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Abstract: The Fokker–Planck equation accurately describes AC magnetization dynamics of magnetic
nanoparticles (MNPs). However, the model for describing AC magnetization dynamics of MNPs
based on Fokker-Planck equation is very complicated and the numerical calculation of Fokker-Planck
function is time consuming. In the stable stage of AC magnetization response, there are differences in
the harmonic phase and amplitude between the stable magnetization response of MNPs described
by Langevin and Fokker–Planck equation. Therefore, we proposed an empirical model for AC
magnetization harmonics to compensate the attenuation of harmonics amplitude induced by a high
frequency excitation field. Simulation and experimental results show that the proposed model
accurately describes the AC M–H curve. Moreover, we propose a harmonic amplitude–temperature
model of a magnetic nanoparticle thermometer (MNPT) in a high-frequency excitation field.
The simulation results show that the temperature error is less than 0.008 K in the temperature
range 310–320 K. The proposed empirical model is expected to help improve MNPT performance.

Keywords: magnetic nanoparticle; Langevin function; Néel relaxation; Fokker–Planck equation;
phase lag; magnetic nanoparticle thermometer

1. Introduction

Magnetic nanoparticles (MNPs) have been widely studied for use in biomedical applications [1–6].
Magnetic nanoparticle-mediated hyperthermia (MNPH) [7–10] is a new anticancer therapy that heats
local body parts to kill cancer cells using the difference in heat resistance between tumor tissue cells and
normal cells. MNPs induce damage or necrosis of cancerous cells by elevating their temperature above
315–319 K (42–46 ◦C) without significantly harming the surrounding healthy tissue [11]. MNPH has
received increasing attention from researchers because it is noninvasive and targeted, which are critical
features for tumor therapy. It is crucial to accurately control the tissue temperature because it directly
affects the curative effect of MNPH [10].

The magnetic nanoparticle thermometer (MNPT) [12–17] is a new tool that non-invasively
measures temperature using the temperature dependency of the nonlinear magnetization of MNPs.
J.B. Weaver et al. [12,13] experimentally validated the nonlinearity of the magnetization curve and
used a fitted parameter to estimate the temperature. Liu et al. [14] investigated a theoretical model of
MNP temperature measurement under a DC magnetic field, which laid the foundation for developing
MNP temperature measurement technology. In previous work [17], we proposed and demonstrated a
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temperature measurement and control system using MNPs that achieved an error of less than 0.5 K at
a target temperature of 315 K, showing the feasibility of the method. However, the frequency of the
excitation field heating the MNPs reached 20 kHz. An improved temperature model could be used to
apply a low-frequency excitation field (usually less than 1 kHz). Therefore, an additional exciting coil
is needed to produce a low-frequency excitation field for temperature measurement. Furthermore,
the magnetic nanoparticle sample moves between the heating and exciting coils through a mechanical
device, making the MNPT setup complicated.

In these previous studies, the theoretical models for temperature measurement were based on
the Langevin function, which describes the static magnetization of an MNP ensemble. There are
always rotational Brownian and Néel relaxations in MNPs exposed to an AC excitation field [18,19].
The Langevin function is only valid in an equilibrium (or static) state and does not accurately describe MNP
magnetization dynamics when MNP relaxation cannot be neglected. These are particularly problematic
in an MNPT; i.e., MNPT application is restricted to a low-frequency excitation field, and an additional
and complicated temperature setup is necessary. An MNP magnetization model for a higher-frequency
excitation field is needed to expand MNPT application to such a field without a complicated setup.

The Fokker–Planck equation accurately describes AC magnetization dynamics dominated by Néel
relaxation. In this study, we investigated the stable AC magnetization described by the Fokker-Planck
equation and the Langevin function, and found that there are differences in the harmonic phase and
amplitude between the stable magnetization response of MNPs described by Langevin and Fokker–Planck
equation. We studied harmonic amplitude and phase dependences on Néel relaxation to derive simple
empirical models for harmonic magnetization. Moreover, we investigate the temperature error on the
basis of the proposed empirical harmonic model for an MNPT in a high-frequency excitation field.

2. Model and Methods

2.1. Langevin Function

When a low-frequency excitation field is applied in which MNP relaxation is negligible, the MNP
magnetization is described using the Langevin function:

ML = MsL(ξ) (1)

where L(ξ) = coth(ξ) − 1/ξ is the Langevin function, ξ = µ0mH/kBT, H = H0sin(2πft) is the AC
excitation magnetic field, f is the frequency of the applied field, kB is the Boltzmann constant, T is the
absolute temperature, and m is the magnetic moment.

Expanding Equation (1) in a Taylor series and consolidating similar items on a frequency basis
allows ML to be expressed as:

ML(t) =
n∑

j=1

A2 j−1 sin((2 j− 1)2π f t) (2)

where A2j−1 is the amplitude of the (2j−1)-th harmonic magnetization. The Maclaurin expansion can
be used to express the harmonic amplitude A2j−1 as follows:

A1 = Ms

(
χ
3 −

χ3

60 + χ5

756 −
χ7

8640 + χ9

95040 + · · ·
)

A3 = Ms

(
χ3

180 −
χ5

1512 + χ7

14400 + · · ·
)

A5 = Ms

(
χ5

7560 + χ7

43200 + · · ·
)

...

(3)

where χ =
µ0H0m

kBT .
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We can obtain the expression of harmonic magnetization using the Langevin function to describe
MNP magnetization in a low-frequency excitation field. Researchers can then use the analytical
expression to extend application of this magnetization to measuring temperature and estimating core
size distribution. However, the Langevin function cannot accurately describe the AC magnetization of
MNPs considering relaxation in a high-frequency excitation field.

2.2. Fokker–Planck Equation for Néel Relaxation

When Néel relaxation is significant, the dynamics of single-domain spherical MNPs can be
accurately described by the Fokker–Planck equation. Assuming that the magnetic anisotropy energy is
uniaxial and the easy axes of all the particles are parallel to the excitation field, the Fokker–Planck
equation for Néel relaxation is [20,21]:

2τN0
∂W(θ, t)

∂t
=

∂
∂x

[
(1− x2)

(
∂W(θ, t)

∂t
− ξ(t)W(θ, t) − αKxW(θ, t)

)]
(4)

where x = cosθ, αK ≡
2KVc
kBT , τN0 ≡

m(1+α′2)
2kBTγα′ is the Néel relaxation time, α′ is the damping coefficient, γ is

the electron gyromagnetic ratio, K is the anisotropy constant, θ is the angle of the magnetic moment
m with respect to the excitation field H, W(θ, t) is the distribution function of m, Ms = m/Vc is the
saturation magnetization, and Vc is the MNP volume.

We numerically solve Equation (4) by expanding W(θ, t) in terms of Legendre polynomials:

W(θ, t) =
∞∑

n=0

an(t)Pn(cosθ) (5)

where an(t) is the time-dependent coefficient of the n-th order spherical harmonic, and Pn(cosθ) is the
n-th order Legendre polynomial. Combining Equations (4) and (5), we obtain:

2τN0

∞∑
n=0

Pn
dan

dt
=
∞∑

n=0

an

{
d

dx

[(
1− x2

)(dPn
dx
− ξ(t)Pn − αKxPn

)]}
(6)

Standard recursion relations give the following set of coupled ordinary differential equations for
an(t):

2τN0
n(n+1)

.
an = −an + ξ(t)

( an−1
2n−1 −

an+1
2n+3

)
+αK

[
n−1

(2n−3)(2n−1)an−2 +
1

(2n+1)(2n+3)an

−
n+2

(2n+3)(2n+5)an+2

] (7)

The distribution function W(θ, t) can be obtained from an. The magnetization MFP in the direction
of the excitation field can be calculated with the following equation:

MFP = Ms

∫ π

0
W sinθ cosθdθ (8)

Expanding Equation (8) in a Fourier series and consolidating similar items on a frequency basis
allows MFP to be expressed as:

MFP =
n∑

j=1

C2 j−1 sin
(
(2 j− 1)ωt + ϕ2 j−1

)
(9)

where C2j−1 and ϕ2j−1 are the amplitude and phase of the (2j−1)-th harmonic magnetization,
respectively. Note that an analytical expression for an cannot be obtained, so C2j−1 and ϕ2j−1 are
numerically calculated.
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The Fokker-Planck function can describe accurately AC magnetization dynamics (dominated by
Brownian rotational relaxation). However, the model for describing AC magnetization dynamics
of MNPs based on Fokker-Planck equation is very complicated and the numerical calculation of
Fokker-Planck function is time consuming, and the analytical harmonic expression for MNPT is hard to
obtain. The Langevin function is a simple model for describing MNPs magnetization response with no
considering of Néel relaxation, and the analytical harmonic expression is shown in Equation (3). Therefore,
we try to construct an empirical model for AC magnetization harmonics affected by the Néel relaxation.

2.3. Compensation Expression for MNP Magnetization Harmonics

We performed simulations to analyze the difference in stable AC magnetization between the
Fokker–Planck equation and Langevin function and studied the harmonic amplitude and phase
dependences on Néel relaxation time. In the simulations, the excitation field had an amplitude of
1 mT and a frequency of 20 kHz. The MNP ensemble magnetization based on the Langevin function
was calculated via Equation (1), and that based on the Fokker–Planck equation was numerically
calculated via Equation (8) under different Néel relaxation times (τN0 = 10 ns, 5 ns, and 1 ns).
Utilizing cross-correlation principle, digital phase-sensitive detection algorithm (DPSD) can extract
effectively the amplitude and phase of signal to be measured from noise [22]. We obtained the harmonic
amplitudes and phases of the ensemble magnetization via DPSD.

As shown in Figure 1a, the difference between the magnetization responses calculated from the
Langevin function and Fokker–Planck equation is mainly in the amplitude and time delay. Figure 1b
shows the AC M–H curves of the MNPs. The Langevin-based M–H curve has no hysteresis because
relaxation is neglected. The Fokker–Planck-based magnetization, however, has a hysteresis loop in
the M–H curves, which indicates that the MNP magnetization response with Néel relaxation delays
the excitation field. The delay increases with increasing Néel relaxation time. As shown in Figure 1c,
the harmonic amplitude decays exponentially with the harmonic number. The harmonic amplitude
of the Fokker–Planck equation is greater than that of the Langevin function, which is because all the
easy axes are assumed to be parallel to the excitation field when using the Fokker–Planck equation.
Figure 1d presents the harmonic phase of MNP magnetization. The Fokker–Planck results show that
the harmonic phase lag increases for a higher harmonic order. For the same harmonic order, the phase
lag increases with Néel relaxation time.

Though the Fokker–Planck equation can accurately describe AC magnetization dynamics,
an analytical harmonic expression cannot be obtained. We investigated the difference in AC
magnetization between the Fokker–Planck equation and Langevin function to obtain an empirical
model for MNP magnetization harmonics.

As shown in Figure 1, the harmonic magnetization calculated with the Fokker–Planck equation
differs from that of the Langevin function in harmonic amplitudes and phases. We use the following
expression to compensate the difference:

MFP|2 j−1 = G2 j−1 ·A2 j−1 sin
(
(2 j− 1)2π f t + ϕ2 j−1

)
(10)

where MFP|2 j−1 is the (2j−1)-th harmonic magnetization, G2j−1 is the compensation function, ϕ2j−1 is
the phase, and A2j−1 is the harmonic amplitude calculated with the Langevin function. Using G2j−1

and A2j−1, the harmonic amplitude C2j−1 of MNP magnetization based on the Fokker–Planck equation
can be expressed as follows:

C1 = G1 ·A1 = G1 ·Ms

(
χ
3 −

χ3

60 + χ5

756 −
χ7

8640 + χ9

95040 + · · ·
)

C3 = G3 ·A3 = G3 ·Ms

(
χ3

180 −
χ5

1512 + χ7

14400 + · · ·
)

C5 = G5 ·A5 = G5 ·Ms

(
χ5

7560 + χ7

43200 + · · ·
)

...

(11)
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Figure 1. MNP magnetization response calculated with the Langevin function and Fokker–Planck
equation under different Néel relaxation times (τN0 = 10 ns, 5 ns, and 1 ns). (a) The MNP magnetization
response. (b) M–H curves. The harmonics (c) amplitude and (d) phase. The excitation field has an
amplitude of 1 mT and a frequency of 20 kHz. The parameters for these simulations are dc = 25 nm,
T = 297 K, K = 4 kJ/m3, Ms = 300 kA/m, α′ = 0.1, and γ = 1.75 × 1011 rad/s T.

Note that we propose empirical expressions only for harmonic amplitudes because they are used
in the MNPT for a high-frequency excitation field, which will be presented later.

3. Simulation

We performed simulations to verify the feasibility of the compensation expression for harmonic
amplitude in Equation (11). The compensation function G is associated with many parameters such as
temperature and excitation field. To simplify the function G, we investigated its dependence on the
excitation field strength. In this simulation, the MNP sample was exposed to an AC excitation field
H = H0cos(2πft), where H0 was set from 1 to 15 mT with a step of 1 mT and f was set at 20 kHz.

As shown in Figure 2a, the difference between the Fokker–Planck equation and Langevin
function for the first harmonic increased with H0 for low H0 and decreased with H0 for high H0.
Because higher harmonics require greater H0 to reach saturation, the differences in higher harmonics
keep increasing with H0 in the range of H0 investigated, shown in Figure 2b–d. The harmonic phase
lag (−ϕ2j−1) decreases with increasing excitation field. The phase lag of the harmonic becomes large
for higher harmonics.
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Figure 2. The (a) 1st, (b) 3rd, (c) 5th, and (d) 7th harmonic amplitudes and phases of MNP magnetization
calculated with the Langevin function and Fokker–Planck equation under different excitation field
strengths. The parameters for these simulations are dc = 25 nm, T = 297 K, K = 4 kJ/m3, Ms = 300 kA/m,
α′ = 0.1, and γ = 1.75 × 1011 rad/s T.

According to the proposed compensation expression in Equation (11), we investigated the
dependence of G on H0. Figure 3 shows the dependence of G2j−1 on H0. The symbols represent G2j−1

calculated with G2j−1 = C2j−1/A2j−1, and the solid lines represent polynomial curve fits given by:

G2 j−1(H) = a2 j−1,0 +
N∑

n=1

a2 j−1,nHn (12)
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Then, using the fitted compensation function G2j−1 and harmonic phase, we reconstructed the
MNP magnetization response based on Equation (10). As shown in Figure 4, the reconstructed AC
M–H curve at each H0 nicely fits that calculated from the Fokker–Planck equation.
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4. Experiment and Results

In the experiments, the iron oxide nanoparticles (Fe3O4) called SHP-20 (SHP-20, Ocean NanoTech,
San Diego, CA, USA) were used as MNP samples. SHP-20 consists of iron oxide nanoparticles with
a carboxylic acid group and has an iron concentration of 5 mg (Fe)/mL. The solvent of the sample
is deionized H2O with 0.03% NaN3. The effective core diameter of SHP-20 was 20 nm. The MNP
sample was immobilized with an epoxy resin to avoid the effect of Brownian rotational relaxation.
The sample was placed in a DC excitation field with a strength of 50 mT during the immobilization
process, ensuring the easy axes of MNPs aligned along the same direction.

Using equipment constructed in a laboratory [23], the saturation magnetization (211 kA/m) of the
MNP sample was determined under a static magnetic field with a strength of 1 T. The MNP sample
was exposed to an AC excitation field and placed so that all the easy axes were parallel to the direction
of the AC excitation field. The strength of the AC excitation field, H0, was set from 3 to 15 mT with a
step of 2 mT at a frequency of 20 kHz. The temperature of the MNP sample was controlled at 297 K.
We obtained the harmonic amplitudes (C2j−1) and phase (ϕ2j−1) of magnetization at each H0. As seen
from Figure 5, the harmonic amplitudes increased with H0, and the phase lag (–ϕ2j−1) decreased with
increasing H0. The higher the harmonic order is, the greater the harmonic phase is; i.e., the Néel
relaxation has greater influence on the phase of higher harmonics.

Then, we calculated the magnetization of the MNP sample using the Langevin function and
obtained the harmonic amplitudes A2j−1. The effective core diameter of SHP-20 was set at 20 nm.
Therefore, the function G2j−1 = C2j−1/A2j−1 associated with H0 can be obtained. In Figure 6, the symbols
represent G2j−1 for different values of H0, and the solid lines represent polynomial curve fits using
Equation (12).

We used Equation (11) to compensate the difference in harmonic amplitude caused by Néel
relaxation. Then, using the fitted compensation function G2j−1 and harmonic phase, we reconstructed
the MNP magnetization response using Equation (10). The reconstructed AC M–H curves match well
with the experimental results, as shown in Figure 7.
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Figure 5. Experimental results for the (a) 1st, (b) 3rd, (c) 5th, and (d) 7th harmonic amplitudes and
phases of MNP magnetization.
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Figure 6. Experimental results for compensation function (a) G1 = C1/A1, (b) G3 = C3/A3, (c) G5 = C5/A5,
and (d) G7 = C7/A7.
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Figure 7. (a) AC M–H curves calculated from the Langevin function with a core diameter of 20 nm.
(b) Reconstructed MNP magnetization response based on a compensation model.

5. Magnetic Nanoparticle Thermometry at High Frequency

In a previous study, a harmonic amplitude–temperature MNPT model was constructed using the
Langevin function at a low frequency (less than 1 kHz) [16]. When a high-frequency excitation field is
used, the Néel relaxation affects the harmonic amplitudes of MNP magnetization as discussed above.

We now use the empirical model of harmonic amplitude in Equation (11) to introduce the harmonic
amplitude–temperature model of magnetic nanoparticle thermometry under Néel relaxation. In this
harmonic amplitude–temperature model, we use the first and third harmonic amplitudes: C1_meas/G1 = Ms

(
ξ̂
3 −

ξ̂3

60 + ξ̂5

756 −
ξ̂7

8640 + ξ̂9

95040 + · · ·
)

C3_meas/G3 = Ms

(
ξ̂3

180 −
ξ̂5

1512 + ξ̂7

14400 + · · ·
) (13)

where ξ̂ =
µ0mH0

kBT̂
, T̂ is the estimated temperature, and C1_meas and C3_meas are the measured first and

third harmonic amplitudes.
We performed simulations to verify the temperature determined using the empirical expression of

harmonic amplitudes in Equation (11). In the simulations, the absolute temperature T was changed
from 310 to 320 K with a step of 2 K. The AC excitation magnetic field had an amplitude of 2 mT and
a frequency of 100 kHz. The saturation magnetization and anisotropy constant of the MNP sample
were set at 200 kA/m and 4 kJ/m3, respectively. The MNP sample had a normal core diameter of
20 nm without a core size distribution. The temperature was calculated from Equation (13) using the
Levenberg–Marquardt algorithm, and then the true temperature was subtracted to give the temperature
errors. As shown in Figure 8, the error increased with temperature. Although the magnetization response
decreased with increasing temperature and the signal-to-noise ratio was low at high temperature,
the maximum temperature error was less than 0.008 K in the temperature range 310–320 K.
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6. Conclusions

We studied the stable AC magnetization described by the Fokker–Planck equation (dominated by
Néel relaxation) and Langevin function. We proposed a simple, empirical harmonic model. Simulation
and experimental results showed that the proposed empirical model accurately describes AC harmonic
magnetization, and the AC M–H curve constructed with the proposed empirical model matches well
with the measured results. Moreover, we proposed a harmonic amplitude–temperature model for an
MNPT under Néel relaxation in a high-frequency excitation field. The simulation results showed a
temperature error of less than 0.008 K at the MNPH frequency level. The empirical harmonic model is
expected to help improve the performance of MNPTs and extend their applications in MNPH.
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