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Abstract: Through 4 June 2021, COVID-19 has caused over 172.84 million cases of infection and
3.71 million deaths worldwide. Due to its rapid dissemination and high mutation rate, it is essential
to develop a vaccine harboring multiple epitopes and efficacious against multiple variants to prevent
the immune escape of SARS-CoV-2. An in silico approach based on the viral genome was applied to
identify 19 high-immunogenic B-cell epitopes and 499 human leukocyte antigen (HLA)-restricted T-
cell epitopes. Thirty multi-epitope peptide vaccines were designed by iNeo-Suite and manufactured
by solid-phase synthesis. Docking analysis confirmed stable hydrogen bonds of epitopes with their
corresponding HLA alleles. When four peptide candidates derived from the spike protein of SARS-
CoV-2 were selected to immunize mice, a significantly larger amount of total IgG in serum, as well as
an increase of CD19+ cells in the inguinal lymph nodes, were observed in the peptide-immunized
mice compared to the control. The ratios of IFN-γ-secreting lymphocytes in CD4+ or CD8+ T-cells in
the peptide-immunized mice were higher than those in the control mice. There were also a larger
number of IFN-γ-secreting T-cells in the spleens of peptide-immunized mice. The peptide vaccines
in this study successfully elicited antigen-specific humoral and cellular immune responses in mice.
To further validate the safety and efficacy of this vaccine, animal studies using a primate model, as
well as clinical trials in humans, are required.

Keywords: COVID-19; SARS-CoV-2; epitope; immunoinformatics; peptide; vaccine

1. Introduction

In December 2019, SARS-CoV-2 caused an outbreak of viral lung infections in Wuhan
City, Hubei Province, China, and later infected people in 213 countries worldwide [1–5].
A genome sequence comparison of SARS-CoV-2 with SARS-CoV and bat coronaviruses
showed 79.5% and 96% similarities at the nucleotide level, respectively [6], suggesting its
probable origin in bats [7].
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Up until now, several therapeutics and vaccines have been used under Emergency Use
Authorization for COVID-19 [8]. However, the majority of disease control has extensively
relied on the rapid detection and isolation of symptomatic cases [9]. Therefore, a safe and
efficacious vaccine is urgently needed. In comparison with traditional vaccine-developing
approaches, which require the isolation, inactivation and injection of pathogens (or por-
tions of them), computation-based methods generally start by analyzing the genomes of
pathogens and can speed up the entire process for vaccine development, due to rapid
progress. The complete genome of SARS-CoV-2 encodes the spike protein, membrane
protein, envelope protein and nucleocapsid protein, as well as other replication- and
transcription-related enzymes. Due to the lack of a repair mechanism in the RNA virus
replicase complex, mutations are prone to occur during replication of SARS-CoV-2. The
4% nucleotide difference between the viruses isolated from Rhinolophus and those from
humans suggests that SARS-CoV-2 mutates rapidly to achieve host conversion [10,11].
Similar to SARS-CoV, SARS-CoV-2 uses its receptor binding domain (RBD) on the spike
protein to bind to a host cell’s angiotensin-converting enzyme 2 (ACE2) [6,9,12,13]. 10-
to 20-fold higher binding affinity to ACE2 was observed for SARS-CoV-2 compared to
SARS-CoV [14]. Consequently, vaccines against SARS-CoV-2 can be developed targeting its
structural proteins and in particular the RBD region, following the strategy for SARS-CoV
vaccine development [12,15–18].

An ideal vaccine containing both B-cell and T-cell epitopes can elicit both humoral
and cellular immune responses against a specific pathogen in an efficient manner [19].
Since the first peptide vaccine against the virus that caused foot-and-mouth disease
was developed [20], the subsequent establishment of the peptide synthesis method by
Lerner et al. [21] along with the strategy of combining both T-cell and B-cell epitopes
in the design of a peptide vaccine has accelerated vaccine development. In the present
study, we followed this in silico approach to identify potential B-cell and T-cell epitope(s)
from the spike, envelope and membrane proteins of SARS-CoV-2. Next, we selected a few
candidate peptides to immunize mice. As a result, these peptides successfully elicited
specific humoral and cellular immune responses, showing their real potential to combat
SARS-CoV-2.

2. Results
2.1. Prediction of B-Cell Epitopes

During viral infection, B-cells take in viral epitopes to recognize viruses, thereby
activating defense responses. Recognition of B-cell epitopes depends on the antigenicity,
surface accessibility and predictions of linear epitopes [22,23]. In this study, a total of
61 B-cell epitopes were predicted, which seemed to preferentially locate within certain
regions of the gene (Figures 1 and 2, Table S1). Only 19 out of 61 epitopes were predicted
to be exposed on the surface of the virion and had high antigenicity scores, indicating
their potential for initiating strong immune responses. Therefore, they were considered
promising vaccine candidates for targeting B-cells. Among the 19 epitopes, 17 were longer
than 14 amino acids, were located in the spike protein containing RBD and functioned in
host cell binding (Table 1). The average Emini score for the 19 epitopes was 2.744, and the
average Kolaskar (antigenicity) score was 1.015. Two epitopes were located within the RBD
region, while the one with the higher Kolaskar score (1.059), 1052-FPQSAPH-1058, was
located at position 1052aa of the spike protein.
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Figure 1. Distribution of B-cell and T-cell epitopes. The outermost circle (light blue) stands for the T-cell epitope count. 
The second-outermost circle stands for Emini (in red) and Kolaskar (in green) scores, used to evaluate the B-cell epitopes 
(these methods were based on linear B-cell epitope sequences). The 3rd circle displays the names of different viral pro-
teins. The 4th–6th circles stand for HLA-A (in blue), HLA-B (in green) and HLA-C (in yellow) scores, respectively; the 
points closer to the center indicate a lower score. 

 
Figure 2. Locations of the recognized B-cell epitopes on the viral spike protein (a), envelope protein (b) and membrane 
protein (c). The transparent cartoon models show the predicted 3D structures; the colorful spheres suggest the positions 
of the recognized epitopes. 

Figure 1. Distribution of B-cell and T-cell epitopes. The outermost circle (light blue) stands for the T-cell epitope count. The
second-outermost circle stands for Emini (in red) and Kolaskar (in green) scores, used to evaluate the B-cell epitopes (these
methods were based on linear B-cell epitope sequences). The 3rd circle displays the names of different viral proteins. The
4th–6th circles stand for HLA-A (in blue), HLA-B (in green) and HLA-C (in yellow) scores, respectively; the points closer to
the center indicate a lower score.
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Table 1. B-cell epitope candidates.

Epitope Protein Start End Peptide Emini Kolaskar

B1 Spike 19 43 TTRTQLPPAYTNSFTRGVYYPDKVF 6.424 1.028
B2 Spike 90 99 VYFASTEKSN 1.573 1.019
B3 Spike 206 209 KHTP 2.463 1.002
B4 Spike 405 430 DEVRQIAPGQTGKIADYNYKLPDDFT 5.81 1.001
B5 Spike 494 507 SYGFQPTNGVGYQP 1.553 1.02
B6 Spike 671 688 CASYQTQTNSPRRARSVA 3.531 1.027
B7 Spike 771 782 AVEQDKNTQEVF 2.342 1.011
B8 Spike 787 799 QIYKTPPIKDFGG 1.465 1.006
B9 Spike 805 816 ILPDPSKPSKRS 4.69 1.019
B10 Spike 1052 1058 FPQSAPH 1.381 1.059
B11 Spike 1068 1091 VPAQEKNFTTAPAICHDGKAHFPR 1.063 1.03
B12 Spike 1108 1123 NFYEPQIITTDNTFVS 1.039 1.007
B13 Spike 1135 1151 NTVYDPLQPELDSFKEE 6.183 1.011
B14 Spike 1153 1172 DKYFKNHTSPDVDLGDISGI 1.399 1.007
B15 Spike 1190 1193 AKNL 1.087 1.005
B16 Spike 1203 1209 LGKYEQY 2.512 1.035
B17 Spike 1255 1265 KFDEDDSEPVL 2.654 1.003
B18 Spike 63 70 KNLNSSRV 3.471 1.002
B19 Spike 173 176 SRTL 1.504 1.011

Note: Epitopes B4 and B10 are located within the RBD region.

2.2. Prediction of T-Cell Epitopes

T-cell immune response is considered to be a longer-lasting response compared to
B-cell immune response, wherein the antigen might easily escape the antibody memory
response [24]. Moreover, the CD4+ and CD8+ T-cell responses play a major role in antiviral
immunity. Therefore, it is important to design vaccines that can induce T-cell immune
response [25]. A total of 499 T-cell epitopes were predicted on the spike protein (378 epi-
topes), membrane protein (90 epitopes) and envelope protein (31 epitopes) of SARS-CoV-2,
respectively; 48 of the 378 epitopes for the spike protein were located in the RBD region
(Figure 1, Tables 2 and S2). There was no preference in certain genes or regions for T-cell epi-
tope generation; no biased distribution of T-cell epitopes among HLA types was observed,
either. Among all T-cell epitopes, epitope 869-MIAQYTSAL-877 on the spike protein was
predicted to be able to bind to 17 HLA alleles. Most of the HLA alleles included in this
study were covered by these candidate peptides, suggesting wide population coverage.

Table 2. Distribution of T-cell epitopes among three structural proteins.

Protein Count of T-Cell Epitopes No. of Epitopes Per Residue Epitope Overage HLA Type Count

Spike 378 0.297 93.01% 33
Membrane 90 0.405 96.00% 31
Envelope 31 0.413 94.14% 32

In terms of the distribution of the predicted epitopes against different HLA haplotypes,
no significant differences were observed. There were 287, 208 and 195 epitopes predicted
to be able to bind to HLA-A, HLA-B and HLA-C haplotypes, respectively. For the five
most popular HLA types (HLA-A*11:01, HLA-A*24:02, HLA-C*07:02, HLA-A*02:01 and
HLA-B*46:01), the counts for epitopes with a binding affinity were 51, 49, 115, 48 and 58.

2.3. Multi-Epitope Vaccine Design

Based on the 19 B-cell epitopes and their 121 adjacent T-cell epitopes, 17 candidate
vaccine peptides, containing both B-cell and T-cell epitopes, were generated by our in-house
software, iNeo-Design. Most of the 17 candidate vaccine peptides contained one B-cell
epitope, except for AVEQDKNTQEVFAQVKQIYKTPPIKDFGG, which included two B-
cell epitopes and eight T-cell epitopes and AKNLNESLIDLQELGKYEQYIKWPWYIWKK,
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which included two B-cell epitopes and 6 T-cell epitopes. By comparison, the vaccine
peptide FKNLREFVFKNIDGYFKIYSKHTPINLV had the largest count of T-cell epitopes,
whereas SYGFQPTNGVGYQPYRVVVLSFELLHAPAT showed the highest HLA score,
indicating their wide population coverage and promising efficacy.

In addition to the vaccine candidates containing both B-cell and T-cell epitopes, we
also analyzed all 499 core T-cell epitopes to generate another 102 candidate peptides that
contained T-cell epitopes only. Based on both the epitope counts and HLA scores, we
eventually selected 13 peptides.

Taken together, a total of 30 peptides were designed as vaccine candidates (Table 3).
Twenty-six (86.67%) of them were derived from the spike protein, two (6.67%) from the
membrane protein and two (6.67%) from the envelope protein of SARS-CoV-2. Five
(16.67%) peptides were located in the RBD region, indicating their likelihood of inducing
the production of neutralizing antibodies. The 30 vaccine peptides targeting all structural
proteins may induce immune responses against SARS-CoV-2, in theory. The multi-peptide
strategy we applied here better fit the genetic variability of the human immune system and
reduced the risk of immune escape due to viral genomic mutation [26].

Table 3. Candidate vaccine peptides.

Peptide Protein Start End Vaccine Peptide Count of T-Cell
Epitopes

Count of B-Cell
Epitopes

HLA
Score

P1 Spike 19 46 TTRTQLPPAYTNSFTRGVYYPDKVFRSS 10 1 1.086
P2 Spike 75 99 GTKRFDNPVLPFNDGVYFASTEKSNK 6 1 1.143
P3 Spike 118 143 LIVNNATNVVIKVCEFQFCNDPFLGVKK 7 0 1.179
P4 Spike 142 170 GVYYHKNNKSWMESEFRVYSSANNCTFEY 10 0 1.664
P5 Spike 186 209 FKNLREFVFKNIDGYFKIYSKHTP 8 1 1.264
P6 Spike 258 279 WTAGAAAYYVGYLQPRTFLLKYKKKKK 10 0 1.115
P7 Spike 310 337 KGIYQTSNFRVQPTESIVRFPNITNLCP 10 0 1.012

P8 * Spike 357 386 RISNCVADYSVLYNSASFSTFKCYGVSPTK 8 0 1.318
P9 * Spike 405 433 DEVRQIAPGQTGKIADYNYKLPDDFTGKKK 7 1 0.928

P10 * Spike 448 472 NYNYLYRLFRKSNLKPFERDISTEI 7 0 1.625
P11 * Spike 478 505 TPCNGVEGFNCYFPLQSYGFQPTNGVGYKK 7 0 1.413
P12 Spike 494 523 SYGFQPTNGVGYQPYRVVVLSFELLHAPAT 10 1 1.581
P13 Spike 625 652 HADQLTPTWRVYSTGSNVFQTRAGCLIG 8 0 1.214
P14 Spike 671 699 CASYQTQTNSPRRARSVASQSIIAYTMSL 8 1 1.234
P15 Spike 771 799 AVEQDKNTQEVFAQVKQIYKTPPIKDFGGK 8 2 0.952
P16 Spike 805 833 ILPDPSKPSKRSFIEDLLFNKVTLADAGFK 7 1 1.068
P17 Spike 896 923 IPFAMQMAYRFNGIGVTQNVLYENQKLI 7 0 1.625
P18 Spike 965 991 QLSSNFGAISSVLNDILSRLDKVEAEVKKK 9 0 1.012
P19 Spike 1052 1073 FPQSAPHGVVFLHVTYVPAQEK 8 1 1.532
P20 Spike 1068 1096 VPAQEKNFTTAPAICHDGKAHFPREGVFV 4 1 0.402
P21 Spike 1095 1123 FVSNGTHWFVTQRNFYEPQIITTDNTFVSK 8 1 1.236
P22 Spike 1135 1155 NTVYDPLQPELDSFKEELDKYKKKKK 2 1 0.254
P23 Spike 1153 1181 DKYFKNHTSPDVDLGDISGINASVVNIQKK 5 1 0.322
P24 Spike 1190 1217 AKNLNESLIDLQELGKYEQYIKWPWYIWKK 6 2 0.659
P25 Spike 1216 1245 IWLGFIAGLIAIVMVTIMLCKKKKKKKKKK 5 0 1.394
P26 Spike 1236 1265 KKKKCCSCLKGCCSCGSCCKFDEDDSEPVL 4 1 0.520
P27 Envelope 4 33 FVSEETGTLIVNSVLLFLAFVVFLKKKKKK 11 0 1.133
P28 Envelope 45 70 NIVNVSLVKPSFYVYSRVKNLNSSRV 9 1 1.455
P29 Membrane 122 150 VPLHGTILTRPLLESELVIGAVILRGHLRK 9 0 1.508
P30 Membrane 173 201 SRTLSYYKLGASQRVAGDSGFAAYSRYRI 6 1 0.902

Note: Peptides labeled by asterisks (*) were located within the RBD region.

2.4. Interaction of Predicted Peptides with HLA Alleles

To further inspect the binding stability of T-cell epitopes with HLA alleles, the T-cell
epitopes involved in the above-designed vaccine peptides were selected to conduct an
interaction analysis. Figure 3 illustrates the docking results against the most popular
HLA types for the two epitopes from vaccine peptides 25 and 27 (Tables 3 and 4), which
showed relatively higher HLA scores. The ITScorePeP scores were between −148~−136,
indicating that the predicted crystal structures were stable. All epitopes were docked inside
the catalytic pocket of the receptor protein. In particular, epitope 1220-FIAGLIAIV-1228
from the spike protein possessed 2–5 stable hydrogen bonds with the HLA alleles, and
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epitope 4-FVSEETGTL-12 from the envelope protein possessed 4~5 stable hydrogen bonds
(Table 4). Taken together, the epitopes included in our design were able to interact with the
given HLA alleles, according to in silico prediction.
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Table 4. Docking results for T-cell epitopes P25 and P27 with three HLA types.

Panel Protein Start Epitope HLA Type HLA Score ITScorePeP Contact Residues

a Spike 1220 FIAGLIAIV HLA-A*02:01 0.123 −144.2 PHE-1, GLY-4, LEU-5, ILE-6, ALA-7
b Spike 1220 FIAGLIAIV HLA-B*46:01 0.102 −138.2 ILE-6, VAL-9
c Spike 1220 FIAGLIAIV HLA-C*03:04 0.100 −146.6 PHE-1, ALA-3, ILE-8, VAL-9
d Envelope 4 FVSEETGTL HLA-A*02:06 0.052 −147.7 PHE-1, VAL-2, SER-3, GLU-4, THR-6
e Envelope 4 FVSEETGTL HLA-B*46:01 0.102 −140.2 PHE-1, SER-3, GLU-4, THR-6, THR-8
f Envelope 4 FVSEETGTL HLA-C*07:02 0.152 −136.7 PHE-1, GLU-4, THR-8, LEU-9

Note: HLA score was calculated based on the frequencies of HLA alleles binding in the population. ITScorePeP is a metric from the
MDockPep method, which was derived based on the crystal structures of protein–peptide complexes.

2.5. Humoral Immune Responses to SARS-CoV-2 S Protein

Based on the above immunoinformatic analysis, 4 designed peptides, namely P9, P12,
P14 and P15, were chosen as the vaccine candidates for the downstream validation experi-
ments because of their relatively higher counts of B-cell and T-cell epitopes and the higher
frequencies of their epitopes’ corresponding HLA alleles (Table 3). We immunized mice
by subcutaneous injection of a mixture of these synthesized peptides plus QuickAntibody
(an adjuvant for stimulating B-cells). Mice injected with QuickAntibody only or PBS were
considered as controls. The immunization was performed once a week and repeated four
times in total.

To evaluate whether these peptides induced B-cells to produce S protein-specific
antibodies, an ELISA assay was conducted to detect IgG in the mice sera. Fourteen days
after the 1st immunization, the amount of IgG showed little difference between the peptide-
treated mice and the controls (Figure 4a), suggesting that two weeks were not long enough
to elicit humoral immune response. On the 21st day after the 1st immunization, however,
the expression of total IgG had risen to the plateau in the peptide-treated mice and was
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remarkably higher than that in the control mice (p < 0.05; Figure 4a). Germinal centers
(GCs) are the main sites for producing long-lived plasma cells and memory B-cells of high
affinity. On the 28th day after the 1st immunization, inguinal lymph nodes (ILNs) were
collected and then processed into single-cell suspensions for staining with the antibodies
against GL7 and FAS, which were highly expressed in germinal-center B-cells and therefore
considered markers. Flow cytometry showed that there were many more B-cells activated
in the peptide-treated mice than in the mice injected with adjuvant only (Figure 4b);
the numbers of rapidly proliferated B-cells (CD19+/FAS+/GL7+) from GC in the ILNs
of the peptide-treated mice were significantly higher than those of the control groups,
demonstrating increased GC induction by peptide vaccines (Figure 4c,d). In the future, a
viral neutralization study is further required for demonstrating that the designed peptide
vaccines can efficiently activate specific humoral immune responses to the S protein of
SARS-CoV-2.
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of GC cells (FAS+GL7+ cells) in CD19+ cells. (d) Flow cytometry showing the larger percentage of FAS+/GL7+ cells in
the peptide-treated mice. PBS, Q, P+Q represent mice injected with PBS, mice with QuickAntibody and mice with peptide
vaccines plus QuickAntibody, respectively. * p < 0.05; ** p < 0.01; *** p < 0.001; ns: not significant.
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2.6. Cellular Immune Responses to SARS-CoV-2 S Proteins

In parallel, we also immunized mice with peptides plus granulocyte-macrophage
colony stimulating factor (GM-CSF), an adjuvant that induced the development of mono-
cytes, neutrophils and dendritic cells. Mice in control groups were injected with GM-CSF
only or PBS. ILNs were collected on both the 14th and the 28th day after the 1st immu-
nization. It was found that the ratios of IFN-γ-secreting cells to both CD4+ and CD8+
T-cells in the peptide-treated mice were significantly higher than those of the control
groups (Figure 5), suggesting significantly stronger T-cell activation. Notably, the ratio
of IFN-γ-secreting cells seemed to reach its plateau on the 14th day because no further
significant increase of this ratio was observed on the 28th day. It was speculated that in the
absence of the virus, the repeated T-cell stimulation led to the depletion or transferring of
T-cells in the ILNs; however, the ratio of IFN-γ-secreting cells in the ILNs stayed relatively
stable afterward.
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The peptide-specific lymphocytes in mice spleens were also quantified on the 28th
day using IFN-γ enzyme-linked immunospot (ELISPOT) assays (Figure 6). Briefly, the
splenocytes collected from PBS, GM-CSF or peptide vaccines, in combination with the
GM-CSF group, were re-stimulated with a mixture of peptides, DMSO-containing culture
medium (negative control) or phorbol myristate acetate (PMA) that gave unspecific positive
responses, respectively. For lymphocytes collected from vaccines in combination with the
GM-CSF group, both the ratio of IFN-γ-secreting lymphocytes in splenocytes and the
total number of IFN-γ-secreting lymphocytes in the spleen were significantly higher in
peptide-vaccinated mice compared to mice in control groups. This finding was overall
consistent with the flow cytometry results of ILN cells, suggesting that the lymphocytes
were activated and might recirculate to gather in the spleen after the 4-week vaccination.
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3. Discussion

Considered one of the essential ways to halt the pandemic, the development of
COVID-19 vaccines has been faced with many challenges. Currently, multiple SARS-CoV-2
variants, including the newly discovered one with double mutations in India, have been
found [27]. These variants might confer immune escape through virus mutation, thereby
increasing infectivity. A computation-based, immunoinformatic method that can identify
viral antigens based on pathogen genome data is suitable for rapid vaccine development.
In addition, vaccines developed using a multi-epitope strategy can reduce the risk of
pathogens’ immune escape, as these vaccines target multiple antigens.

To date, a variety of in silico strategies based on amino acid properties such as
hydrophobicity, solvent accessibility, structure, flexibility, antigenicity, etc. have been
employed to obtain candidate viral epitopes from SARS-CoV-2 [28–37]. Among these
predictive tools, NetCTL1.2 (http://www.cbs.dtu.dk/services/NetCTL) (accessed on
4 June 2021), a tool that integrates multi-factor algorithms for the prediction of MHC
binding, proteasomal cleavage patterns and TAP transport, has been used in many stud-
ies [29,30,32,35,36]. However, a tool with more up-to-date machine learning algorithms for
the prediction of SARS-CoV-2 T-cell epitopes could be of more interest, as NetCTL1.2 might
be a bit outdated for lacking state-of-the-art technologies in machine learning algorithms.
Schulien and Quadeer summarized that 33 T-cell epitopes associated with HLA-A*02:01,
the most prevalent HLA-I allele, had demonstrated immunogenicity in vitro [38,39]. We
discovered that the employment of NetMHCpan-4.0 (http://www.cbs.dtu.dk/services/
NetMHCpan-4.0) (accessed on 4 June 2021) recalled 30 (90.9%) out of the 33 epitopes,
whereas NetCTL1.2 only managed to recall 24 (72.7%) (Supplementary Table S3), demon-
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strating that prediction accuracy could be improved by using a tool with more up-to-date
and better-accepted algorithms.

In recently published studies that directed attention to the prediction of SARS-CoV-2
HLA-I epitopes using different prediction tools, around half only utilized a single tool
to predict T-cell epitopes. Herein, NetMHCpan-4.0 was combined with an in-house pre-
diction platform iNeo-Pred which outperformed the former in predicting specific HLA
haplotypes [40]. Previously, iNeo-Pred successfully predicted neoantigens for cancer pa-
tients; and 80% of the predicted peptides managed to elicit immune responses in an in vitro
ELISpot assay [41]. Higher prediction accuracy was expected using a combinational pre-
diction strategy. As humoral response was also important for combating SARS-CoV-2,
B-cell epitopes were incorporated in our peptides. The B-cell epitopes were predicted
using BepiPred2.0 (http://www.cbs.dtu.dk/services/BepiPred) (accessed on 4 June 2021),
a popular tool with a balanced performance for predicting linear B-cell epitopes. Tak-
ing these together, our prediction strategy was novel, and the results of high credibility
were expected.

Apart from the advantages in epitope prediction in our study, the design and selection
of peptide antigens were also advantageous. Instead of grafting individual epitopes
together by linkers to obtain peptide antigens [33], overlapping epitopes, consisting of both
B-cell epitopes and T-cell epitopes, were incorporated in our study to construct peptides
at an acceptable length for synthesis that contained sufficient epitopes. Downstream
selection of immunogenic peptides based on the number of epitopes they contained as
well as HLA scores ensured the immunogenicity and population coverage of the peptide
vaccine. Eventually, pooled peptide antigens successfully elicited both humoral and cellular
immune responses against the SARS-CoV-2 spike protein.

Until now, candidate vaccines against SARS-CoV-2 that are under development for
COVID-19 include various types based on inactivated viruses, recombinant proteins, viral
vectors, RNA, DNA or peptides. The involvement of optimization for cell and virus cul-
turing conditions increased the complexity of manufacturing inactivated virus- or viral
vector-based vaccines, slowing down the process for mass production [42]. Moreover, the
development of inactivated virus vaccines relies heavily on extremely high manufactur-
ing standards such as the good manufacturing practice (GMP) system to avoid medical
accidents due to the failure of complete inactivation of the virus’ toxicity. Viral subunit
components, especially proteins, are of highly interest for vaccine development due to
their preferable properties in avoiding eliciting redundant immune responses compared to
whole-pathogen approaches. Most of the recombinant protein vaccines under development
now focus on the spike protein of SARS-CoV-2. These candidates might be safer to use;
however, the addition of effective adjuvants to stimulate strong T-cell immune responses
is often required [28]. Similarly, most viral vector vaccines under development are based
on the expression of the spike protein [43]. Genetic vaccines consisting of DNA or RNA
have witnessed prosperity with the development of sequencing techniques over the last
few decades. However, the possibility of the integration of foreign DNA sequences into
the human genome has brought uncertainty to the development of DNA vaccines, thereby
limiting their application for mass immunization. To date, several mRNA vaccines have
been approved by the FDA for mass immunization under Emergency Use Authoriza-
tion [8,44]. However, substitutes with better safety and higher immunogenicity to provide
better protection against COVID-19, are still wanted.

Peptide vaccines contain the least, as well as highly specific, components to mount
an immune response, making them safe to use. However, peptide vaccines might have
some disadvantages, for example, additional booster immunizations of peptide vaccines
might be required to ensure sufficient immune responses against an antigen. In addition,
developing a molecular adjuvant or delivery system that can boost the immune response is
of vital importance for the development of peptide vaccines, as the choices of approved
adjuvants or delivery systems are still limited. Compared with other platforms, peptide
technologies have a relatively mature manufacturing process, as their mass production
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can be achieved by using solid-phase peptide synthesis. More importantly, with the help
of reverse vaccinology technologies that involve epitope prediction, HLA-typing and
HLA-binding affinity prediction, peptides of high immunogenicity can be designed. Thus,
rapid vaccine development can be achieved during a pandemic like Covid-19 by applying
peptide technologies.

In conclusion, we developed a peptide vaccine consisting of multiple B-cell and T-cell
epitopes of SARS-CoV-2 using an in silico approach. GM-CSF was administered with the
vaccine as an adjuvant due to ethical concerns because adjuvants such as poly-ICLC and
CpG-ODNs have not been approved in China yet. Eventually, this multi-epitope-based
vaccine managed to elicit antigen-specific humoral and cellular responses in a mouse
model, demonstrating its potential in combating SARS-CoV-2.

4. Methods
4.1. Data Retrieval

The genome sequence of SARS-CoV-2 isolated from Wuhan-Hu-1 was retrieved from
the NCBI database under the accession number MN908947. Gene and protein sequences
were acquired according to the annotation. In particular, the RBD region for the spike
protein was referred to as the fragment from 347 to 520 amino acid (aa) [45].

4.2. B-Cell Epitope Prediction

The online tools in the IEDB (Immune Epitope Database and Analysis Resource) were
used for the analysis of the conserved regions of the candidate epitopes [46]. Prediction
of linear B-cell epitopes was performed using Bepipred-2.0 software, with a threshold
of −0.075 [47]. The antigenic sites were determined using the Kolaskar method, with a
threshold of 1 [48]. The surface-accessible epitopes were predicted using the Emini tool,
with a threshold of 1 [49].

4.3. T-Cell Epitope Prediction

The sequences of structural proteins were split into small fragments with a length of
9 aa; their binding affinity with the 34 most prevalent HLA alleles was predicted using both
NetMHCpan-4.0, according to its official manual [50], and our in-house prediction software,
iNeo-Pred. iNeo-Pred was trained on a large immune-peptide dataset, and achieved better
performance in predicting the binding affinity of epitopes to specific HLA alleles. Only
those with the top 2% binding affinity in the trained data were considered epitopes with
affinity. In addition, only the epitopes predicted by both tools were selected. For all selected
epitopes, corresponding HLA scores were calculated based on the frequencies of their
binding HLA alleles among the Chinese population. These epitopes were further screened
based on their HLA scores.

4.4. Vaccine Peptide Design

The vaccine peptides were designed by our in-house tool, iNeo-Design. First, the
selected B-cell epitopes and their adjacent T-cell epitopes were bridged to form candidate
peptides with lengths no more than 30 aa. Meanwhile, to facilitate peptide synthesis,
the peptide sequences were optimized based on their physicochemical properties such as
hydrophobicity and acidity. To minimize potential safety issues, peptides with toxicity
potential, containing human homologous regions (full-length matches and identity >95%)
or that were bioactive were excluded from the final vaccine formulation.

Apart from the peptides containing both B-cell and T-cell epitopes, iNeo-Design also
utilized all predicted T-cell epitopes to generate peptides containing T-cell epitopes only.
For each vaccine candidate, the epitope counts and an HLA score reflecting the population
coverage were calculated. Vaccine candidates with a higher epitope count and HLA score
were considered to be preferable for downstream analysis.
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4.5. Structural Analysis

The online server SWISS-MODEL was used to predict the 3D protein structures of viral
proteins and HLA molecules [51]. The online server PEP_FOLD was used to predict the
structure of T-cell epitopes [52]. To display the interaction between T-cell epitopes and HLA
molecules, T-cell epitope models were docked to HLA molecules using MDockPep [53]. All
predicted structures or models were decorated and displayed by the open source version
of the pymol program (https://github.com/schrodinger/pymol-open-source) (accessed
on 4 June 2021).

4.6. Immuno-Stimulation of B Lymphocytes

The selected 4 peptides were synthesized using solid phase peptide synthesis by
GenScript Biotech Company (Nanjing, China) and were mixed in PBS at equal mole
numbers (0.03 µmol per peptide). Thirty-six female C57BL/6 mice aged 6–8 weeks old
were divided into three groups (12 mice each) randomly and immunized subcutaneously
with 100 µL of the following compounds: Group 1, 100 µg peptide mixture and 50 µL
QuickAntibody-Mouse (Biodragen, Beijing, China); Group 2, 50 µL QuickAntibody-Mouse;
and Group 3, 100 µL PBS as negative control. The immunization was performed four times
in total within an interval of one week.

On the 14th, 21st and 28th days after the 1st immunization, retro-orbital blood was
collected from 5 randomly selected mice in each group. The sera were analyzed for total
IgG by enzyme-linked immunosorbent assay (ELISA).

ELISA was performed to determine the total serum IgG produced by mice after im-
munization. Briefly, recombinant 2019-nCov S-trimer protein (Novoprotein Scientific, Inc.,
Shanghai, China) was diluted to a final concentration of 1 µg/mL in PBS. The microtiter
plates were coated by the antigen solution for 1 h at room temperature. The plates were
then washed, followed by adding 200 µL of TBS-blocking buffer to block the remaining
binding sites at room temperature for 1 h. Mouse serum was diluted in PBS (1:200). 100 µL
diluted serum was added to each well, except for the antigen blank and assay blank wells,
for incubation at room temperature for 2 h. The plates were subsequently washed, followed
by adding 100 µL goat anti-mouse IgG secondary antibody (1 µg/mL in PBS) to each well,
except for the assay blank wells, for incubation at room temperature for 2 h. After washing
the plate, 100 µL TMB per well was added to incubate for another 1 h in the dark at room
temperature. The reaction was stopped by adding 100 µL 1 M HCl per well. All plates were
read on a microplate reader. The absorbance was measured at 450 nm for horseradish per-
oxidase (HRP)-based substrate development. On the 28th day after the 1st immunization,
6 randomly selected mice were euthanized. The ILNs were harvested and processed into
single cell suspensions. The cells were stained with Zombie Aqua (BioLegend, San Diego,
CA USA), APC-conjugated anti-mouse CD19 antibody (BioLegend, San Diego, CA, USA),
PerCP/Cyanine5.5- conjugated anti-mouse CD95 (Fas) antibody (BioLegend, San Diego,
CA, USA) and FITC-conjugated anti-mouse GL7 antibody (BioLegend, San Diego, CA,
USA). The stained cells were resuspended in 500 µL PBS and subsequently processed by
the Aria II flow cytometry instrument (BD, Franklin Lakes, NJ, USA).

Flow cytometry staining was performed following the steps described previously [41].
Briefly, 5 × 106 splenocytes/ILNs were cultured in 24-well cell culture plates containing
RPMI-1640 medium with penicillin/streptomycin (1: 100 V/V to the medium) (Gibco) and
10% FBS (Gibco). Each sample was assessed with mock (100 µL PBS containing0.5% DMSO
as background control) peptide pools (each 1.5–2 µg/mL) or 10 pg/mL phorbol myristate
acetate together with 1 µg/mL ionomycin (Sigma-Aldrich, St. Louis, MO, USA) (100 µL;
positive control). The plates were incubated at 37 ◦C overnight. After incubation, 0.25 µL
GolgiStop and 0.25 µL GolgiPlug in 50 µL of RPMI were added to each well, incubated
at 37 ◦C for 8 h, and then held at 4 ◦C overnight. The next day, the cells were washed
twice with DPBS and stained with Zombie Aqua live/dead dye for 10 min first and APC-
conjugate anti-mouse CD antibody (BioLegend, San Diego, CA, USA), PerCP/Cyanine
5.5-conjugated anti-mouse CD95 (Fas) antibody (BioLegend, San Diego, CA, USA) and
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FITC-conjugated anti-mouse GL7 antibody (BioLegend, San Diego, CA, USA), subsequently,
for 30 min. Cells were then washed twice with 2% FBS/DPBS buffer. The stained cells
were resuspended in 500 µL PBS and subsequently processed by the Aria II flow cytometry
instrument (BD, Franklin Lakes, NJ, USA). A minimum of 10,000 events were acquired
per sample.

4.7. Immuno-Stimulation of T-Cells

The animal study designed for immune-stimulation of T-cells was similar to that of
the B-cells, as described above. However, the compounds for injection were different. For
Group 1, 100 µg peptide mixture and 10 µg granulocyte-macrophage colony stimulating
factor (GM-CSF; Novoprotein, Shanghai, China) were given to each mouse; 10 µg GM-CSF
was given to each mouse in Group 2 and 100 µL PBS was given to all mice in Group 3 as
negative controls.

On the 14th and 28th day after the 1st immunization, 3 randomly selected mice in
each group were euthanized. The relative proportions of T-cells in the splenocytes and ILN
lymphocytes were analyzed by the Aria II flow cytometry instrument (BD, Franklin Lakes,
NJ, USA). The IFN-γ-secreting T lymphocytes were also quantified on 6 randomly selected
mice using an ELISPOT kit (Dakewe, Shenzhen, China). Splenocytes stimulated with
phorbol myristate acetate (PMA) served as positive controls. Individual spots were counted
under a CTL-ImmunoSpot®S6 FluoroSpot (Cellular Technology, Kennesaw, GA, USA).

IFN-γ ELISpot assay was performed per the kit’s instructions. Briefly, 1 × 105 spleno-
cytes/ILN lymphocytes were plated in triplicate with 100 µL pooled peptides (each
5 µg/mL) dissolved in RPMI-1640 medium, mock (RPMI-1640 medium; background
control) or 1 µL 1 ug/mL ionomycin and 50 ng/mL PMA (positive control) for incubation
at 37 ◦C overnight. The plates were then rinsed with PBS containing 0.05% Tween-20,
followed by the addition of 1 µg/mL anti-mouse IFN-γ mAb for incubation at 37 ◦C
for 1 h (Dakewe, Shenzhen, China). After rinsing with PBS containing 0.05% Tween-20,
streptavidin-ALP (Dakewe, Shenzhen, China) was added for incubation for 1 h at 37 ◦C.
The plates were then washed, followed by the addition of AEC (Dakewe, Shenzhen, China)
for incubation at 37 ◦C for 25 min to develop immunospots. The spots were imaged and
enumerated (Cellular Technology Ltd.).

4.8. Statistical Analysis

Comparisons were analyzed by one-way analysis of variance (ANOVA). P values less
than 0.05 were considered significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10060737/s1: Table S1, Information on the 61 identified B-cell epitopes; Table S2,
Information on all identified T-cells; Table S3, 33 identified T-cell epitopes for HLA allele A*02:01
in vitro reported by Schulien and Quadeer and their binary prediction results by NetMHCpan-4.0
and NetCTL-1.2.
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