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Abstract

We are amidst an ongoing flood of sequence data arising from the application of high-throughput technologies, and a
concomitant fundamental revision in our understanding of how genomes evolve individually and within the biosphere.
Workflows for phylogenomic inference must accommodate data that are not only much larger than before, but often
more error prone and perhaps misassembled, or not assembled in the first place. Moreover, genomes of microbes, viruses
and plasmids evolve not only by tree-like descent with modification but also by incorporating stretches of exogenous
DNA. Thus, next-generation phylogenomics must address computational scalability while rethinking the nature of
orthogroups, the alignment of multiple sequences and the inference and comparison of trees. New phylogenomic
workflows have begun to take shape based on so-called alignment-free (AF) approaches. Here, we review the conceptual
foundations of AF phylogenetics for the hierarchical (vertical) and reticulate (lateral) components of genome evolution,
focusing on methods based on k-mers. We reflect on what seems to be successful, and on where further development is
needed.
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Introduction

Phylogenomics refers to an important body of theory, method-
ology and tools applicable to the comparative analysis of
genome-scale data within an evolutionary context [1–4].
The field builds on molecular phylogenetics, which since the
early 1960s has been developed to elucidate genealogical rela-
tionships and evolutionary processes within families of genes
or proteins. As the first area of molecular bioscience to develop
an explicitly algorithmic approach, and drawing richly on statis-
tics and computational science, phylogenetics is considered a
major area within bioinformatics.

By definition, the inference of genealogical relationships must
be based on homologous elements. Even before molecules could
be fully sequenced, it was known that certain oligopeptides were
common to representatives (in different biological species) of in-
dividual proteins, e.g. a-haemoglobin or insulin; similarly, 16S
ribosomal RNAs in different species shared sets of short oligo-
nucleotides [5]. Indeed, the presence of shared identity in se-
quences beyond the extent required to deliver conserved
function was taken as evidence for homology [6]. As full-length
sequences became available, it made sense to discover and dis-
play these conserved regions in a multiple sequence alignment
(MSA) [7, 8]. Molecular phylogenetics is thus endowed with a rich-
ness and precision rarely seen with phenetic characters: hom-
ology is no longer ‘overall’ and subjective, but can be evidenced
column by column along a set of aligned sequences. Thus, an
MSA is an explicit position-by-position hypothesis of homology.
Not coincidentally, an MSA matrix serves as a convenient input
to software programs that calculate pairwise dissimilarities (for
distance methods) or compute a tree that best explains the pat-
terns in the aligned columns, given a model of sequence change
over time (in e.g. parsimony or likelihood methods).

With the advent and spread of genomics, large data sets
have become available for phylogenetic inference, with se-
quences longer (genomes rather than single genes or proteins)
and much more numerous. It is no longer unusual to encounter
data sets with thousands of genome or (concatenated) exome
sequences. Phylogenomics at this scale requires organized data
management, significant computational power and large mem-
ory. However, phylogenomics can present challenges other
than those arising purely from size and scale: the data may be
of low quality, assembly may be poor or nonexistent, the se-
quences may not be collinear over their entire length, different
models of sequence change probably apply (e.g. to protein-
coding and noncoding regions) and sequence regions may have
different origins and evolutionary histories [9]. We consider
these factors in turn.

Classical (alignment-based) phylogenetics

In the early days of genomics, much effort went into ‘finishing
and polishing’—joining contigs and resolving conflicts to recover
full-length chromosomes nearly free of ambiguities or errors.
Thanks to this body of earlier work, key information (e.g. pres-
ence or absence of a gene or pathway) can now often be
obtained simply by deep sequencing followed by a rough assem-
bly. Depending on one’s scientific goals, the breadth-versus-
depth trade-off can be pushed dramatically towards breadth, at
the expense of data quality. Survey projects now target tens of
thousands of bacterial genomes, few of which will assemble into
a single contig, while large eukaryote genomes can be ap-
proached through transcriptomics, with consequences for MSA
including the need to deal with truncated sequences and

alternative splice forms. Indeed, there is optimism that phylo-
genetic trees might be inferred entirely without assembly [10].

Basic MSA requires sequences to be collinear, i.e. to preserve
a common ancestral order of elements. Depending on the se-
quences being compared, these elements may be, for example,
nucleotides, codons, amino acids, domains, exons or genes.
Non-collinearity may arise because of poor sequence quality or
misassembly, but could also be real, particularly at whole-
genome scale. Across bacterial genomes, gene order tends to be
poorly conserved except among close relatives; exceptions in-
clude ribosomal RNA operons and some genes encoding riboso-
mal proteins. Thus, even with correctly assembled genomes, a
separate bioinformatic step is required to match putatively hom-
ologous regions before, or as part of, MSA. Like MSA software,
whole-genome aligners take different algorithmic approaches
and implement different assumptions and trade-offs [11, 12] but
in general are CPU- and memory-intensive, with considerable
scope for error and ambiguity arising, e.g. from families of repeti-
tive elements, low-complexity regions and paralogs.

Most approaches to phylogenetic inference require a statis-
tical model of sequence evolution [13]. It is not difficult to im-
agine that different classes of sequence (e.g. those encoding a
protein, a functional RNA or no product at all) are best described
by different models. Even within a single gene, inference quality
may be improved by applying different rate classes or steady-
state assumptions, e.g. for DNA regions that encode highly
structured versus unstructured regions of proteins, or stems
versus loops of ribosomal RNAs. It is computationally onerous
to identify, delineate and group these regions, match each to
the best model and optimize parameter values. Scalability to
genome-scale data would be facilitated by simplifying these
models, using a single generic model or, if possible, eliminating
them altogether.

In the standard Darwinian model, genomes are inherited ver-
tically from one generation to the next within lineages. To a first
approximation, this adequately describes the evolution of nu-
clear genomes of morphologically complex organisms including
animals and plants. However, genomes of bacteria, archaea, pro-
tists, viruses and plasmids often contain stretches of DNA
acquired laterally from unrelated organisms, or from the envir-
onment. Many studies indicate that 10–40% of the genes in some
bacterial genomes, and essentially all gene families in bacteria,
have been affected by lateral (horizontal) genetic transfer (LGT or
HGT) ([14, 15] and references therein). For such genomes, a phylo-
genomic workflow must distinguish vertical from lateral signal,
and treat each separately. To complicate matters, neither genes
nor domons (genomic regions corresponding to protein domains)
are privileged units of LGT [16, 17]; new lateral events can over-
write older ones; regions of lateral origin may ameliorate, i.e.
evolve to become indistinguishable from their new host genome
[18]; and older lateral regions will themselves be inherited verti-
cally within subtrees [15, 19]. In MSA-based phylogenomics, these
issues are addressed by adding further (computationally de-
manding) steps to the workflow, e.g. inferring an organismal ref-
erence tree and comparing features of its topology with those of
individual gene or protein family trees [14, 20]. Opportunities
abound for complications to arise from cryptic paralogy, or in-
appropriate delineation of the units of analysis.

Based on the above, we might summarize our wish list for
next-generation phylogenomics [9]: it must be based on hom-
ologous signal (a different subset of signal for each evolutionary
origin), while avoiding the assumptions inherent in MSA (prede-
fined fixed units of analysis; colinearity). It should incorporate a
generic, computationally simple substitution model; be highly
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scalable to large data, yet robust to low data quality; and per-
haps support phylogenetic inference from unassembled se-
quence reads. Alignment-free (AF) methods offer considerable
promise against each of these goals [9].

Alignment-free methods and k-mers

AF methods underpin key algorithms in diverse areas of bio-
informatics including database searching [21, 22], sequence
clustering [23], error correction in sequencing reads [24], gen-
ome assembly [25], discriminative prediction of regulatory vari-
ants [26, 27] and testing for genetic recombination [28]. In
phylogenetics and phylogenomics, AF methods offer alterna-
tives to the assumptions and computational demands of MSA
identified above. Following Haubold [29], AF methods can be
classified broadly into those based on word (k-mer) count, and
those based on match length. Certain other AF methods may fit
uncomfortably into these classes, or lie outside them altogether
[30]. In the present context, the motivating concept is the same:
substrings (perhaps defined by k-mers) that meet certain crite-
ria, and are shared by a set of sequences, can be considered as
capturing part of the homology signal and are thus potentially
informative on phylogeny. Here, we focus primarily on k-mer
count methods.

Substrings (sub-sequences) of defined length are variously
known as words, k-mers or n-grams, with k or n denoting the
substring length. By disallowing mismatch, degeneracy and
indels, k-mer statistics become simpler and the computation
more efficient. These strictures may be slightly relaxed (e.g. by
allowing limited mismatch to deal with noise) or avoided in
part (by recoding into a reduced alphabet), albeit at the risk of
crossing into the realm of pattern or motif analysis, for which
different and computationally less-favourable methods are
required.

Any molecular sequence can be represented as the set of its
constituent k-mers (Figure 1). These k-mers are typically
allowed to overlap with stride¼ 1; a larger stride �k could be
used to reduce the computational effort. Whereas in MSA the
linear order of sequence elements is fundamental to recog-
nizing conserved (homologous) positions and identifying con-
servation profiles, the analogous concept in AF is an order-less
matching of k-mers, i.e. an intersection of k-mer sets. For suffi-
ciently large k, any given k-mer is approximately unique to a se-
quence [31], so in the absence of extenuating circumstances
(e.g. strong mutational bias or low-complexity regions), shared
instances of that k-mer are likely to be homologous. As se-
quences progressively diverge on a tree, they share fewer k-
mers in common, and the longest k-mer they share tends to be
shorter. As we discuss below, these measures can be used to es-
timate a pairwise distance. For this, the count or frequency of
shared k-mers seems to be sufficient, i.e. it is not necessary to
keep track of positional information [32] unless we wish to map
specific k-mers (e.g. those inferred to have a lateral origin) to
genes, structures or functions [33–35].

In contrast, conservation profiles measure local sequence
similarity and thus require at least approximate positional
information. Classical alignment algorithms such as Smith–
Waterman or Needleman–Wunsch use dynamic programming
to determine columns and/or blocks of matching residues in a
set of sequences. From the number or proportion of conserved
residues within a column, a conservation profile can be derived.
AF conservation profiles can be constructed by plotting the
maximum number of matching k-mers over their mean pos-
itions within the set of sequences [36]. While AF conservation

profiles do not achieve single-residue resolution, they are faster
to compute than classical profiles (linear versus quadratic time
with respect to sequence length), yet still allow the identifica-
tion of conserved regions or domains, even if non-collinear [36].

Extraction of k-mer sets from molecular sequences is in
principle trivial, accomplished simply by sliding a window of
size k over a string representation of the sequence to produce a
lexicon of overlapping k-mers (Figure 1). In application to DNA,
it is usual to record only canonical k-mers (the lexicographically
smaller of a k-mer and its reverse complement), or to work with
only the forward strand. Efficient accumulation of k-mer counts
requires that we determine the novelty of each k-mer as it ap-
pears: previously encountered k-mers must be identified rapidly
and their counts incremented, while novel k-mers must be in-
serted quickly and without impairing the performance of the
data store during subsequent queries. Approaches to this task
may be categorized broadly into those based on hashing, and
those relying more directly on data structures invented for
string lookup and spelling correction, notably the suffix tree [37]
and the suffix array [38].

Exact hashing methods offer constant-time insertion and
lookup, and their use in bioinformatics has a long history. Naı̈ve
hashing, however, proves surprisingly slow [39] and requires
memory linear in the number of distinct k-mers, which in turn
is exponential in the size of the k-mers: O Aj jk

� �
; where jAj is the

size of the alphabet. Jellyfish [39] overcomes many of these
problems through careful design of a lock-free multithreaded
hash table, using a key encoding and bit packing to ensure far
lower memory usage. Tessel, part of the Blue read-correction
package [40], markedly reduces memory requirements for

Figure 1. Fundamental concepts and nomenclature of k-mers, illustrated here

for overlapping k-mers (k¼7, stride¼1) in two DNA sequences. (A) Exact

matches, (B) inexact matches, (C) degenerate bases and (D) a binary pattern of

match and non-match positions (spaced word matches).

428 | Bernard et al.

Deleted Text: Alignment-free
Deleted Text: and 
Deleted Text: -
Deleted Text: very 
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ing
Deleted Text: ing
Deleted Text: , 
Deleted Text: By 
Deleted Text: -
Deleted Text: -
Deleted Text: employ 


sequence reads by excluding singleton k-mers until a second oc-
currence is observed. Even for modest coverage, genuine k-mers
will occur many times, with singletons almost certainly the re-
sult of sequencing error. Confirmed k-mers are recorded in
optimized, partitioned lock-free hash tables, with a subsequent
merge phase to ensure accurate final counts. Melsted and
Pritchard [41] address memory usage via a Bloom filter [42], a
probabilistic distributed hashing scheme that admits a small
chance of a false-positive match. A standard hash table is used
to store entries seen twice or more, but the implementation re-
mains single-threaded and is not competitive. Hybrids of this
nature have been used recently in the context of de Bruijn
graphs [43].

Suffix trees represent a string through its underlying suf-
fixes, each encoded as a path from the root to a leaf, with the
start position of the suffix within the string stored in this termi-
nating node. Suffix arrays contain these same start positions,
but arranged according to the lexicographical order of the suf-
fixes included. For both, construction time and space are linear
in sequence length, hence in the number of k-mers, but the
array requires far fewer bits per suffix, perhaps one-fifth to one-
third of the footprint of the tree [38]. Lookup is linear in the
length of the query, here O kð Þ: Suffix trees have long been
applied in substring matching (e.g. in MUMmer 1.0: [44]), while
k-mer counters based on suffix arrays have included Meryl (part
of the Celera Assembler) [45] and Tallymer [46], the latter
enhanced by storing the longest common prefix among suffix
groups. While the optimized hashing methods discussed above
appear superior for general k-mer counting and retrieval, exact
hashing does not preserve locality, limiting its utility for appli-
cations based on approximate matching. In contrast, suffix and
tree-based approaches may preserve structure common across
many k-mer entries, supporting mismatch neighbourhoods and
correction of a letter (or longer segment) through replacement
by a more strongly weighted alternative. Even so, these tasks
may be prohibitively expensive for very large data sets, which
may be handled more generally through careful inclusion of
disk or solid-state drives.

Phylogenetic inference based on k-mers

As we have mentioned, as sequences diverge over time from a
common ancestor, they will come to share fewer, and shorter,
k-mers. More precisely: given a threshold s such that k-mers of
length k� s occurring in related sequences can be considered
homologous, as these sequences diverge (a) for a fixed k� s, the
number of shared k-mers will tend to decrease, (b) over all k� s,
the mean length of shared k-mers will tend to decrease and (c)
the longest shared k-mer will tend to be shorter. Measures that
capture these trends behave as pairwise similarities, and like
their classical MSA-based counterparts can be used in distance
analysis to generate a tree [47–55]. The optimal s is likely to be
problem- and data-dependent (see below), but could be selected
based on the distribution of match lengths in simulated se-
quences [56], e.g. to maximize the area under the receiver oper-
ating characteristic curve or ensure a minimum desired
frequency of true positives.

The best-known measure of k-mer distance is based on the
D2 statistic [21, 48, 57–60]. Building on a proposal by Blaisdell
[61], D2 is simply the count of exact k-mer matches between two
sequences, summed over all k-mers at a given k. As this count
depends on the sequence lengths, D2 is often normalized by the
probability of k-mer occurrence, or by assuming a Poisson distri-
bution [48, 62]. Chan et al. [63] introduced a neighbourhood

variant. Even so, for D2-based measures to be applied confi-
dently, particularly in the comparison of closely related se-
quences, understanding the k-mer structure of actual genomes
would be highly desirable [58, 64–67].

Bioinformatic workflows leading to AF trees differ little from
their classical counterparts, except that MSA is not required
(Figure 2). Putatively homologous sequences (e.g. genomes) are
assembled and quality checked, e.g. for illegal characters. K is
selected (see below), k-mers are extracted, and distances are
computed pairwise (above) and assembled into a triangular ma-
trix that is input into software that implements neighbour
joining [68, 69] or another distance-based algorithm. Because
distance algorithms build trees by clustering sequences rather
than by estimating a measure of changes along internal edges,
some authorities consider them non-phylogenetic. Here, we fol-
low Felsenstein ([70]: 145–6) in relegating this distinction to de-
bates over classification, and for the purpose at hand accept
distance as a legitimate basis for the statistical inference of
phylogeny. Höhl and Ragan [71] pointed out that shared k-mers
could be arranged into a (very local) ‘alignment’ matrix and
used as input into likelihood, Bayesian or other (non-distance)
algorithms for tree inference, although at the cost of the speed
and scalability we hoped to secure by taking an AF approach in
the first place.

K is the critical parameter in AF phylogenomics. As we de-
pend on k-mers to capture homology signal, the value we select

Figure 2. An AF phylogenetic workflow in which (A) k-mers (k¼7, stride¼ 1) are

extracted from four sequences (Seq1 through Seq4), (B) shared 7-mers are identi-

fied by pairwise comparisons, (C) a pairwise distance matrix is calculated, from

which (D) a tree is computed using a distance-based method, e.g. neighbour

joining.
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for k must be large enough to ensure that few k-mers are pre-
sent in our analysis purely by chance, but not so large that in-
formative k-mers are arbitrarily excluded and signal
unnecessarily attenuated. The factors most important for se-
lecting an optimal k are the alphabet (e.g. nucleotide versus
amino acid) and the complexity, divergence and length of the
sequences under investigation. Given the complexities of se-
quence evolution, the performance of AF methods is best as-
sessed by computational simulation rather than analytically.
Using evolver in PAML [72], we simulated the evolution of se-
quences on a tree under a general time-reversible model to
examine how GþC content, length of terminal or more-basal
branches, rearrangement, truncation and among-site rate het-
erogeneity affect precision and recall. We also simulated indels,
and explored trees generated under coalescent and non-
ultrametric models [63]. Our results indicate that for k within an
optimal range, many AF methods can perform well under basic
scenarios [5, 63, 73], indeed better than MSA in the presence of
rearrangement or indels [63].

In the case of empirical data, the true tree is unknown, mak-
ing it impossible to assess performance using measures of pre-
cision and recall. To compare AF methods under scenarios of
sequence divergence, rearrangement, inversion and LGT, we
focused instead on sensitivity to change of parameter value (e.g.
k), and accuracy in the sense of recovering accepted subtrees
[73]. All nine AF methods we examined were robust against
complex genome rearrangements or inversions, and most
word-count methods were robust and computationally efficient
against moderate levels of LGT. Performance varied with the ex-
tent of divergence, with the word-count methods more accurate
than match-length methods at higher divergence. The optimal
size of k was sensitive to the extent of sequence divergence, but
was little affected by the other scenarios we simulated. Thus,
for data sets of known divergence, AF methods might be applied
without exploratory tuning of k, and could be expected to per-
form as well or better than MSA-based approaches. However,
AF methods have not been rigorously examined under fully
realistic scenarios in which different lineages may evolve at dif-
ferent or variable rates, under different models of substitution,
and/or with biases that give rise to compositional convergence.

For large data sets of bacterial and archaeal genomes, we
inferred biologically realistic AF trees in which many clades fa-
miliar from MSA-based studies were recovered. Most differ-
ences between the AF and MSA trees involved terminal
branches, i.e. the most-closely related genomes. We investi-
gated a multiple-k approach in hopes that longer k might pro-
vide better resolution at the termini, while shorter k would be
more appropriate for the eroded signal at more-basal biparti-
tions. In our hands this was unsuccessful, but an adaptive or
multiple-k approach might bear more-systematic reinvestiga-
tion. Some AF methods can also be used directly on large high-
throughput sequencing data, i.e. sets of reads or contigs with
only basic assembly, or none at all [10, 54].

Given sets of k-mers from individual sequences, the time
required to compute AF distances typically scales linearly with
the number of sequences; weighting, normalization or exten-
sion to inexact matches will incur additional cost [50, 52, 54, 56,
62, 73–75]. Using DS

2, we could generate accurate trees for thou-
sands of bacterial genomes in some tens of hours on a
moderate-sized cluster [76]. Memory is the main limitation for
k-mer-based approaches, but the actual demand depends on
the implementation used, and can sometimes be traded off
against speed of computation. AF methods with optimal mem-
ory consumption are slower than the more memory-greedy

methods, with current hashing-based implementations limited
to k¼ 32 in most cases [47, 50].

AF methods nonetheless retain certain limitations. In simu-
lations, the D2-based methods we examined recover the refer-
ence topology when applied to sequences of length of 10 000 nt
(e.g. small genomes; operons), but are prone to errors at 1500 nt
(genes) and fail at 250 nt (domons) [63]. By disregarding single-
ton k-mers (i.e. erroneous reads), it is possible to improve dis-
tance estimates at higher coverage, but this degrades the signal
at lower coverage [10]. In the MSA context, distance methods
are criticized for reducing the pairwise comparison between se-
quences to a single number, in the process losing information
on patterns of conservation within and among sequences; this
is true of k-mer distances as well. Alternative approaches might
involve a k-mer substitution model, but this scarcely seems
feasible if the substitution matrix would be high dimensional,
sparse and dependent on immense data for parameterization.
Indeed, we suspect that such an approach would be so compu-
tationally expensive that it would negate the advantages of tak-
ing an AF approach in the first place. Methods exist for
computation with sparse matrices, but to our knowledge have
not been explored in a phylogenetic or phylogenomic context.

Alignment-free approaches to lateral genetic
transfer

For phylogenomic analysis of genomes potentially affected by
LGT, we must also identify and deconvolute vertical and lateral
signal. In MSA-based phylogenomics, this is done by appending
a filter to the standard workflow: trees inferred for individual
gene families are compared with a reference topology, and well-
supported but conflicting bipartitions are taken as prima facie
evidence of LGT [77, 78]. The corresponding gene or protein fam-
ily might then excluded (to purify the vertical signal) or ana-
lysed separately to understand the sources, recipients,
processes and impact of LGT.

At first glance, there is much to recommend a similar work-
flow for AF phylogenomics. An approach built on k-mers might
liberate us from having to take genes, or any other predefined
features, as the units of analysis. In MSA-based phylogenomics,
incongruent signal can be traced back to the underlying gene-
family MSA, but this does not tell us which of the aligned
gene(s) is/are responsible for the incongruence, the number and
quality of alternative signals or the number, quality or location
of recombination breakpoints [16, 79]. AF methods might give
us fine-scale access to some or all of this information. Indeed,
with AF, we have further options. A genomic region might have
arisen by LGT if, in the absence of extenuating circumstances, it
(a) unexpectedly shares k-mers with a distantly related genome,
and hence (b) exhibits an anomalously short D2 distance to that
genome. This is why (c) a distance tree computed for that region
will be topologically incongruent with that computed for a verti-
cally inherited regions, or a trusted reference tree. Interestingly,
these lines of evidence exactly parallel the three main strategies
for LGT detection [80–82].

To begin to explore these AF approaches, we simulated the
evolution of DNA sequences on a tree using ALF [83] or
EvolSimulator [84], and then counted how many 21-mers are
shared pairwise within a sliding window of length 60 nucleotides.
In the first instance, we did this in the absence of simulated LGT,
so as to establish a baseline against which lateral regions could
later be detected [85] (Chua, Maetschke and Ragan, unpublished).
This is a k-mer variant of approaches long used to find lateral
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regions within sequences based on anomalous GþC content, di-
nucleotide frequencies or codon usage [18, 81, 82, 86–92]. We
found that while the most-divergent sequences shared very few
21-mers (zero in most windows), a few windows shared as many
as seven; although these are false positives, we could find no ob-
jective statistical criterion by which a hypothesis of LGT could be
rejected for them. Conversely, with more-closely related sequence
pairs, most windows shared many 21-mers, but the variation was
such that it would be impossible to recognize or bound a truly lat-
eral region (Figure 3). Note also that a sliding window approach
could work only on assembled genomes or large scaffolds, not on
masses of raw reads. The idea seemed promising, but something
critical was missing.

Thanks to cross-disciplinary collaboration, we soon dis-
covered what was missing. Document analysis involves con-
cepts that can be identical or analogous to those in molecular
phylogenetics [93–96] including the ‘contamination’ of texts by
lateral transfer [97, 98]. A statistic known as term frequency–in-
verse document frequency (TF–IDF) is widely used to determine
the importance of a word in a collection of documents: words
that appear frequently in a document, but rarely in the rest of
the corpus, carry greater importance for that document. A vari-
ant of TF–IDF might be used to detect lateral regions in molecu-
lar sequences. K-mers can be seen as analogues of words (albeit
ones that sometimes overlap each other), groups of similar se-
quences as documents and a sequence database as a corpus.
Unlike in a classical MSA-based workflow, sequences must be
arranged into groups, but subsequent steps are AF. Sequence re-
gions that contain k-mers infrequent in their own group (TF) but
frequent in another group (IDF) are inferred as instances of LGT
from the donor group to the recipient sequence [33]. Our
unsuccessful idea above (Figure 3) represented IDF without
proper TF.

The resulting workflow (Figure 4) differs from AF workflows
for purely vertical phylogenetics (e.g. Figure 2) in two main
ways: the unit of analysis is not specified up front, and se-
quences must be arranged into groups. Potential lateral seg-
ments are generated by merging k-mers that meet the IDF and
TF requirements. A parameter G specifies the maximum

allowable gap between k-mers to be merged into a lateral seg-
ment; where investigated, the number of LGT detections and
total detection length were relatively insensitive to G. The re-
sulting segments are typically of different lengths, and may
map to intergenic regions, gene fragments, entire and/or mul-
tiple genes. In contrast, grouping the sequences in an effective
manner proved to be non-trivial, yet critical to performance [33,
34, 99]. TF–IDF performs best when sequences are similar within
group but dissimilar between groups; so if our goal is to infer
LGT, the best grouping will probably capture hierarchical des-
cent. Even so, it may remain ‘difficult to disentangle the effects
of group number, size, composition and phylogenetic cohesion’
[34].

With simulated data, it was obvious how to delineate groups
and TF–IDF performed well, as measured by precision and re-
call, over a biologically realistic range of sequence lengths and
evolutionary distances between and within groups. As ex-
pected, greater evolution post-LGT had a deleterious effect on
performance, while deletions showed relatively little effect.
With empirical data, groups (e.g. c-proteobacteria) known to en-
gage in LGT were usually prominent in our TF–IDF analyses,
while we inferred little or no LGT for groups known to be more
quiescent [34]. Because only genes (not arbitrary regions) have
gene ontology annotation, to study the functional implications
of the inferred LGT, we mapped the inferred lateral segments to
genes, using data-dependent length and overlap thresholds [34,
99]. For protein-coding genes, we might alternatively have
asked whether the inferred lateral segments overlap regions
that encode active sites or SCOP domains.

For groups related by a hierarchical tree, it may be possible
to extract further information. If a genomic region is inferred to
have received genetic material from two or more groups that
are topologically adjacent on the tree, we might (depending on
details) instead hypothesize that there had been a single trans-
fer from a common ancestor of the donor groups. Imperfect
overlap of the inferred lateral regions could be ascribed to the
vagaries of subsequent evolution, and/or the IDF threshold
being a blunt instrument. On the other hand, transfers from un-
related donor groups would render such a region an

Figure 3. A sliding-window approach of k-mer sharing between sequences, illustrated here using a set of 26 sequences simulated [84] on the tree (A) depicted at the

left. Pairwise comparisons are shown for (B) two highly dissimilar sequences, S1 and S26, and (C) two similar sequences, S7 and S14. Each plot shows the number of

matching 21-mers within a 60-nt window, as it is incremented along S1 or S7, respectively.
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evolutionary mosaic [34]. Although gene loss and LGT among
the donor lineages may present further complications, TF–IDF
seems to promise a first-ever systematic look at the temporal
dynamics of superposed transfers.

Summary information from TF–IDF analysis can be collected
in the form of an LGT network. For simplicity of interpretation,
recipient sequences are subsumed into their respective groups,
and inferred transfer events consolidated as weights on the
edges. Given the limitations of most clique-finding algorithms,
the weights and directionality of edges are usually ignored [99].
Densely connected regions within an LGT graph—maximum cli-
ques, maximal cliques and paracliques (cliques missing a few
edges)—can be extracted using GrAPPA [100]. These structures
demarcate genetic exchange communities (GECs), groups of

taxa whose members have shared genetic material among
themselves by LGT [101]. Taxa that retain membership across
biologically reasonable values of k (for the examples cited,
20 �k �40) are considered core nodes of these GECs [99]. Other
structures in an LGT graph may also be of biological interest,
e.g. bridging nodes that connect cliques [102, 103]. By annotating
nodes and edges with metadata, e.g. on environment, genome
type or vector, new perspectives may be gained on the genetic
structure of the microbial biosphere, and on genetic flow within
and across ‘independent genetic worlds’ [102, 104–107].

The TF–IDF algorithm is scalable, running in O nL � logðnLÞð Þ
time where n is the number of sequences and L their average
length. Moreover, as the inferred edges are natively lateral and
directional, computationally hard steps involving the gener-
ation of a reference topology and comparison with test trees are
obviated. However, in its current implementation, TF–IDF is
somewhat greedy of memory, preventing its application to very
large data sets. Clique finding is computationally demanding,
even though information on edge directionality and weight is
typically ignored.

An analogous approach could be taken to identify regions of
vertical inheritance. Wong and Ragan [108] recognized core re-
gions that find matches in other sequences, extended these re-
gions using a criterion of mutual exclusivity, built a pairwise
similarity graph and applied MCL [109] to yield sets of putatively
homologous subsequences they called Markov Clusters of
Homologous Subsequences (MACHOS). In place of Smith–
Waterman, match and extension criteria based on k-mers
(above) could equally well be used. MACHOS correspond well to
known Pfam domain families [108], and offer an AF approach to
recognition of orthologs [110]. It has been argued that workflows
in which a gene or protein family is, by default, considered to be
inherited vertically unless this null hypothesis is specifically re-
jected gives a conceptually and methodologically unfair advan-
tage to vertical inheritance [111, 112]. Doolittle [111] goes so far
as to call this a ‘false null’. Parallel AF workflows for lateral and
vertical regions could address this objection, inferring ‘LGT dir-
ectly, positively and fairly in large genome-scale datasets’ [99].

Conclusions

The power of k-mer-based AF approaches relies on proper selec-
tion of k. The requirement that k-mers be approximately unique
to a sequence can be satisfied at a much smaller k for amino
acids (alphabet size 20) than for nucleotides (alphabet size 4).
For tree inference, optimal k depends on the length and diver-
gence of the sequences, and (more weakly) on the inference
method. In our hands, k is optimal at about 3–5 for proteins, and
8–10 for genes or RNAs [32, 63, 71]. We set k¼ 12 for a quick as-
sessment of the relative divergence of microbial genome data
sets [34, 73], while Greenfield and Roehm [31] used k> 15 to
identify organisms, genes and functions of interest using
unique k-mers as tags. For genome trees, optimal k ranged from
8 for isolates of the same bacterial species up to 25 across bac-
teria and archaea [63, 73]. Elhai et al. [92] used k¼ 8 to detect
genes of recent lateral origin in microbial genomes, but needed
to draw on additional lines of evidence to make their approach
effective. In TF–IDF, optimal k is larger still, for microbial gen-
ome data sets in the range 25–40.

AF approaches are beginning to make their mark in phyloge-
nomics and LGT research. Substrings can readily be extracted
from sequences, indexed, stored and retrieved. They capture
homology signal in evolving sequences, and counts or frequen-
cies of shared k-mers can underpin measures of pairwise

Figure 4. Simplified workflow illustrating the use of TF–IDF to identify lateral

genetic transfer. (A) Four sequences (Seq1 through Seq4) are grouped, here into

two groups (Group 1 and Group 2) based on a reference tree. (B) All k-mers (k¼7,

stride¼1) from each sequence are compared against the k-mers found in each

of the two groups. A k-mer that is infrequent in the group to which the sequence

belongs (TF), but frequent in another group (IDF), illustrated here by ACGTTTC

in Seq1 that is infrequent in Group 1 but frequent in Group 2, is inferred to be of

lateral origin. (C) Laterally transferred regions are constructed from sets of

nearby lateral k-mers, where nearby means separated by �gap G. For represen-

tation as a network, recipient sequences are subsumed into their respective

groups with the result that transfers inferred from a donor group to a recipient

sequence (D, left) are shown as from a donor group to a recipient group (D,

right). For clique analysis, edge weight and directionality may further be ignored

(see text).
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distance and the computation of distance trees. Distributions of
k-mers among groups of genomes can reveal donor–recipient
relationships in LGT, hence communities of genetic exchange,
and may be informative on the temporal dynamics of reticulate
evolution. Like their MSA-based counterparts, k-mer distance
trees can be computed quickly and scale to very large data,
without the computational overhead of a complex substitution
model (or multiple such models for different sequence regions).
Whether this is, on balance, a good thing remains to be seen,
even apart from the question of whether it makes sense to infer
a genome tree [113]. MSA-based methods have benefitted from
more than four decades of development, in the process enrich-
ing all their component fields, biological and otherwise. In con-
trast, AF phylogenomics is still in its infancy. We anticipate that
AF methods will mature to provide dependable options in large-
scale phylogenomics while stimulating the exploration of other
biological questions previously unimaginable within the clas-
sical framework.

Key Points

• Molecular sequences can be represented by sets of
their constituent k-mers. To the extent that these k-
mer sets capture the signal of homology among these
sequences, they can inform on phylogenetic
relationships.

• Measures of the intersections of these k-mer sets can
be used, after normalization, to compute pairwise dis-
tances without the need for MSA.

• Trees computed from k-mer distances are often bio-
logically reasonable, e.g. recovering recognized taxa,
while being robust against evolutionary scenarios that
are problematic for alignment-based phylogenetics.

• Using TF–IDF, it is possible to identify regions that
have been transferred from a donor group into a re-
cipient sequence. Across a data set, all such pairwise
relationships describe an LGT network. Densely con-
nected regions in LGT networks can be interpreted as
GECs.

• These AF approaches are computationally fast and
scalable to large nucleotide or amino acid data sets.
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