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Abstract: The solution cast process is used to set up chitosan: dextran-based plasticized solid polymer
electrolyte with high specific capacitance (228.62 F/g) at the 1st cycle. Fourier-transform infrared
spectroscopy (FTIR) pattern revealed the interaction between polymers and electrolyte components.
At ambient temperature, the highest conductive plasticized system (CDLG–3) achieves a maximum
conductivity of 4.16 × 10−4 S cm−1. Using both FTIR and electrical impedance spectroscopy (EIS)
methods, the mobility, number density, and diffusion coefficient of ions are measured, and they are
found to rise as the amount of glycerol increases. Ions are the primary charge carriers, according
to transference number measurement (TNM). According to linear sweep voltammetry (LSV), the
CDLG–3 system’s electrochemical stability window is 2.2 V. In the preparation of electrical double
layer capacitor devices, the CDLG–3 system was used. There are no Faradaic peaks on the cyclic
voltammetry (CV) curve, which is virtually rectangular. Beyond the 20th cycle, the power density,
energy density, and specific capacitance values from the galvanostatic charge–discharge are practically
constant at 480 W/Kg, 8 Wh/Kg, and 60 F g−1, for 180 cycles.

Keywords: solid polymer electrolyte; impedance; transport properties; FTIR study; electrochemical
double-layer capacitor device

1. Introduction

In the creation of solid polymer blend electrolytes (SPBEs) for energy storage devices,
both natural and synthetic polymer materials have been widely used as host polymers [1].
Metal salts can be dissolved in a polymeric matrix and then dissociated into metal cations
and counter anions to make polymer electrolytes. These polymers are ionically conductive,
and as a result, they have received a lot of interest because of their use in a variety of
electrochemical devices [2].
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Biopolymer materials (BPMs) demonstrated key features for use in electrochemical
devices, high-energy-density batteries, sensors, and fuel cells, owing to some outstanding
characteristics such as natural abundance; non-toxicity; renewability; cost effectiveness;
biodegradability; eco–friendliness; harmlessness; and the fact it can be attained easily from
natural resources such as cell walls, plants, and animals. [3–7].

The natural resources of biodegradable polymers such as cellulose, chitosan, and
carrageenan have recently engaged the attention of several research activities since they
are nontoxic and simple to use in electrolyte synthesis [8]. Chitosan (CS), for instance, is a
deacetylated chitin derivative that, together with cellulose, is one of nature’s most plentiful
biopolymers [9]. CS is mostly derived from shrimp waste, and it is widely employed as
a natural polymer in a variety of applications [10]. Chitosan is a common sorbent with a
high affinity for transition metal ions due to its concentration in polar groups (NH2 and
OH) inside chains that act as conjunction sites [11]. The ability of chitosan to be molded
into a variety of shapes is seen as a significant characteristic, with various shapes ranging
from hydrogels to porous scaffolds to films [12].

Dextran is a natural polymer formed by the fermentation process of the bacteria
Leuconostocmesenteroides, which has been widely studied in this field [13,14]. One technique
to make a biodegradable polymers host with high ionic conductivity, excellent thermal
characteristics, strong mechanical strength, and minimal toxicity is to combine two or
more natural polymers [15]. In addition to polymer blending, plasticizers such as glycerol,
polyethylene glycol (PEG), ethylene carbonate (EC), and poly (ethylene carbonate) (PEC)
can improve conductivity. Glycerol has been shown to be compatible with the majority of
natural polymers. Biopolymer and biodegradable polymer-based electrolytes have been
broadly utilized in electrochemical devices in recent decades [16–19]. The ionic conductivity
of polymer electrolyte can be increased when plasticizers are used [20]. Other studies of
polymer electrolyte have shown that employing glycerol as a plasticizer works well for the
system [4,21,22]. This is owing to glycerol’s ability to build more ionic channels inside the
electrolyte, which has a significant impact on an electrochemical device’s performance [23].
For example, carbon nano–onions (CNO) and boron-doped diamond (BDD) have both
been used as supercapacitor electrode materials [24,25].

These electrode materials, however, have a high manufacturing cost, which limits their
applicability, as well as a smaller active surface area. Because of their high specific surface
area, thermal stability, electronic conductivity, and electrochemical stability, activated
carbon-based electrode materials are preferred in EDLCs. Activated carbon is simple to use
and compatible with a wide range of solvents, binders, and electronic conductors [26–28].

The energy storage process for EDLC is a non-Faradaic routine in which there is no
electron exchange and then ions form a double layer on carbon-based electrodes [27,29,30].
It was shown that EDLC has a reasonably higher power density; higher reversibility;
and cheap, safer, and easier fabrication procedures than a Faradaic capacitor or pseudo–
capacitor [31,32]. Andrade and coworkers increased the conductivity (4.7 × 10−4 S/cm) of
a pectin–lithium perchlorate (LiClO4) electrolyte by adding glycerol [33].

Due to its promising features, a 60:40 combination of CS and dextran was chosen
as the polymer host in this study [14,34]. Using numerous characterization techniques,
this work aims to investigate the influence of varied glycerol concehntrations on the CS:
dex: LiClO4 electrolyte system, with the highest conducting system being utilized in an
electrochemical double-layer capacitor (EDLC) device.

2. Experimental
2.1. Materials and Sample Preparation

Dextran (Dex) and chitosan (CS) powders were purchased from Sigma−Aldrich
(Kuala Lumpur, Malaysia) as the raw materials. The CS: Dex blended polymer is made
by dissolving 40 weight percent Dexand 60 weight percent CS separately in 1 weight
percent acetic acid (50 mL) for 1.5 h at room temperature. After that, both solutions were
blended and agitated for 4 h to ensure that the blending solution was homogeneous. Forty
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wt.% LiClO4 was dissolved in the solution in a separate container. Then, in fourteen
steps, glycerol in various concentrations ranging from 14 to 42 weight percent was added
to the CS–Dex–LiClO4 blended electrolyte solution, which was constantly agitated to
achieve plasticized CS-Dex-LiClO4 electrolytes. Polymer blend electrolytes were coded as
CDLG–1, CDLG–2, and CDLG–3 for CS–Dex–LiClO4 containing 14, 28, and 42 wt. percent
glycerol, respectively. Consequently, the electrolyte series was left at room temperature
while the casting process in the labeled Petri dishes was carried out. The produced film was
dried further by transferring it to a desiccator filled with silica gel for 12 days at ambient
temperature with around 20% humidity. As a result of adopting this process, a series of
solvent-free films were obtained.

2.2. Test Methods
2.2.1. Electrical Impedance Spectroscopy (EIS)

The electrical characteristics of materials and their relationship with electronically
conducting electrodes can be determined using complex impedance spectroscopy. Under
spring pressure, solid polymer electrolyte (SPE) films with thickness 0.027 cm were sliced
into compact discs (2 cm diameter and thickness 0.5 cm) and sandwiched between two
stainless steel electrodes.

The impedance of the films was determined using the HIOKI 3531 Z Hi–tester (No.
1036555, Hioki, Nagano, Japan), which was connected to a computer, over a frequency
range of 50 Hz to 5000 kHz. At room temperature, measurements were also taken.

The software calculates the real (Zr) and imaginary (Zi) parts of impedance and
controls the measurements. The bulk resistance (Rb) was calculated from the intersection
of the plot with the real impedance axis, and the Zr and Zi data were shown as a Nyquist
plot. The conductivity can be estimated using the equation below [35,36]:

σdc =

[
1

Rb

]
×
[

t
A

]
(1)

In Equation (1), t is the thickness of the film, Rb is the sample’s bulk resistance, and A is
the active area. The average thickness of the plasticized systems is 0.026 cm. Schematically,
the EIS measurement diagram is shown in Scheme 1.
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2.2.2. Fourier-Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy was used to inspect the interaction of numerous components of
electrolytes, such as polymers, salt, and plasticizer. For this study, a Perkin Elmer Spotlight
400 spectrometer (Malvern Panalytical Ltd., Malvern, UK) with a resolution of 1 cm−1

(450 cm−1–4000 cm−1) was used.
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3. Results and Discussion
3.1. Impedance Study

It is worth noting that the charge transport process in composite materials is grave
from both a theoretical and technical standpoint. Impedance scope is one of the most
effective methods for distinguishing and comprehending charge transport in complicated
materials [37]. Complex impedance plots (CIP) are useful parameters to investigate elec-
trical properties of the polymeric materials since they help one to comprehend structure–
property relationships [38]. The impedance plots for all of the samples are shown in
Figure 1. The electrolyte/electrode interface might be regarded as a capacitance because
blocking electrodes were utilized in the impedance study. When the capacitance is flawless,
the impedance map should exhibit a vertical spike in the low-frequency zone.

Figure 1. EIS plot for (a) CDLG–1, (b) CDLG–2, and (c) CDLG–3 plasticized electrolyte films.

Nonetheless, instead of the vertical spike, a spike inclined at an angle less than 90◦

was discovered, which might have been due to the irregularity of the electrolyte/electrode
interface or double layer capacitances at blocking electrodes [39,40]. The bulk resistance
was calculated by intersecting the spike with the impedance plot’s real axis. This is possible
because when the phase angle is close to zero, the ionic conductance dominates the complex
impedance [41]. Moreover, the spike pattern in the low-frequency band is a diffusion
process characteristic [42]. Figure 1 shows that when the glycerol concentration increased,
the bulk resistance (Rb) decreased. The elimination of the semicircular component of
complex impedance graphs in the high-frequency zone at high temperatures suggests that
the conduction is primarily attributable to ions [43,44].

Using the Rb value and the sample size, Equation (1) was used to calculate the sample
conductivity. The computed DC conductivity for all of the samples is shown in Table 1.
Blend electrolytes have a high DC conductivity, which makes them ideal for EDLC. The
representation of impedance plots via electrical equivalent circuits (EECs) can provide
more information regarding the electrical properties of the blend electrolyte samples. It is
feasible to predict the bulk resistance and circuit elements by modeling impedance plots.
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Table 1. Ionic conductivity and the parameters fitting of the EEC.

Electrolyte p (rad) Rb (Ω) CPE (F) σ (S cm−1)

CDLG-1 0.37 151 3.53 × 10−6 1.02 × 10−4

CDLG-2 0.51 134 9.80 × 10−6 1.15 × 10−4

CDLG-3 0.39 37 1.36 × 10−5 4.16 × 10−4

The EECs model is universally used for fitting, or in the analysis of impedance
spectroscopy, since it is effortless, rapid, and offers a whole observation of the system [45].
The recorded impedance graphs can be implicit in terms of the equivalent circuit for
the charge carriers in the sample, which includes Rb. ZCPE’s impedance may be written
as [46,47]:

ZCPE =

[
cos
[

πn
2
]

Ymωn − j
sin
[

πn
2
]

Ymωn

]
(2)

where Ym denotes the CPE capacitance, n denotes the deviation of the vertical axis of the
plot in complex impedance graphs, andω denotes the angular frequency. Lastly, for the
corresponding circuit (insets of Figure 1), the real (Zr) and imaginary (Zi) values of complex
impedance (Z*) can be represented as:

Zr = R +
cos
[

πn
2
]

Ymωn (3)

Zi =
sin
[

πn
2
]

Ymωn (4)

The EEC fitting parameters are illustrated in Table 1. The semicircle fades in the
Cole–Cole figure, meaning only the polymer’s resistive component is dominant [48].

Since the impedance data consist just of a spike, the D can be determined using the
equation below [48]:

D = D0 exp
{
−0.0297 [ln D0]

2 − 1.4348 ln D0 − 14.504
}

(5)

where:

D0 =
4k2l2

R4
b ×ω3

min
(6)

where l denotes sample thickness and ωmin denotes the angular frequency that corresponds
to Zi’s lowest value. Table 2 shows the electrolyte system’s ion transport parameter values.
The Nernst–Einstein equation can be used to compute the ionic species’ mobility (µ) [49],

µ =
e× D

KB × T
(7)

where T and Kb have normal meanings.

Table 2. Ion transport parameter from impedance theory.

Electrolyte n (cm−3) µ (cm2V−1s−1) D (cm2s−1)

CDLG-1 6.63 × 1020 9.62 × 10−7 2.47 × 10−8

CDLG-2 6.72 × 1020 1.07 × 10−6 2.74 × 10−8

CDLG-3 1.15 × 1021 2.26 × 10−6 5.80 × 10−8

The conductivity (σDC) can alternatively be calculated using the following formula:

σDC = n× e× µ (8)
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As a result, the charge number density (n) can be calculated using the equation
below [50]:

n =
σDC × Kb × T × τ2

(e× K2 × ε0 × εr × A)2 (9)

From Table 2, with the addition of glycerol, the D value increases considerably from
14 wt. percent to 48 wt. percent. It is also worth noting that the comparable tendency is
visible for µ where the value rises. The upgrading in chain flexibility caused by glycerol
can be attributed to the grow in µ and D; whilst the quantity of glycerol added is amplified,
the µ, D, and n values rise, indicating that the conductivity rises. This is owing to the count
of glycerol, which causes further salts to dissociate into free ions, increasing the number
density of ions.

3.2. FTIR Study

As illustrated in Figure 2, the O–H stretching peak is positioned at (i) (3412 cm−1).
The intensity of the O–H band peaks represents the complexation that occurs inside the
electrolyte, which improves ionic dissociation and hence increases ionic conductivity [7,51].
Additionally, as shown in Figure 2, the C–H symmetrical stretching and C–H asymmetrical
stretching are clearly visible at (ii) 2959 cm−1 and (iii) 2918 cm−1, respectively [52,53]. The
intensity of these peaks improved as the concentration of glycerol increased, indicating the
complex growth of glycerol in electrolytes [54].

Figure 2. FTIR spectra at a wave number between 2500 and 3700 cm−1 for (a) CDLG–1, CDLG–2,
and CDLG–3 plasticized electrolyte films.

Furthermore, as shown in Figure 3, the peaks at (iv) 1648 cm−1 and (v) 1564 cm−1

represent the electrolyte’s carboxamide and amine bands, respectively [55,56]. Moreover,
the CH2 scissoring and C–H bindings are responsible for the peaks seen in Figure 3 at
(vi) 1422 cm−1, (vii) 1390 cm−1, and (viii) 1327 cm−1, respectively [57–60]. Finally, the
steep peak at (ix) 1077 cm−1 (Figure 3) could be attributable to C–O stretching, which
has been observed by Mejenom and coworkers [61] and Poy and coworkers [62]. When
the concentration of glycerol increases, the band peak widens, resulting in a tiny peak at
1044 cm−1, which also reflects the interaction inside the polymer matrix.
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Figure 3. FTIR spectra at a wave number between 950 and 1700 for (a) CDLG–1, (b) CDLG–2, and
(c) CDLG–3 plasticized electrolyte films.

Figure 4 illustrates the deconvolution of FTIR spectra at a wave number between 590
and 640 for cm−1. The number density (n), ionic mobility (µ), and diffusion coefficient
(D) based on the percentage of free ions were revealed using the FTIR method to more
maintain the ionic conductivity research.

Figure 4. Deconvolution of FTIR spectra at a wave number between 590 and 640 cm−1 for (a) CDLG–1,
(b) CDLG–2, and (c) CDLG–3 plasticized electrolyte films.

The Gaussian–Lorentzian function was used to extract overlapping peaks and adjust
the curves‘ baselines using the deconvolution approach. The (ClO4) band’s FTIR peak
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at 650 to 600 cm−1 is frequently employed to inspect ion–ion interactions in polymer
electrolytes containing LiClO4 salt [63–66]. The peak of the (ClO4) band divided into
two peaks at 624 cm−1 and 635 cm−1 shows that mainly two unlike types of ClO4 anions
survive in this complex, which is well established [63–66].

Salomon et al. proposed that the existence of Li+1 is connected with the (ClO4) band
centered between 630 and 635 cm−1. ClO4

−1 contact–ion pairs are responsible for the
band centered at about 623 cm−1, whereas free/unpaired ClO4 anions are responsible for
the band centered at about 623 cm−1 [64,66]. The peak characteristic for “free” ClO4 is
substantially greater than that of contact-ion pairs, as seen in Figure 4. This is due to the
glycerol plasticizer’s ability to aid in the dissolution of LiClO4 salt through the CS: Dex
mix matrix. The following formulae can be used to calculate the percentage of free ions
and contact ion pairs [30,67–69]. Table 3 displays the percentages of ion carriers.

Percentage of free ion (%) =
A f

A f + Ac
× 100% (10)

Percentage of contact ion pairs (%) =
Ac

A f + Ac + Aa
× 100% (11)

where Af, and Ac, are the area of the peaks of the free ions and the contact ion pair, respectively.

Table 3. The percentages of ion species using FTIR method.

Electrolyte Ions Pair (%) Free Ions (%)

CDLG-1 45.8 54.2
CDLG-2 38.8 61.2
CDLG-3 29.4 70.6

The charge carrier parameters can be calculated using the percentage of free ions of
each electrolyte and the relationship illustrated below (12)–(14) [30,67–69].

n =
M× NA

VTotal
× ( f ree ion %) (12)

µ =
σ

n e
(13)

D =
µkT

e
(14)

where M is the number of glycerol moles, NA denotes Avogadro’s number, and VTotal
denotes the whole volume of the polymer electrolytes. The Boltzmann constant and
elementary charges are denoted by k and e, respectively, while T denotes the temperature in
Kelvin. Table 4 illustrates the values of transport parameters. It can be shown that raising
the glycerol concentration in the polymer electrolyte increases the number density of ions
and ionic mobility significantly, as shown in Table 4. It also induces an increase in the
diffusion coefficient of ions. Table 2 shows that the ion transport parameters calculated
using impedance theory coincide with those calculated using FTIR theory in Table 4. It can
be concluded that, as the number density, diffusion coefficient, and mobility increased, the
glycerol content increased.

Table 4. Ion transport parameters using FTIR theory.

Electrolyte. n (cm−3) µ (cm2V−1s−1) D (cm2s−1)

CDLG-1 2.11 × 1022 3.02 × 10−8 7.89 × 10−10

CDLG-2 2.25 × 1022 3.19 × 10−8 8.33 × 10−10

CDLG-3 4.44 × 1022 5.84 × 10−8 1.52× 10−9
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3.3. Electrochemical Properties
3.3.1. TNM Study

Electrochemical devices that employ ions as current carriers rely on solid polymer
electrolytes [70]. The progress of safe electrolytes, mainly solid polymer electrolytes (SPEs),
is an imperative component of electrochemical device research. Despite the fact that this
compound system has been around since the late 1970s, it is still a hot topic [71,72].

It is essential to understand the transference number analysis (TNM) and linear
sweep voltammetry (LSV) to employ the polymer electrolyte for application. The main
charge carrier species in a polymer electrolyte must be determined, which can be done
via TNM. The ionic transference number of the sample was determined using the DC
polarization technique (tion). The method includes applying DC voltage to the sample
below its decomposition potential, then examining the ensuing currents in proportion to
time as shown in Figure 5 [73].

Figure 5. Polarization curve of current for the highest conducting sample.

To make the measurement easier, the polymer electrolyte with the highest conductivity
was positioned between a couple of stainless-steel blocking electrodes (SS), and the ion (tion)
and electron (tel) transference numbers were calculated using the equation below [74,75]:

tion =
Ii − Iss

Ii
(15)

tion = 1− tel (16)

where the steady-state current is Iss and the initial current is Ii. At 25 µA, the Ii can be
seen. The participation of both ions and electrons at the beginning stage accounts for
the considerable value of initial current. Because the electrodes are stainless steel, which
is known to impede ions, the current drops dramatically before becoming constant at
2 µA [76].

The behavior of an ionic conductor is represented by this phenomenon [77]. The
results show that ions are the major charge carriers within the polymer electrolyte, with
tion = 0.948 and tel = 0.052. The closeness of tion to 1, the ideal value, is a particularly
interesting result, indicating that the transport mechanism of the produced electrolyte film
is largely ionic [73].

This is due to the potential of Li+ cations dissociating from the coordinating sites of
CS: Dex polymer chains, and charge transport in the polymer blend is thus mostly due to
cationic motion [78]. If the tion value is close to unity, the ions contribute to the system’s
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carrying charge, according to Shukur et al. [79]. Mohan et al. [80] and Tang et al. [81]
reported similar observations.

3.3.2. LSV Study

The LSV technique is used to determine an electrolyte’s breakdown voltage at am-
bient temperature [82]. The potential casement is a vital aspect and serious parameter in
determining the requirement of some electrochemical devices, such as capacitors and bat-
teries [50]. Figure 6 displays the LSV plot for the CDLG–3 electrolyte up to 4.0 V. Figure 6
shows a plot of current density against voltage that shows an increase in voltage lacking
any current flows until 2.2 V, indicating that the electrochemical reaction in the electrolyte
did not happen at this point [52].

Figure 6. LSV plot for the highest conducting system.

This event implies that the electrolyte’s breakdown voltage is 2.2 V, which is similar to
what has been described in the literature [19]. As a result, this demonstrates the electrolyte’s
potential to give a promising performance in an EDLC that is generally run at 1.0 V [29,83].

3.3.3. CV Analysis

For the energy storage process, typical EDLCs use a non-Faradaic mechanism that
involves non-redox processes. This condition was investigated using cyclic voltammetry
(CV) analysis at various sweep rates (a) to examine how it affects the specific capacitance
(Ccyc) calculated using the equation below [4,84]:

Ccyc =
∫ Vf

Vi

I(V)dV

2ma
(

Vf −Vi

) (17)

The area of the CV plot in Figure 7 utilizes the integration function via Origin 9.0
software. The values of Vf and Vi are 0.9 V and 0 V, respectively. Table 5 shows the Ccyc
values measured at 10, 20, 50, and 100 mV/s. The specific capacitance is clearly influenced
by sweep rates, as evidenced by these data.
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Figure 7. Cyclic voltammetry (CV) at various scan rates of 10, 20, 50, and 100 mV s−1.

Table 5. Specific capacitance (F g−1) value at various scan rates.

Scan Rate Capacitance (F/g)

100 26.06
50 42.34
20 64.01
10 75.90

The flow of cations and anions in the electrolyte is unstable at high sweep rates, such
as 100 and 50 mV/s, causing incorrect charge double-layer formation at the surface of AC
electrodes. This condition also results in current–dependent potential, which explains the
form of the leaf at high sweep rates [85].

As shown in Figure 7, the CV curves show how the shape of the curve changes from
rectangular to leaf-like as the scan rate increases. The presence of porosity in the carbon
electrodes, as well as the internal resistance present throughout the measurement, creates
these alterations [86].

The correct polarization procedure can be carried out at a slower sweep rate. This
situation causes current to be independent of potential, resulting in a rectangular CV
plot [87]. The curves did not show any noticeable peaks, indicating that the system did not
submit to any reduction or oxidation reactions.

During the charging process, the anions in the system pour towards the positive elec-
trode; the positive electrode resists the cations, causing the cations to draw to the negative
electrode. During this process, the electric field snatches the electrode and electrolyte to
hold the electrons and ions, respectively [88].

The development of double-layer charge to store potential energy on the carbon
electrode surfaces is explained by this entire process [89].

3.3.4. Galvanostatic Charge–Discharge Properties

The cyclic discharge preserve can be used to assess the electrochemical capacitance of a
substance. Figure 8 illustrates the galvanostatic charge–discharge curves of the built EDLC
cells at ambient temperature for CS: Dex doped with 40 wt. percent LiClO4 and glycerolized
with 42 wt. percent. The EDLC cells also demonstrate linear discharge manners with a tiny
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ohmic loss, meaning a non-Faradic capacitive charge-storage mechanism [90]. The Cspe of
EDLC cells are able to be determined using the subsequent equation [48,49].

Cspe =
i

xm
(18)

Figure 8. Galvanostatic charge–discharge curve for the constructed EDLC.

The applied current is shown here as i. The slope of the discharge curve is (x). The
Cspe is plotted against the cycle number in Figure 9. The capacitance charge achieved in this
system is moderately superior to that found in earlier studies. The first cycle’s calculated
Cspe value is 235 F/g, and the second cycle’s Cspe value is roughly 60 F/g.

Figure 9. Specific capacitance for the constructed EDLC throughout 180 cycles.

When judged against the capacitance values of 2.6–3.0 and 1.7–2.1 F/g that were
obtained for EDLC cells using Mg- and Li-based PEO polymer electrolytes integrated
with ionic liquids [85], the capacitance generated in this work is of considerable attention.
Beyond the 20th cycle, the capacitance is nearly constant across 180 cycles.
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Other studies have found a significant drop in Cspe over a large number of cycles. The
researchers theorized that the loss of these electrochemical properties could be due to the
creation of ion aggregates. When it comes to mobile ions, they tend to be aggregated or
paired together after fast charge and discharge operations.

Considerably, the ion pairs have the potential to inhibit the polymer electrolyte’s
ionic migration, affecting the rate of ions adsorption via the carbon pores. As a result,
ion adsorption generation at the electrode–electrolyte interface is reduced. As a result,
the energy and power density of EDLC cells, in addition to their specific capacitance, are
inversely proportional to the cycle number [91]. Further researchers reported, for instance,
4 F/g, 4.3 F/g, 8.4 F/g, and 6.5–15 F/g for PEO, PVDF–HFD, polyurethane, and PVA–
cellulose-based electrolytes inserted with lithium salts, respectively [83]. As a result, Cspe
is higher than previous results for polymer-based electrolytes incorporating Li+ ion salts
published in the literature.

As shown in Figure 10, a little voltage drop, Vd, is also seen in the charge–discharge
graph. The internal resistance within the system during the charge–discharge operations,
also known as equivalent series resistance, ESR, is responsible for the creation of Vd.
The applied current, i of 1 mA, will be used to determine this parameter, which can be
represented as [48,50]:

ESR =
Vdrop

i
(19)

Figure 10. The ESR values versus cycle number of the EDLC assembly.

Figure 10 shows the obtained ESR values for 180 cycles. The system is seen to retain
an ESR in the choice of 55 to 272 Ω throughout the entire operation. This outcome indicates
that the EDLC had a little consistent internal resistance for 180 cycles, simplifying the
electrostatic process between the ions and charged electrode [92].

The constructed EDLC’s energy density (Ed) can be estimated using the equation
below [48,74]:

Ed =
C2 ×V

2
(20)

V Equals 1 V. Ed is 18.4 Wh/kg on the first cycle, as shown in Figure 11. From the 60th
to the 180th cycle, the Ed drops to 7.5 Wh/kg before stabilizing at 6.2 Wh/kg on average.
As a result, it may be inferred that after the 60th cycle, the energy barrier for ion conduction
is nearly the same [93]. This work’s Ed is similar to other EDLCs that have been reported
utilizing numerous materials.
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Figure 11. Energy density (Ed) versus cycle number for 180 cycles.

According to Hina et al. [94], the value of Ed for their EDLC varies between 9.82 and
21.6 Wh/kg and relies on the content of lithium triflate (LiTf). Mazuki and coworkers used
EDLC to obtain 1.19 Wh/kg for the CMC-PVA-NH4Br combination [95]. The existence of
plasticizer in this work could explain the high Ed. Biopolymer-based electrolytes are crucial
for energy storage applications, according to the findings of this study.

Furthermore, if ESR values are available, the power density (Pd) values are determined,
as shown in Figure 12. The power density (Pd) of the constructed EDLC is depicted in
Figure 12 and is computed using the equation below [4,48]:

Pd =
V2

4×m× Resr
(21)

Figure 12. Power density (Pd) versus cycle number for 180 cycles.
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The Pd value is 1450 W/kg on the first cycle and lowers to 480 W/kg after the EDLC has
completed 180 cycles. The Pd pattern is in fine arrangement with the ESR plot’s trend. This
is owed to electrolyte deterioration, which occurs when resistance rises, generating ionic
recombination as a result of the swift charging and discharging mechanism, resulting in
lower Pd at a high cycle number [96]. The mass loading of active material in the production
of EDLC has a clear impact on both Ed and Pd values. The improved electrochemical
performance is said to be due to the low mass loading and comparatively low current [97].

4. Conclusions

The solution casting approach was used to prepare LiClO4: glycerol–based solid
polymer electrolytes. The interaction of the electrolyte’s elements was determined using
FTIR. The addition of 42 wt % glycerol improved the conductivity to 4.16 × 10−4. Both
impedance and FTIR methods revealed that as glycerol levels increased, the number
density (n), mobility (µ), and diffusion coefficient (D) of ions enhanced. TNM revealed that
cations and anions made up the majority of charge carriers, with tion and te values of 0.948
and 0.052, respectively, for the CDLG–3.LSV revealed that the CDLG–3′s electrochemical
stability potential was 2.2 V, indicating that the SPE could be used in an EDLC application.
The CV curve has a rectangular form with no redox peaks, confirming the capacitive
behavior of the ELDC. Beyond the 20th cycle, the power density, energy density, and
specific capacitance values from the galvanostatic charge–discharge are practically constant
at 480 W/Kg, 8 Wh/Kg, and 60 F g−1, respectively, for 180 cycles.
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