50 years. HCC mainly occurs in elderly
males, usually accompanied by hepatitis B virus infec-
tion. Clinical factors—age, sex, and HbsAg—were

consistent with the epidemiological differences be-
tween the two diseases, indicating the interpretability
of our models.

Radiomics includes an enormous amount of data with
high-dimensional characteristics, so it is important to
know how to extract the key features from such a huge
amount of data. In order to ensure the reproducibility of
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3D-MaximumProbability)-1.65*(PVP-glcm-MaximumProbability)+0.08*(AP-glcm-log-sigma-1-0-mm-3D-ClusterShade)+0.11*(PVP-firstorder-wavelet-HLL-
Median)+0.54*(AP-firstorder-log-sigma-0-5-mm-3D-Median)+1.81*(AP-shape-original-Elongation)
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the selected features and avoid the interference by other
subjective factors, we implemented rigorous feature se-
lection in combination with machine learning. First,
inter-observer and intra-observer agreements were eval-
uated, and features with an ICC >0.8 were included. Sec-
ond, two machine learning algorithms, mRMR and RF,
were used for feature filtering. Third, a correlation ana-
lysis of the features screened by the two algorithms was
performed to exclude features of high correlation.
Finally, LASSO regression, one of the most commonly
used methods for dimensionality reduction in radiomics,
was used to obtain the optimal radiomics signature.
There are some differences between our model and
existing diagnostic techniques. The existing diagnos-
tic techniques mainly use enhanced CT, enhanced
MR, or contrast-enhanced ultrasound examination to
observe the imaging findings of the lesions. Mean-
while, the baseline data of the patients, such as gen-
der, age, AFP, and background of cirrhosis, are also
important references. LI-RADS standard was used as
the diagnostic criteria for HCC, and EASL Clinical

Table 2 Model performance in the training and validation sets

Practice Guidelines was used for FNH diagnosis [7,
34]. Since imaging diagnosis depends on subjective
judgment, not all HCC or FNH have typical imaging
findings, and heterogeneity between observers is
strong, atypical cases can only be confirmed by inva-
sive pathological evidence (surgery or biopsy). Unlike
existing diagnostic technology, we established “An
MR-based radiomics model” based on radiomics fea-
tures extracted form MR images, combined with pa-
tient baseline characteristics, made diagnosis using
mathematical model based on the objective parame-
ters, and achieved an AUC of 0.984 and 0.972 in the
training and validation sets. Furthermore, our model
is the first study to use MR radiomics model for the
differential diagnosis of HCC and FNH.

Our study had several limitations. First, the number of
samples was still limited compared to the large number
of features. A large-scale clinical study enrolling more
samples would help validate and improve the applicabil-
ity of our model as an effective tool for differentiating
between FNH and HCC. Second, external validation is

Model Cutoff AUC(95%Cl) Specificity Sensitivity Accuracy P
Training set
Clinical Model 0.684 0.937(0.887-0.970) 0.923 0817 0.853 Ref
Radiomics Model 0.695 0.960(0.916-0.985) 0.942 0.904 0917 0.252
Combined Model 0.607 0.984(0.949-0.997) 0.962 0.952 0.956 0.002
Validation set
Clinical Model 0.625 0.903(0.807-0.962) 0.826 0.867 0.853 Ref
Radiomics Model 0.658 0.931(0.843-0.978) 0.826 0.889 0.868 0.535
Combined Model 0.859 0.972(0.900-0.997) 0.957 0.933 0.941 0.032

Note: AUC area under the curve, CI confidence interval
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Fig. 5 ROC curves comparing the three models in training (a) and validation (b) set. The hollow point represents the optimal cut-off value on

needed to further verify the accuracy and clinical prac-
ticability of the model. Finally, sample selection bias was
unavoidable in this retrospective study. Therefore, a pro-
spective study should be conducted to further prove the
practicability of the model.

In conclusion, our novel MR-based radiomics model
demonstrated a powerful diagnostic capability because of
its excellent performance, with a certain reference value
for differentiating HCC from FNH in clinical studies.
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