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Abstract 

Understanding cancer mechanisms, defining subtypes, predicting prognosis and assessing therapy efficacy are crucial aspects of cancer re- 
search. Gene-e xpression signatures deriv ed from bulk gene expression data ha v e pla y ed a significant role in these endea v ors o v er the past 
decade. Ho w e v er, recent adv ancements in high-resolution transcriptomic tec hnologies, suc h as single-cell RNA sequencing and spatial transcrip- 
tomics, ha v e re v ealed the comple x cellular heterogeneit y within tumors, necessit ating the de v elopment of computational tools to characterize 
tumor mass heterogeneity accurately. Thus we implemented signifinder, a no v el R Bioconductor package designed to streamline the collection 
and use of cancer transcriptional signatures across bulk, single-cell, and spatial transcriptomics data. L e v eraging publicly a v ailable signatures 
curated by signifinder, users can assess a wide range of tumor characteristics, including hallmark processes, therapy responses, and tumor 
microen vironment peculiarities. T hrough three case studies, w e demonstrate the utility of transcriptional signatures in bulk, single-cell, and spa- 
tial transcriptomic data analy ses, pro viding insights into cell-resolution transcriptional signatures in oncology. Signifinder represents a significant 
advancement in cancer transcriptomic data analysis, offering a comprehensive framework for interpreting high-resolution data and addressing 
tumor complexity. 

I

D  

d  

s  

t  

s  

e  

t  

t  

t  

m  

t  

c  

m  

i  

t  

y  

c  

m
 

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R
©
T
(
o
p
j

ntroduction 

ecades of extensive research in cancer gene expression, con-
ucted on large patient cohorts, have yielded numerous tran-
criptional signatures as indicators for various cancer pheno-
ypes ( 1 ). Signatures are made by specific gene sets, sometimes
upported by coefficients to weigh gene contributions, whose
xpression levels are condensed into final scores. Transcrip-
ional signatures have garnered attention due to their poten-
ial to elucidate cancer activities, thereby enhancing therapeu-
ic decisions, monitoring interventions, comprehending cancer
echanisms, delineating tumor subtypes, and evaluating pa-

ient diagnosis and prognosis ( 2 ,3 ). Additionally, these scores
an be used to explore the intricate interactions between tu-
ors and the tumor microenvironment (TME). This interplay

s critical not only in data analysis, as the heterogeneous mix-
ure of cell types can affect tumor purity and bias data anal-
sis, but is also an intrinsic attribute of tumors that warrants
onsideration for sample characterization (e.g. signatures for
onitoring intrinsic and acquired immune resistance ( 4 )). 
In recent years, advancements in cancer transcriptome de-

ection, notably through single-cell RNA sequencing (scRNA-
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seq) and spatial transcriptomics (ST), revealed that cancer
masses are complex cellular mosaics, demonstrating remark-
able heterogeneity driven by spatial patterns, clonal cells,
and local microenvironmental factors ( 5–7 ). Managing this
complexity required the creation of computational tools that
streamline the characterization of tumor mass heterogeneity
by precisely defining cancer cell states within high-resolution
transcriptomic data. Similar to a classical signature from bulk
sequencings, the cancer cell state is delineated by testing a gene
expression module, inferred or predefined, which is condensed
into a score that, in this case, is cell-specific ( 7–12 ). Recently,
a pan-cancer scRNA-seq analysis demonstrated that cancer
cells have multiple and non-mutually exclusive states that lead
to multiple, spatially defined variations in the tumor stroma
( 7 ). Managing this combinatorial complexity requires the de-
velopment of computational methods capable of automati-
cally defining multiple cancer cell states within high-resolution
transcriptomes. While there were promising findings, a com-
prehensive catalog of relevant single-cell gene modules for all
cancers and their TME cells remains elusive. Such a catalog
would be invaluable for interpreting genomic data. However,
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even with a comprehensive set of modules, information on
inter-patient variability levels is likely lacking, as their identi-
fication currently relies on the analysis of relatively few single-
cell data samples. To overcome this issue—as well as bulk-
based gene set pathway analysis tools, which are successfully
applied to scRNA-seq data ( 13 )—the plethora of bulk-derived
transcriptional signatures can be used to dissect the complex-
ity of high-resolution transcriptomics. 

However, even after decades of research, the field of bulk
transcriptional signatures still has issues to solve, and al-
though many gene expression-based prognostic signatures
have been reported in the literature, very few are used in clin-
ical practice ( 14 ). The way to achieve accurate tumor classifi-
cations based on transcriptional signatures is debated and fur-
thermore hampered by the lack of standard practices ( 2 ,15 ).
In fact, signature reproducibility and dissemination are of-
ten affected by the lack of public open-source implementa-
tions: most signatures are not published along with their algo-
rithm and very few have been implemented in a ready-to-use
software. 

Therefore, with the aim of promoting the use of public
transcriptional signatures especially for delineating cancer cell
states in single-cell and spatial transcriptomics, we developed
the R Bioconductor package signifinder. Signifinder serves as
a bridge between signature discovery and signature usability
in all transcriptomic data: bulk, single-cell and spatial tran-
scriptomics. To accomplish this task, signifinder provides the
infrastructure to collect and implement cancer transcriptional
signatures available in the public literature. This software has
been conceived as an open-source R package built around the
gene expression data structures of the Bioconductor project.
This framework guarantees the interoperability of signifinder
with bulk, single-cell, and spatial transcriptomics data analy-
sis workflows, also paving the way for a systematic evaluation
of the available signatures. Here, we present three case studies
about the use of transcriptional signatures in bulk, single-cell
and spatial transcriptomic data. These findings provide evi-
dence on the nature and extent of the use of cell-resolution
transcriptional signatures in oncology, potentially leading to
new research directions. 

Materials and methods 

Figure 1 graphically outlines signifinder development and the
workflow of analyses. 

The collection of signatures 

We established a set of stringent criteria for the inclusion of
signatures: (i) signatures should rely on cancer topics, thus
to a specific area of focus within cancer biology or cancer
research, and be developed and used on cancer samples; (ii)
signatures should rely exclusively on transcriptomic data, ex-
cept in cases where transcriptomic gene expression levels are
combined with signature-specific gene weights; (iii) signatures
must release a clear gene list used for the signature definition,
where all genes have an official gene symbol (Hugo consor-
tium) or an unambiguous translation (genes without an offi-
cial gene symbol are removed); (iv) the method to calculate
expression-based scores need to be unambiguously described;
(v) additional clarity about the type of expression unit (e.g.
counts, log counts, FPKM or others) is also required. 
The first step for the collection of the signatures was a liter- 
ature search using the following keywords: ‘cancer’, ‘gene ex- 
pression’, ‘microarray’ or ‘RNA sequencing’ and ‘signature’,
providing an initial set of 2000 journal articles. We then ex- 
cluded papers on mutational signatures and those including 
microRNAs or other omic features such as DNA methyla- 
tions, which accounted for a large part of the considered ar- 
ticles. Then, we focused on articles that proposed a patient- 
specific summary score. We ended up with 150 papers that 
were screened manually, applying the above selected criteria.
Currently, the package encompasses 72 signatures, spanning 
27 cancer topics, encapsulating numerous cancer hallmarks.
These include pivotal aspects like epithelial-to-mesenchymal 
transition (EMT), chromosomal instability (CIN), angiogen- 
esis, hypoxia, diverse metabolic pathways and cell cycle dy- 
namics. Furthermore, the signatures explore the intricate inter- 
play between tumor cell composition and the TME, address- 
ing facets such as cancer stem cell presence, immune system 

activity, extracellular matrix (ECM) composition, and angio- 
genesis activity . Additionally , certain signatures are tailored 

to monitor clinical outcomes, such as chemo-resistance or pa- 
tient prognosis. Eleven of these signatures are single-cell de- 
rived signatures, all the others derive from bulk cancer gene 
expression data. For a comprehensive list of the signatures col- 
lected so far, please refer to Supplementary Table S1 . More- 
over, the signifinder package facilitates the seamless integra- 
tion of new signatures through ‘pull requests’, a process that 
is both straightforward and thoroughly documented in the 
package vignette. The package infrastructure is designed to ac- 
commodate and manage signatures derived from bulk, single- 
cell and spatial transcriptomics. Therefore, it is foreseeable 
that multiple signatures will be added in the near future. Signa- 
ture information is finely curated and details about the tested 

biological process, the type of tumor, the type of omic data, the 
original data format, as well as the references to the original 
publication are provided. 

The new high-resolution signatures deriving from single or 
quasi-single cell technologies are starting to appear but they 
actually lack performance evaluations at the inter-patient vari- 
ability level, since their identification is currently based on the 
analysis of relatively few samples. On the other hand, intratu- 
mor heterogeneity of bulk signatures can be tested if applied 

to high-resolution transcriptomes. The interchangeability of 
signatures across different types of transcriptional omics, as 
proposed by signifinder, would improve signature evaluation 

and applicability. 

Signature implementation 

Within signifinder, we implemented a dedicated function for 
each signature, and whenever possible, signatures that rely on 

the same topic were grouped together. The list of available 
signatures and the related functions can be checked through 

the signifinder function availableSignatures , which lists all 
the signature-specific information. Signatures included in sig- 
nifinder are unequivocally named through a combination of 
the topic (or signature name) and the first author’s name (i.e.
‘Pyroptosis_Ye’ is a signature on pyroptosis activity proposed 

by Ye et al.). Following the rules stated by the authors, sig- 
nifinder provides the required data for the computation of ev- 
ery signature (i.e. the gene list, and the corresponding coeffi- 
cients and / or attributes). To be compatible with all forms of 
expression datasets—bulk, single-cell and spatial—signifinder 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data


NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 4 3 

Figure 1. Signifinder implementation and w orkflo w. ( A ) The scheme for signifinder development: following stringent criteria, we collected the lists of 
genes and implemented the algorithms for signature computations. ( B ) Signifinder workflow starts with gene expression data from bulk, single-cell, or 
spatial transcriptomics. The user can choose which signature is interested in and compute single-sample, -cell or -spot scores, respectively. ( C ) 
Signifinder offers se v eral plots to explore and compare the signature score distributions. 
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accepts as input a gene expression matrix, a data frame, a Sum-
marizedExperiment, a SingleCellExperiment or a SpatialEx-
periment object. With signifinder, users can simply supply the
normalized expression data, then signifinder takes care of data
transformation (if needed) to obtain signature scores com-
puted as stated in the signature’s original work. The choice
to integrate it in the Bioconductor data structures makes sig-
nifinder a reliable package, maintained through the years, eas-
ily integrated into all R expression data analysis workflows.
Additionally, it manages the use of different gene IDs and ex-
pression metrics (e.g. counts, CPM, FPKM / RPKM, TPM). Fi-
nally, all the signature functions return an S4 object containing
the expressions—the same given by the user as input—with
the signature scores added to the colData section. 

Signature quality c hec k 

Even if the mathematical approach is feasible and the method-
ology well established, dataset specific features, not related to
the biological nature of data, can affect the results. As an ex-
ample, one of the critical issues when working with single-
cell and spatial data is the sparsity of matrices. scRNA-seq
and ST technologies require the detection of tiny amounts
of mRNA, which leads to the dropout of many expressed
transcripts. Large percentages of indistinguishable biological
and technical zero values may be detrimental to downstream
signature score computation. Additionally, even if generally
smoothed by normalization procedures ( 16 ), it would be inter-
esting to know if signatures have scores correlated with techni-
cal or biological unwanted variability, such as batch or expres-
sion dropout, even taking into consideration samples, cells, or
spots divided by annotations. As an example, the correlations
of signature scores with the total counts or total zero-value
percentages, can highlight normalization problems and indi-
cate the need for further assessment before making biological
considerations. On the other hand, in spatial transcriptomic
data, the total counts per spot reflect relevant quantitative and
qualitative biological features of the tissue morphology, due to
the different numbers and types of captured cells by each sin-
gle spot area ( 17 ). Thus, in spatial technologies, relatively high
correlations could be an intrinsic feature of the data, meaning
that biological signals must be understood in context. 

To screen and monitor these data behavior and provide a re-
liability score for each signature, signifinder provides the eval-
uationSignPlot function that can be used to investigate critical
behavior of scores in all samples, cells and spots, or a subset
of them. 

The evaluationSignPlot function returns a multi-panel plot
showing statistics related to each signature: (i) the good-
ness of the signature for the user’s dataset, ranging from 0,
worst goodness, to 100, best goodness. Goodness summa-
rized the parameters shown in the other panels: (ii) the per-
centage of genes of the signature available in the dataset;
(iii) the percentage signature genes with zero values for each
sample / cell / spot; (iv) the correlation between signature scores
and the per sample / cell / spot total read counts; (v) the corre-
lation between signature scores and the overall percentage of
zero values per sample / cell / spot. 

Examples of these plots are provided for all the three case
studies in supplementary materials ( Supplementary Figures 
S1 , S2 and S5 ). The analysis helps to visually find signatures
that were calculated using too few genes or with low gene ex-
pressions, as well as signatures that could contain technical or
biological bias for that specific dataset. Overall, this plot al- 
lows investigators to make informed decisions about signature 
inclusion in downstream analyses. 

Signifinder package implementation details 

Signifinder is an open-source R package,
available from the Bioconductor platform 

( https:// www.bioconductor.org/ packages/ release/ bioc/ html/ 
signifinder.html ). It is released under the AGPL-3 li- 
cense and requires R version 4.2.0 or higher. The source 
code and documentation are freely available through the 
Bioconductor platform. The developing version of the 
package is available in the dedicated GitHub repository 
( https:// github.com/ CaluraLab/ signifinder ). The R code 
that was used for the three case studies presented in this 
work is also available in a dedicated GitHub repository 
( https:// github.com/ CaluraLab/ signifinder _ workflow ). 

Results 

Figure 1 B presents the analysis flow by using the signifinder 
package. Users can input cancer sample transcriptional data 
from microarray or RNA-seq, single-cell sequencing, or spa- 
tial transcriptomic technology. The user can select the signa- 
ture by tumor type or tissue obtaining signature scores at the 
sample, cell, or spot level (Figure 1 B). Signifinder also provides 
graphical summaries for visualizing single signatures or com- 
paring multiple signatures (as shown in Figure 1 C). 

Signature analysis procedures and graphical 
summaries 

Users are prompted to provide normalized expression values 
for microarrays or normalized counts for sequencing tech- 
nologies, along with specifying the data type (sequencing or 
microarray) and the gene ID type used. Signifinder then exe- 
cutes requested signatures with a single command. Signatures 
can be chosen based on cancer topic, type, tissue or a com- 
bination thereof. The tool offers various methods for visu- 
ally examining the scores. Users can explore score distribu- 
tion or its relationship with survival data through single sig- 
nature plots. Heatmaps can be used to visualize gene expres- 
sion and identify top contributor genes. Furthermore, users 
can compare multiple signatures using ridge plots (which can 

also be split by user-supplied sample / cell / spot annotations),
signature score heatmaps (for comparing results across sam- 
ples, cells, or spots), and a signature correlation matrix (eval- 
uate signature relationships). Through graphical analysis, re- 
dundancies or specificities across signatures can be identified,
potentially unveiling correlations or co-occurrences of differ- 
ent processes. This facilitates enhanced sample, cell or spot 
stratification and interpretation as shown below in the three 
case studies reported. 

Signifinder helps in characterizing TCGA ovarian 

cancer 

Most of the 296 samples from The Cancer Genome Atlas 
(TCGA) Ovarian Cancer (OC) collection represent the preva- 
lent and deadly high-grade serous histotype. This form of 
the disease is marked by significant genomic instability, in- 
fluencing gene expression and resulting in diverse phenotypes 
among patients. At the transcriptomic level, the TCGA con- 
sortium proposed that the transcriptional landscape of OC 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
https://www.bioconductor.org/packages/release/bioc/html/signifinder.html
https://github.com/CaluraLab/signifinder
https://github.com/CaluraLab/signifinder_workflow
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an be classified into four subtypes: immunoreactive (IMR),
ifferentiated (DIF), proliferative (PRO) and mesenchymal
MES), based on gene content and prior knowledge ( 18 ).
hese signatures are implemented in the consensusOV pack-
ge introduced by Chen and colleagues and incorporated into
ignifinder. 

We examined the samples in the TCGA dataset using all
he OC and pan-cancer signatures provided by signifinder.
ll signatures passed quality checks (see evaluate Signature
lot of Supplementary Figure S1 ). We computed the signa-
ure correlation matrix (Figure 2 A), this process aids in nar-
owing down the signatures under evaluation to focus on
roups of signatures. This plot usually helps in identifying
reas of biological interest, redundant signatures, signatures
uided by similar transcriptional regulatory programs, and
eveals the co-occurrent processes. In the TCGA data four
re the main groups of signatures, three of them containing
he signatures of TCGA OC transcriptional subtypes. The
op of Figure 2 B displays the four continuous scores of con-
ensusOV for each sample, while Figure 2 B and C stratified
amples based on their maximum consensusOV score. The
rst group encompasses signatures linked to extracellular ma-
rix (ECM) composition and epithelial-to-mesenchymal tran-
ition (EMT), which includes the consensusOV MES score.
he upregulation of genes associated with cell adhesion loss,
evelopmental transcription factors, and extracellular ma-
rix restructuring strongly suggests EMT, a process correlated
ith poor prognosis in advanced OC ( 19–21 ). This correla-

ion is further supported by the Kaplan–Meyer curve of the
MT signature in Figure 2 D, where the samples were di-
ided in two groups by signature score levels. The second
nd third groups consist of signatures focusing on various as-
ects of the immune system in cancer. They exhibit two con-
rasting behaviors: the second group -containing the consen-
usOV IMR - comprises signatures that capture chemokine
xpressions and inflammatory signals, while the third group—
orrelating with the consensusOV PRO scores—consists of
ignatures associated with immune tolerance. The fourth
roup includes signatures related to chromosomal instabil-
ty (CIN) and its associated mitotic index and cell cycle rate.
hese signatures reflect the widespread genomic alterations
epresentative of the transcriptional landscape of high-grade
erous OC. 

In addition, signifinder can unveil unexplored aspects, as
emonstrated by the exploration of the pan-cancer signa-
ure of human Adult Stem Cells (ASC) ( 22 ). The ASC signa-
ure, designed to identify the most aggressive epithelial can-
ers, exhibits higher scores in the OC PRO subtype (Figure
 E, F, PRO versus IMR P < 2.1e-08, MES P < 1.6e-07, DIFF
 < 3.6e-05). ASC signature is characterized by elevated ex-
ression of genes involved in chromosome reorganization and
NA methylation that are valuable for pan-cancer investiga-

ion of stem cell gene expression and for identifying poten-
ial therapeutic targets of DNA methyltransferase inhibitors,
hich can sensitize tumor cells to programmed cell death

 23 ). 
Utilizing the signifinder workflow, we employed an auto-
ated pipeline to delineate the molecular subtypes of high-

rade serous OC. This case study demonstrates that lever-
ging combinations of transcriptional signatures facilitates
he identification of the primary biological characteristics of
amples. 
 

Signifinder characterized intra-tumor heterogeneity 

in single-cell glioblastoma dataset 

Glioblastoma stands out as one of the most prevalent brain
tumors, and its lethality is closely associated with tumor re-
currence. This recurrence is primarily attributed to infiltrat-
ing cells that migrate from the tumor core, thereby evad-
ing surgery and local treatment. In this particular case study,
scRNA-seq samples sourced from a study conducted by Dar-
manis et al. ( 24 ) were analyzed with signifinder, utilizing both
brain-specific and pan-cancer signatures. Quality checks for
signatures are shown in Supplementary Figure S2 . Signatures
exhibiting > 90% zeros combined with a low percentage of
expressed signature genes were excluded from downstream
analyses. Figure 3 A presents a t-distributed stochastic neigh-
bor embedding (t-SNE) representation of the data, with color-
coding indicating the original cell type labels provided by the
authors. To ensure sizable cohorts for signature score compar-
isons, we filtered cells by type using the authors’ original cell
type annotations. We retained only those cell types present in
both the tumor core and peripheral samples with a sample size
> 20 (see Supplementary Table S2 ). 

Single-cell-derived signatures of glioblastoma, implemented
in signifinder from the publication of Barkley et al. ( 7 ) and
Neftel et al. ( 11 ), were used for the first analysis (Figure
3 B–D). The authors of these signatures outline the cellu-
lar programs of malignant glioblastoma cells, their plastic-
ity, and their modulation by genetic drivers. The Darma-
nis dataset showed that glioblastoma contains cells in mul-
tiple states: neural progenitor-like (NPC-like), oligodendro-
cyte progenitor-like (OPC-like), astrocyte-like (AC-like) and
mesenchymal-like (MES-like) (Figure 3 B). AC-like, OPC-like,
NPC-like meta-modules are linked to neurodevelopmental
genes characteristic of neuronal / glial lineages or progenitor
cells. When comparing these meta-modules to non-malignant
neural cell types, they are most highly expressed in astro-
cytes, oligodendrocyte precursor cells (OPCs) and neurons,
respectively . Finally , the MES-like state is associated in some
tumor cells with hypoxia and increased glycolysis, result-
ing in hypoxia-independent (MES1) and hypoxia-dependent
(MES2) signatures (Figure 3 C and D). 

With the attempt to provide a more detailed and com-
prehensive characterization of the sample, we applied the
plethora of bulk-derived glioblastoma and pan-cancer signa-
tures (Figure 3 E–S). In their publication, Darmanis et al. ( 24 )
profiled both the tumor core and the surrounding peripheral
tissue to unveil transcriptional and genetic variations between
these two locations. Signifinder analyses reveal the tumor
core as a hypoxic environment across all studied cell types,
while the surrounding tissue harbors cells with lower hypoxic
scores, indicating a relatively oxygen-rich brain tissue (Figure
3 E). As anticipated, these distinctions are corroborated by the
authors’ findings, which documented hypoxia-associated an-
giogenesis in the tumor core compared to the periphery. Ac-
cording to the previous analyses, hypoxia is highlighted in the
vast majority of cells with Neftel MES2 sc-derived signature
as previously described. Additionally, the cell cycle signature
delineated by Davoli et al. illustrates that cell proliferation is
predominantly confined to neoplastic cells and a small subset
of immune cells within the tumor core ( 25 ) (Figure 3 F). 

The extracellular matrix (ECM) composition represents an-
other facet of the TME that distinguishes the transcriptional
behavior of cells within the core and the periphery. Two

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
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Figure 2. TCGA OC dataset dissected with signifinder. ( A ) Correlation matrix of pan-cancer and OC signatures. ( B ) Heatmap of signature scores of the 
four discussed groups of signatures with correlations with the TCGA expression subtypes, which are indicated on the top of the heatmap: PRO, IMR, 
MES and DIF ( 18 ). ( C ) Ridge plot of the score distributions of the signatures in the four discussed groups. Samples are divided into the four TCGA 

subgroups ( 18 ). ( D ) Kaplan–Me y er plot and survival association for the EMT signature scores by Miow et al. ( 49 ). ( E ) Score distribution of the ASC 

signature ( 22 ). ( F ) B o xplot illustrating the ASC signature in the four TCGA transcriptional subgroups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pan-cancer ECM signatures proposed by Chakravarty et al.
( 26 ) (Figure 3 G, H) demonstrate gradients with opposing di-
rections between core and peripheral regions. In core cells,
neoplastic and immune cells exhibit higher ECM-Up scores,
whereas ECM-Down scores are elevated in peripheral cells.
The ECM-Up program is linked with a TGF- β-rich TME,
immune evasion, and failure of immunotherapy, whereas the
ECM-Down signature represents a more normal-like ECM
environment. 

Focusing specifically on the neoplastic cells (Figure 3 I–L
and Supplementary Figure S3 A), signifinder highlights their
extremely heterogeneous expression profiles. Despite the sig-
nificant differences between core and periphery scores, it is
clear that hypoxic conditions are found only in a subgroup of 
neoplastic core cells (cells with high scores in Figure 3 J Hy- 
poxia_Buffa ( 27 ), and Figure 3 K VEGF_Hu signature ( 28 )).
On top of this, these hypoxic core cells also show low scores 
of cell cycle rate (Figure 3 L, CellCycle_Davoli ( 25 )) possi- 
bly due to the induction of cell cycle arrest in the pres- 
ence of prolonged hypoxia, in order to turn off highly en- 
ergy consuming processes and promote cell survival ( 29 ,30 ).
These hypoxic cells with low proliferation rate are spatially 
confined in the upper-left part of the t-SNE, which means 
that this condition deeply impacts the entire transcriptome 
of these cells. Cell proliferation is confined to a small sub- 
set of non-hypoxic cells exclusive to the tumor core, unlike 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
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Figure 3. scRNA-seq data of Darmanis et al. ( 24 ) studied with signifinder. ( A ) t-SNE on the top 50 principal components of the expression data. Colors 
represent the original cell type annotations as provided by the authors additionally divided by their spatial location, i.e. tumor core or tumor periphery. 
Color legend is maintained throughout all the panels. t-SNE with cells colored by signature are reported in different panels together with the boxplot of 
signature score distributions in the different cell types and locations. ( B ) Heatmap of the glioblastoma single-cell derived signatures, ( C ) MES1 signature 
by Neftel et al. ( 11 ), ( D ) MES1 signature by Neftel et al. ( 11 ), ( E ) h ypo xia signature scores de v eloped b y Buff a et al. ( 27 ) and ( F ) cell cycle signature scores 
de v eloped b y Da v oli et al. ( 25 ). ( G ) ECM-Up and ( H ) ECM-Do wn signature scores de v eloped b y Chakra v arth y et al. ( 26 ). Panels I to L are dedicated to 
signatures in tumor cells. ( I ) Multiple signature score distributions differentiating core and peripheral tumor cells. ( J ) Hypoxia signature scores de v eloped 
b y Buff a et al. ( 27 ). ( K ) VEGF signature scores de v eloped b y Hu et al. ( 28 ). ( L ) Cell cy cle signature scores de v eloped b y Da v oli et al. ( 25 ). Panels from M 

to S are dedicated to signatures in immune cells. ( M ) Distribution of multiple signature scores in core and peripheral immune cells. The IPS is composed 
of four averaged and weighted Z scores: ( N ) the effector cell (EC) score, ( O ) the immune-suppressive cells (SC) score, ( P ) the MHC score and ( Q ) the 
immune c hec kpoints (CP) score. ( R ) T he Chemokines score proposed b y Messina et al. ( 33 ) and ( S ) the immune score defined b y R oh et al. ( 34 ). 
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peripheral tumor cells which demonstrate low prolifera-
tive potential while disseminating ( 25 ) (Figure 3 L, CellCy-
cle_Davoli). The highly proliferative neoplastic core cells are
also characterized by a high chromosomal instability score, as
defined by the pan-cancer signature of Carter and colleagues
( 31 ) (CIN_Carter_70, Supplementary Figure S4 ). This is be-
cause genes involved in DNA replication, DNA repair, spin-
dle assembly, and chromosome segregation include cell cycle
control genes. In many tumors including gliomas, higher CIN
scores are associated with unfavorable clinical outcomes and
metastatic specimens. If utilized at the single-cell level, this
evidence could prove invaluable in pinpointing the most ag-
gressive cells driving tumor progression, warranting further
in-depth investigation. Immune cells in the core and periph-
ery are clearly separated on the t-SNE plot, showing markedly
different transcriptional programs, which is also reflected by
the immune signatures that report different scores in the two
groups (Figure 3 M and Supplementary Figure S3 B). The im-
munophenoscore (IPS) is composed of four averaged and
weighted Z scores—the EC score that covers expression of
effector cells (activated CD4 

+ T cells, activated CD8 

+ T cells,
effector memory CD4 

+ T cells, and effector memory CD8 

+

T cells), the SC score that collects the expression related to
immune-suppressive cells (T-regs and Myeloid-derived sup-
pressor cells), the Major Histocompatibility Complex (MHC)
score for MHC related molecules, and the immune checkpoint
score to represent the activity of immune checkpoints or im-
munomodulators ( 32 ). In the glioblastoma sample, all four
scores showed significant differences between the core and pe-
riphery. The core seems to indicate an immunologically cold
tumor, where expression of the major determinants of tumor
immunogenicity is turned off (Figure 3 M–Q). Another score
that behaves differently between the core and periphery is the
Chemokines score proposed by Messina and colleagues ( 33 )
(Figure 3 R). The score intends to predict lymphoid cell infil-
trates in solid tumor masses through the expression of 12 cy-
tokines. From the data, it seems that the presence of lymphoid
cells is not homogeneous intra-mass and that most of those
cytokines are expressed only by immune cells in the periph-
ery. The pan-cancer immune score defined by Roh and col-
leagues is dedicated to predict the immune checkpoint block-
ade treatment response. Roh et al. demonstrated that this im-
mune score correlates positively with T-cell receptor clonality
in pre-PD-1 blockade samples and that higher scores and T-
cell receptor clonality characterize responders ( 34 ). The Roh
immune scores were found higher in peripheral cells than in
core cells and thus could predict a different response of the
two cell groups to PD-1 blockade treatment (Figure 3 S). 

Signifinder highlights spatial-specific patterns of 
expression signatures: a case study on invasive 

ductal breast carcinoma 

The spatial transcriptomic dataset presented here is a 10x Vi-
sium sample of breast invasive ductal carcinoma. Ductal car-
cinoma is the most prevalent type of breast cancer (BC), con-
stituting nearly 80% of all breast cancer diagnosis. In Fig-
ure 4 , the anatomopathologist’s interpretation of the hema-
toxylin and eosin staining of the formalin-fixed paraffin em-
bedded (FFPE) sample is depicted. Multiple neoplastic areas,
highlighted in red, are localized within the ducts—a common
occurrence in tumors originating from the epithelial cells lin-
ing the ducts. Initially, these tumors invade the inner part of
the ducts (carcinoma in situ ), often leading to the formation 

of necrotic areas within the duct lumen. As the neoplastic 
cells breach the duct wall, they infiltrate the stroma, result- 
ing in invasive carcinoma. Tumor masses are encompassed by 
fibrous tissue, outlined in blue in Figure 4 A, predominantly 
composed of fibroblasts and lymphocytes. Such areas are fre- 
quently observed because cancer-associated fibroblasts (CAFs) 
contribute to tumor proliferation by secreting various growth 

factors, cytokines, chemokines, and proteins involved in ECM 

degradation ( 35 ). Fibrous tissue and stroma surrounding the 
tumor also contain areas with high densities of infiltrated 

lymphocytes, as indicated in Figure 4 A with the light blue 
lines. The remainder of the section includes adipocytes and 

blood vessels, indicated in green and orange, respectively.
Spots are then manually classified by cell type following the 
anatomopathological reading of the high-resolution image 
(Figure 4 B). 

Due to the absence of spatial transcriptomic-derived sig- 
natures, the multiple bulk-derived pan-cancer and BC signa- 
tures present in signifinder were applied. The signature scores 
were computed for each spot, and results were compared 

with tissue annotations. As expected, the signatures do ex- 
hibit a relatively high percentage of zero counts as well as 
mild but noticeable correlations with the total count number,
due to dependencies on the number of cells lying on each spot 
( Supplementary Figure S5 ). The hypoxia signature by Buffa 
et al. shows that tumor areas are highly hypoxic compared to 

the normal stroma ( 27 ) (Figure 4 C and D), and that all cell 
types show high variance of hypoxia scores, with the highest 
scores in certain necrotic spots. Tumor spots show high cell- 
cycle rates, as determined by the Lundberg et al. signature that 
lights up the tumor and the nearby areas (Figure 4 C and E).
The lowest scores remain confined to the non-reactive stroma 
and to necrotic areas. Thus, we can appreciate here that tumor 
cells show heterogenic proliferation rates. 

The EMT signature by Cheng et al. ( 36 ), originally pro- 
vided as a prognostic biomarker associated with late-disease 
recurrence in BC, is presented in Figure 4 C, G, H and I. The 
signature shows that tumor spots are characterized by the co- 
existence of both epithelial and mesenchymal markers with 

a particular spatial distribution: high scores are localized to 

the leading edge of tumors in close apposition with the sur- 
rounding CAFs on the stroma. Starting from the duct base- 
ment membrane, where the tumor arises, the score describes 
a decreasing pattern when moving to the inner part of the 
duct (Figure 4 H). Figure 4 I shows the amount of tumor spots 
that are surrounded by spots of a given annotation (each spot 
can have from 0 to 6 neighboring spots). Each row contains 
the total number of tumor spots. The y -axis states the anno- 
tation type of the neighbor spots and the x -axis represents 
their number. For example, there are around 400 tumor spots 
that are surrounded by 0 CAFs spots, while around 200 tu- 
mor spots are surrounded by 6 tumor spots. The dots are col- 
ored by the median EMT_Cheng score of that specific group 

of tumor spots. The median score increases with the num- 
ber of CAFs spots surrounding a tumor spot. On the con- 
trary, it decreases with the number of tumor spots around 

each tumor spot. Interestingly, since high EMT scores are as- 
sociated with high risk of late recurrence, the spatial distri- 
bution of this score suggests that the hyperproliferative cells 
found in the basement membrane (i.e. the origin cells of these 
tumors) are also the most dangerous cells for relapse. Also,
the highest proliferative tumor areas have high levels of CIN 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae138#supplementary-data
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Figure 4. Spatial transcriptomic sample of breast in v asiv e ductal carcinoma studied with signifinder. ( A ) Histologic image with manual 
anatomopathological annotations. ( B ) Dataset spots are annotated f ollo wing manual annotations. ( C ) Distribution of multiple signature scores divided 
into cancer associated fibroblasts (CAFs), necrosis, stroma, tumor, and high-density infiltrated lymphocyte areas. Spatial score distribution of the ( D ) 
h ypo xia signature by Buffa et al. ( 27 ), ( E ) cell cycle signature by Lundberg et al. ( 50 ), ( F ) CIN70 by Carter et al. ( 31 ), ( G ) EMT by Cheng et al. ( 36 ) and ( H ) 
EMT scores in tumor spots only. ( I ) Median EMT_Cheng scores of tumor spots grouped by the number and annotation of their neighboring spots. ( J ) 
Distribution of multiple signature scores divided into CAFs, necrosis, stroma, tumor and high-density infiltrated lymphocyte areas. Spatial score 
distribution of ( K ) Tinflam, ( L ) IFN and ( M ) Expanded Immune by Ayers et al. ( 48 ), and ( N ) Chemokines by Messina et al. ( 33 ). 
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(Figure 4 C, F) as shown by the CIN signature proposed by
Carter et al., which is based on expression aberrations in genes
localized to each chromosomal region ( 31 ). In ductal breast
carcinoma, the presence of a high rate of chromosomal copy
number variations is associated with an increased immune re-
sponse, as well as the presence of tumor-infiltrating lympho-
cytes and PD-L1 gene expression ( 37–40 ). We can confirm that
high-CIN tumor areas are in proximity with those reported to
have high lymphocyte density ( Supplementary Figure S6 ). In
recent years, it has been generally accepted that these immune-
related areas play a role as prognostic and predictive mark-
ers in invasive BC ( 41–44 ). However, some controversial evi-
dence suggests that their predictive value depends on the exact
composition of the infiltrate ( 45–47 ), which is almost impos-
sible to assess based solely on hematoxylin and eosin staining.
Signatures can thus help in evaluating the immune activities
of these zones. Multiple immune system signatures character-
ize the areas with the highest lymphocyte density: Tinflam,
IFN (interferons), and Expanded Immune by Ayers et al. ( 48 ),
as well as the Chemokines signature proposed by Messina
et al. ( 33 ). These signatures show the highest values in prox-
imity to areas with high densities of lymphocytes (Figure 4 J–
N, and Supplementary Figures S7 –S9 ). The signatures from
Ayers and colleagues were developed to identify tumors with
a T cell-inflamed microenvironment, characterized by active
IFN- γ signaling, cytotoxic effector molecules, antigen presen-
tation, and T cell active cytokines, which are common features
of tumors that are responsive to PD-1 checkpoint blockade.
Similarly, the Chemokines signature, which was independently
developed with similar purposes to identify tumor-localized
ectopic lymph node-like structures, shows high scores in the
same areas ( 33 ). 

Discussion 

Introducing a free-access computational implementation
alongside the public cancer signatures would mark a signif-
icant stride toward ensuring signature reproducibility and us-
ability. However, to date, this received limited attention. With
the development of signifinder, we achieved three primary out-
comes: (i) establishing the infrastructure for gathering and
integrating transcriptomic signatures (including bulk, single-
cell, and spatial transcriptomic derived signatures); (ii) com-
piling an initial compendium of cancer gene signature imple-
mentations by systematically screening papers from the liter-
ature and (iii) enabling the use of single-cell and spatial tran-
scriptomic datasets as inputs, we furnishing a tool capable of
probing the behavior of gene expression signatures within tu-
mors, assessing their intra tumor heterogeneity, and allowing
the automatic and fast detection of cell states. 

Signifinder is developed in R and utilizes Bioconductor’s ex-
pression data structures. Thus, it is compatible with the major-
ity of widely used tools and pipelines for transcriptome data
analysis. Additionally, signifinder incorporates supplementary
functions aimed at facilitating visualization and interpretation
of results, thereby simplifying the comprehension of the di-
verse roles that multiple hallmarks within and across patients,
cells, and tissues may assume. Through its graphical tools, sig-
nifinder facilitates seamless comparison across multiple signa-
tures, shedding light on underlying processes, interactions and
collaborations. 

The future trajectory of the signifinder package entails the
continuous addition and integration of new cancer signatures.
However, achieving this objective is envisioned as a collabo- 
rative endeavor within the research community. Indeed, sig- 
nifinder was purposefully designed from the outset to em- 
brace contributions from the community for implementing 
signatures. 

Signifinder package can enhance the interpretability of 
high-resolution cancer transcriptomic data, allowing the de- 
tection of intratumor variability and, finally, helping in solving 
tumor complexity. 

Data availability 

The signifinder package is available in the Bioconduc- 
tor platform at https:// www.bioconductor.org/ packages/ 
release/ bioc/ html/ signifinder.html . The analysis notebooks 
to reproduce the aforementioned analysis are hosted at 
https:// github.com/ CaluraLab/ signifinder _ workflow and 

https:// doi.org/ 10.5281/ zenodo.13827941 . The OC bulk 

data set is available in the Genomic Data Commons at 
https:// portal.gdc.cancer.gov/ , and can be accessed with ID 

TCGA-OC. The glioblastoma single-cell data set is avail- 
able in the Gene Expression Omnibus (GEO) database at 
https:// www.ncbi.nlm.nih.gov/ geo (accession GSE84465).
The BC spatial transcriptomics data set is available at the 
10x Genomics website at https://www.10xgenomics.com/ 
resources/ datasets/ human- breast- cancer- ductalcarcinoma- in- 
situ- invasive- carcinoma- ffpe- 1- standard- 1- 3- 0 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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