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A B S T R A C T   

Several intracellular pathways that contribute to the adaptation or maladaptation to environmental challenges 
mediate the vulnerability and resilience to chronic stress. The activity of the hypothalamic-pituitary-adrenal 
(HPA) axis is fundamental for the proper maintenance of brain processes, and it is related to the functionality 
of the isoform alfa and beta of the glucocorticoid receptor (Gr), the primary regulator of HPA axis. Among the 
downstream effectors of the axis, the scaffolding protein RACK1 covers an important role in regulating synaptic 
activity and mediates the transcription of the neurotrophin Bdnf. Hence, by employing the chronic mild stress 
(CMS) paradigm, we studied the role of the Grβ-RACK1-Bdnf signaling in the different susceptibility to chronic 
stress exposure. We found that resilience to two weeks of CMS is paralleled by the activation of this pathway in 
the ventral hippocampus, the hippocampal subregion involved in the modulation of stress response. Moreover, 
the results we obtained in vitro by exposing SH-SY5Y cells to cortisol support the data we found in vivo. The 
results obtained add novel critical information about the link among Gr, RACK1 and Bdnf and the resilience to 
chronic stress, suggesting novel targets for the treatment of stress-related disorders, including depression.   

1. Introduction 

From a biological point of view, stress has been defined as the result 
of an organism’s failed attempt to respond appropriately to a physical 
challenge (Selye, 1998) whereas the traditional psychology definition 
indicates that stress occurs when a person perceives the demands of 
environmental stimuli to be greater than his/her ability to meet, miti-
gate or alter those demands (Lazarus et al., 1985). Accordingly, pro-
longed exposure to stressful events can alter the mechanisms that 
regulate normal homeostasis thus altering brain functions and leading to 
the development of stress-related disorders, including depression 
(McEwen et al., 2015). 

A hallmark of stress response is the activation of the hypothalamic- 
pituitary-adrenal (HPA) axis, which produces adaptation to external 
stimuli through the so called “allostasis”. The activity of such axis in the 

brain is regulated by mineralocorticoid (Mr) and glucocorticoid re-
ceptors (Gr) with Gr having tenfold lower affinities for glucocorticoids 
(GCs) compared to Mrs; as consequence Grs are engaged when GCs 
levels increase, for example after stress. The human GR gene (NR3C1) is 
formed by nine exons (Hollenberg et al., 1985) and it has been shown 
that alternative splicing of the exon 9 leads to the formation of the Grα 
and Grβ isoforms (Oakley et al., 1996). The two isoforms differ in their 
carboxyl terminus, with Grβ lacking the ligand-binding domain. The 
general assumption was that this isoform is unable to modulate the 
transcription of the glucocorticoid responsive genes (Oakley et al., 
1996) and that it mainly acts as a dominant-negative regulator of Grα, by 
affecting the transcriptional activity mediated by the Grα isoform 
(Bamberger et al., 1995; Kino et al., 2009b; Oakley et al., 1996). How-
ever, subsequent studies have demonstrated that the action of Grβ is not 
limited to the negative regulation of Grα, but it has also a proper 
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intrinsic activity as direct controller of a plethora of genes involved in 
several intracellular pathways related, for example, to metabolism, 
inflammation, apoptosis and cell migration (Kino et al, 2009a, 2009b; 
Ramos-Ramírez and Tliba, 2021). 

Among the genes containing in their promoter region the glucocor-
ticoid responsive element (GRE), we focus on the receptor for activated 
C kinase 1 (RACK1) that responds to circulating GCs. Indeed, its tran-
scription is inhibited by Grα in presence of elevated levels of cortisol, 
whereas the Grβ isoform, being the dominant-negative regulator of Grα, 
favors the induction of Rack1 gene expression (Buoso et al., 2017a; 
Racchi et al., 2017). 

RACK1 has been first described as a scaffolding protein that shuttles 
protein kinase C (PKC) to its substrates; this action (Ron et al., 1999) is 
critical for nervous system development (Kershner and Welshhans, 
2017; Wehner et al., 2011) as well as for proper brain functions 
(McGough, 2004; Sklan et al., 2006). Moreover, it has been linked with 
the expression of Brain derived neurotrophic factor (Bdnf) (Neasta et al., 
2012), one of the major mediators of neuroplasticity (Calabrese et al., 
2009). Accordingly, Rack1 silencing decreases BDNF expression both in 
SH-SY5Y cells and in hippocampal neurons thus highlighting that 
RACK1 is required for BDNF expression (He et al., 2010; Neasta et al., 
2012). 

Given the role of RACK1 as downstream effector of the HPA axis as 
well as a mediator of synaptic plasticity (Del Vecchio et al., 2009; Yaka 
et al., 2002; Yang et al., 2019) here we employed the chronic mild stress 
paradigm (CMS) to investigate whether the impact of stress on neuro-
plasticity occurs through the regulation of the RACK1-BDNF pathway. 

The CMS paradigm is a well-established animal model to study 
depression in rodents (Willner, 2017). In fact, it has been associated with 
the development of depressive-like symptoms, including anhedonia and 
cognitive deficits (Brivio et al., 2021; Calabrese et al, 2017a, 2020) but 
also with alteration of GR activity (Brivio et al., 2021; Calabrese et al., 
2020) and synaptic plasticity (Calabrese et al., 2017a; Luoni et al., 
2015). Of note, the sucrose consumption test has been extensively 
employed in CMS protocols (Papp, 2012; Willner, 2017) to dissect two 
different subgroups of rats developing, or not, the anhedonic-like 
behaviour, thus determining two populations that are vulnerable or 
resilient, respectively, to chronic stress. Accordingly, by testing the an-
imals in this task we had the possibility to investigate the Grβ-RACK1 
pathway in the two subpopulations of stressed rats. The in vivo analysis 
was paralleled by in vitro studies employing SH-SY5Y cell exposed to 
cortisol to further dissect the mechanisms altered following a stressful 
condition. The in vivo analyses were conducted in the ventral subregion 
of hippocampus, known to be responsible for emotional behavior 
(Fanselow and Dong, 2010), stress vulnerability and resilience (Anacker 
et al., 2016) and involved in the regulation of the HPA axis (Anacker 
et al., 2011). Our results support the contribution of Grβ-RACK1-BDNF 
pathway in promoting resilience to chronic stress. 

2. Material and methods 

2.1. Chemicals, culture media and supplements 

Cortisol (PubChem CID:5754) and mifepristone (PubChem 
CID:55245) were obtained from Sigma Aldrich (St. Louis, MO, USA). 
They were dissolved in DMSO at concentration of 1 mM and 10 mM and 
frozen (− 20 ◦C) in stock aliquots. Stock aliquots were diluted at a final 
concentration in culture media at the time of use (final concentration of 
DMSO in culture medium <0.1 %). Cell culture media and all supple-
ments were obtained from Sigma Aldrich. Anti-RACK1 (sc17754) and 
anti-SRp30c (sc-134036) were obtained from Santa Cruz Biotechnology. 
Primers and probes of Grα, Grβ, Rack1, total Bdnf and 18S were pur-
chased by Eurofins genomics whereas Bdnf long 3′UTR and Bdnf isoform 
IV were bought by Life technologies Italia. Anti-BDNF (SAB 1405514) 
and anti β-tubulin (T0198) were purchased from Sigma Aldrich. Anti 
lamin A/C (612162) was obtained from BD Biosciences (Franklin Lakes, 

NJ, USA). Host-specific peroxidase-conjugated IgG secondary antibodies 
were purchased from Thermo Scientific Inc. (Waltham,MA, USA). 
Electrophoresis reagents were purchased from Bio-Rad (Richmond, CA, 
USA). 

2.2. Cell cultures and treatments 

Human neuroblastoma SH-SY5Y cells from the European Collection 
of Cell Cultures (ECACC No. 94030304) were cultured in a medium with 
equal amounts of Eagle’s minimum essential medium and Nutrient 
Mixture Ham’s F-12, supplemented with 10 % heat-inactivated fetal 
bovine serum (FBS), 2 mM glutamine, 0.1 mg/ml streptomycin, 100 IU/ 
ml penicillin and 1X MEM non-essential amino acid solution (M7145, 
Merck) at 37 ◦C in 5 % CO2-containing, and 95 % air atmosphere. SH- 
SY5Y cells were treated for different times with increasing concentra-
tions of cortisol (0.1, 0.5, 1 and 5 μM) according to previous data (Buoso 
et al., 2011; Del Vecchio et al., 2009). To demonstrate the role of 
glucocorticoid receptor, cells were treated for 1 h with 10 μM mife-
pristone before the addition of cortisol for 24 h. Other specific details of 
times and concentrations are also given in figure legends. 

2.3. Animals 

Adult male (post natal day 70) Wistar rats (Charles River, Germany) 
were adapted, housed in groups of 10, to the animal facilities one month 
before the start of the experiment. During the whole experiment animals 
were singly housed in standard conditions (12-h light/dark, constant 
temperature (22 ± 2 

◦

C) and humidity (50 ± 5 %)). All procedures used 
in this study have conformed to the rules and principles of the 86/609/ 
EEC Directive and have been approved by the Local Bioethical Com-
mittee at the Institute of Pharmacology, Polish Academy of Sciences, 
Krakow, Poland. All efforts were made to minimize animal suffering, to 
reduce the number of animals used and the animal studies comply with 
the ARRIVE guidelines. 

2.4. Stress procedure and behavioral test 

Before starting of the experiment, rats were trained to consume 1 % 
sucrose solution as previously described (Calabrese et al., 2020) and 
sucrose consumption test (SCT) (one bottle test) was performed at 
weekly intervals throughout the duration of the study. Sucrose intake 
was calculated by measuring pre-weighted bottles filled with the 1 % 
sucrose solution. The cut off to discriminate among vulnerable and 
resilient animals was set at 50 %: vulnerable rats consumed approxi-
mately 50 % less sucrose solution in comparison to the baseline (training 
values), whereas resilient animals showed similar levels of sucrose 
intake to their baseline, despite the CMS procedure. 

Animals were randomly divided into two groups: one group of ani-
mals was unstressed (No stress group) and the other one was exposed to 
the CMS procedure for a period of 2 consecutive weeks. The protocol 
consists of periods of: food or water deprivation, 45-degree cage tilt, 
intermittent illumination, soiled cage, paired housing, low intensity 
stroboscopic illumination, periods of no stress (see (Calabrese et al., 
2017) for details). Based on the result of the sucrose consumption test 
carried out following the first 2 weeks of stress, two groups of animals 
were identified: those showing a significative reduction of sucrose intake 
in comparison to the control group, ie. developing an anhedonic-like 
behavior, (CMS vulnerable) and those that did not develop anhedonia 
(CMS resilient). 

24 h after the final stressor animals were decapitated (between 9:10 
and 12:25 a.m.), the trunk blood was collected in tubes with ethyl-
enediaminetetraacetic acid and the ventral hippocampus (vHip) was 
dissected from the whole brain according to the plates 34–43 of the atlas 
of Paxinos and Watson (2004) and stored at − 80 ◦C. 
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2.5. Measurement of corticosterone plasma levels 

After collection, blood specimens were centrifuged for 20 min at 
3000 g at 4 ◦C for the separation of plasma. Corticosterone plasma levels 
were assessed with the IBL international enzyme linked immunosorbent 
assay according to manufacturers’ instructions. 

2.6. RNA preparation and gene expression analysis by quantitative real- 
time PCR 

Total RNA was isolated using the PureZol RNA isolation reagent (Bio- 
Rad Laboratories, Italy) and quantified by spectrophotometric analysis 
as previously described (Brivio et al., 2020). Samples were treated with 
DNase (ThermoFisher scientific, Italy) to avoid DNA contamination. 
Real-time polymerase chain reaction (RT-PCR) was performed to assess 
Rack1, total Bdnf, Bdnf long 3′UTR and Bdnf isoform IV mRNA levels. 
RNA was analyzed by TaqMan qRT-PCR instrument (CFX384 real time 
system, Bio-Rad Laboratories, Italy) using the iScriptTM one-step 
RT-PCR kit for probes (Bio-Rad Laboratories, Italy) (see (Brivio et al., 
2020) for details). Samples were run in 384 well formats in triplicate as 
multiplexed reactions with the normalizing internal control 18s. Primers 
and probes sequences of the mouse genes analyzed were listed in 
Table 1. 

qPCR for human RACK1 and 18S were performed as indicated in 
(Buoso et al, 2017a, 2020). 

Transcript quantification was performed with 2(− ΔΔCT) method. 

2.7. Subcellular fractionation 

Western blot analysis was used to investigate RACK1 in the subcel-
lular fractions. In brief, 3.5 × 106 SH-SY5Y cells were seeded in 100 mm 
dishes and treated for 24 h with 1 μM or 5 μM cortisol and cellular 
fractionation conducted as described in detail in refs (Buoso et al, 2012, 
2013). 

Ventral hippocampi were manually homogenized using a glass-glass 
potter in a pH 7.4 cold buffer containing 0.32 M sucrose, 0.1 mM EGTA, 
1 mM HEPES solution in the presence of a complete set of proteases 
(Roche) and phosphatases (Sigma-Aldrich) inhibitors. The total ho-
mogenates were centrifuged at 1000 g for 10 min at 4 ◦C to obtain a 
pellet enriched in nuclear components, which were suspended in a 
buffer (20 mM HEPES, 0.1 mM dithiothreitol (DTT), 0.1 mM EGTA) 
containing proteases and phosphatases inhibitors. Supernatants ob-
tained were further centrifuged at 10000 g for 15 min at 4 ◦C to obtain 
the pellet corresponding to the membrane fractions that was re- 
suspended in the same buffer prepared for the nuclear fractions. The 
purity of the fractions obtained was previously detailed (Brivio et al., 
2019). Total protein content was measured according to the Bradford 
Protein Assay procedure (Bio-Rad Laboratories), using bovine serum 
albumin (BSA) as a calibration standard. 

2.8. Protein extraction and Western blot analysis 

The expression of RACK1, mBDNF and β-tubulin in cell homogenates 
and in the subcellular fractions obtained by vHip fractionation were 

assessed by Western blot analysis. Briefly, cells were treated and then 
collected, washed twice with PBS 1X, centrifuged, and lysed in 100 μL of 
homogenization buffer (50 mM Tris− HCl pH 7.5, 150 mM NaCl, 5 mM 
EDTA, 0.5 % Triton X-100 and protease inhibitor mix). The protein 
content was measured using the Bradford method using BSA as a cali-
bration standard. Western blotting samples were prepared mixing the 
cell lysate with sample buffer (125 mM Tris− HCl pH 6, 8.4 % SDS, 20 % 
glycerol, 6 % β-mercaptoethanol, 0.1 % bromophenol) and denaturing at 
95 ◦C for 5 min. Equivalent amounts of extracted protein (10 μg) were 
electrophoresed into an appropriate % SDS-PAGE under reducing con-
ditions. The proteins were then transferred onto a nitrocellulose mem-
brane (Amersham, Little Chalfont, UK) that was blocked in 5 % w/v BSA, 
1X TBS, 0.1 % Tween-20 for 1 h with gentle shaking. The proteins were 
visualized using primary antibodies diluted in 5 % w/v BSA, 1X TBS, 0.1 
% Tween-20 for RACK1 (1:1000), SRp30c (1:500), mBDNF (1:500) and 
β-tubulin (1:1000) as indicated in (Buoso et al, 2013, 2017a). In all 
experiments, immuno-reactivity was measured using host specific sec-
ondary IgG peroxidase conjugated antibodies (1:7000 diluted) and 
developed using enhanced chemiluminescence reagent (Pierce, Thermo 
Fisher Scientific, Rockford, IL, USA). For signal detection Amersham 
Imager 680 (GE, Healthcare) was used. After Western blot acquisition, 
bands optical analysis was performed with the ImageJ program (W. 
Rasband, Research Service Branch, National Institute of Mental Health, 
National Institutes of Health, Bethesda, MD and Laboratory for Optical 
and Computational Instrumentation, University of Wisconsin). Bands 
relative densities were expressed as arbitrary units and normalized over 
control sample run under the same conditions. 

2.9. Statistical analysis 

Each experimental group consists of 4–8 rats. In vitro data consist of 
at least three independent experiments. Data are presented as means ±
SEM. Statistical analyses were conducted with GraphPad Prism version 7 
(GraphPad Software, San Diego, CA, USA) and outliers were determined 
with GraphPad outlier calculator (alpha = 0.05). Statistical differences 
were determined by analysis of variance (one-way ANOVA) followed, 
when significant, by the Tukey multiple comparison post hoc test. In all 
reported statistical analyses, effects were designated as significant if the 
p value was <0.05. 

3. Results 

3.1. The anhedonic-like behavior induced by chronic stress was positively 
correlated with circulating corticosterone levels 

SCT has been employed to identify vulnerable and resilient rats to 
chronic stress exposure. As shown in Fig. 1A, we found a significative 
effect of stress in the one-way ANOVA analysis (F2-21 = 28, p < 0.001). A 
subpopulation of stressed animals was identified, from now on named 
vulnerable (CMS vul), showing an anhedonic-like phenotype, as indi-
cated by the reduction of sucrose intake in comparison to unstressed 
animals (− 69 %, p < 0.001 vs No stress). Conversely, another group of 
rats, from now on named resilient (CMS res), showed a similar sucrose 
intake to unstressed animals, with an increased sucrose intake with 

Table 1 
a) Sequences of forward and reverse primers and probes purchased from Eurofins MWG-Operon. b) Probes purchased from Life Technologies.  

a) Gene Forward primer Reverse primer Probe 

Grα GCGACAGAAGCAGTTGAGTCATC CCATGCCTCCACGTAACTGTTAG TGAAGTGATAGCACAGCAGACAGTGA 
Grβ GCGCTTGAGGCTAAGATAGCT CCCATGTTTCTGCCTCTTTCTTTG AGTCTGCCTTCAGAATGCCTGTCA 
Rack1 CTCTTTGGCTTGGTCTGCTG ATACACGCACCAAGTTGTCG ATGGCCAGACTCTGTTTGCT 
Total Bdnf AAGTCTGCATTACATTCCTCGA GTTTTCTGAAAGAGGGACAGTTTAT TGTGGTTTGTTGCCGTTGCCAAG 
18s GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG TGCAATTATTCCCCATGAACGAGG 
b) Gene Accession number Assay ID  
Bdnf long 3′UTR EF125675 Rn02531967_s1  
Bdnf IV EF125679 Rn01484927_m1   
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respect to the vulnerable animals (+195 %, p < 0.001 vs CMS vul). 
Similarly, one-way ANOVA revealed a significant effect of stress on 

plasma corticosterone levels (F2-18 = 28, p = 0.0203), with the CMS-vul 
group specifically showing increased circulating levels of corticosterone 
in comparison to the No stress group (+61 %, p < 0.05 vs No stress) 
(Fig. 1B). 

Moreover, we examined a possible covariation within sucrose intake 

and corticosterone plasma levels in the two subpopulations of stressed 
animals. This analysis revealed that sucrose intake negatively correlates 
with corticosterone levels (r = 0.5869, r2 = 0.3445, p = 0.0350), as 
shown in Fig. 1C, suggesting a relationship among the development of 
the anhedonic-like behavior and the alteration of the HPA axis 
functionality. 

Fig. 1. Analysis of the sucrose consumption test (A) and corticosterone plasma levels (B) in vulnerable and resilient animals exposed to two weeks of CMS. Panel C 
shows a correlation analysis between sucrose intake and corticosterone plasma levels in CMS vul and CMS res animals (Pearson’s product-moment correlation). *p <
0.05, ***p < 0.001 vs No stress; §§§p < 0.001 vs CMS vul (one-way ANOVA with Tukey’s multiple comparison test). 

Fig. 2. Analysis of Grα (A), Grβ (B) mRNA levels, Grβ/Grα ratio (C) and SRSF9 protein levels (D) in vulnerable and resilient animals exposed to two weeks of CMS. 
Data are expressed as percentage of non-stressed animals (set at 100 %). **p < 0.01, ***p < 0.001 vs No stress; § <0.05, §§§p < 0.001 vs CMS vul (one-way ANOVA 
with Tukey’s multiple comparison test). 

P. Brivio et al.                                                                                                                                                                                                                                   



Neurobiology of Stress 15 (2021) 100372

5

3.2. Chronic stress promoted the splicing of Grβ isoform mediated by 
SRSF9 in resilient animals 

Alternative splicing of the gene encoding for the Gr, mediated by the 
serine/arginine-rich proteins (SRp) (Jain et al., 2012), leads to the for-
mation of the Grα and Grβ isoforms that differ for their carboxyl ter-
minus and, consequently, for their biological effects (Oakley et al., 1996; 
Yudt et al., 2003). 

As shown in Fig. 2A, chronic stress did not modulate the gene 
expression of Grα (one-way ANOVA: F2-21 = 0.250, p = 0.7808), while 
we observed a significant effect of the one-way ANOVA analysis on Grβ 
mRNA levels (F2-21 = 8.15 p = 0.0024) (Fig. 2B), which were selectively 
enhanced in resilient animals in comparison not only to no stress ani-
mals (+48 %, p < 0.01 vs No stress) but also to vulnerable animals (+27 
%, p < 0.05 vs CMS vul). Accordingly, as indicated in Fig. 2C, the ratio 
between Grβ/Grα was significantly modulated, as indicated by the one- 
way ANOVA results (F2-21 = 7.32, p = 0.0039), with such ratio being 
increased specifically in CMS-res group (+56 %, p < 0.01 vs No stress). 

Moreover, we observed a significant effect of the one-way ANOVA 
(F2-9 = 33.8, p < 0.001) on the protein expression of SRSF9 (also known 
as SRp30c), the SR splicing factor that specifically mediates the forma-
tion of Grβ isoform. Indeed, in line with the increased mRNA levels of 
Grβ (Fig. 2B), we found that resilient animals specifically showed an 
overexpression of SRSF9 protein levels with respect to unstressed ani-
mals (+147 %, p < 0.001 vs No stress) and to CMS vulnerable group 
(+421 %, p < 0.001 vs CMS vul) (Fig. 2D). 

The enhancement of Grβ levels, coupled with the increased protein 
level of SRSF9, suggests a requirement of this specific isoform to pro-
mote resilience thus counteracting the negative effects of chronic stress 
exposure. 

3.3. Resilient animals showed enhancement of RACK1 at both 
transcriptional and translational level 

The human gene RACK1 contains the GRE sequence, which mediates 
the cortisol physiological inhibition of RACK1 (Del Vecchio et al., 2009). 

As shown in Fig. 3A, we observed a significant effect of stress on 
Rack1 gene expression (F2-21 = 4.53 p = 0.0232), with its mRNA levels 

being upregulated specifically in CMS res (+60 %, p < 0.05 vs No stress) 
in comparison to unstressed animals. 

At translational levels, one-way ANOVA revealed a significant effect 
of stress on RACK1 protein levels in the whole homogenate (F2-9 = 28.2, 
p < 0.001), in the cytosol (F2-9 = 12.1, p = 0.0028), in the crude syn-
aptosomal fraction (F2-9 = 16.6, p = 0.010) as well as in the nuclear 
fraction (F2-9 = 11.1, p = 0.0037). 

Accordingly, in the whole homogenate, we observed a decrease of 
RACK1 in vulnerable animals in comparison to No stress group (− 52 %, 
p < 0.05 vs No stress) and an increased expression in resilient animals 
with respect not only to no stress (+68 %, p < 0.01 vs No stress) but also 
to CMS vul group (+254 %, p < 0.001 vs CMS vul) (Fig. 3B). As shown in 
the Fig. 3C, we found a similar modulation in the nuclear fraction, with 
RACK1 being downregulated in vulnerable animals (− 33 %, p < 0.01 vs 
No stress) and upregulated in resilient group vs vulnerable group (+31 
%, p < 0.05 vs CMS vul). 

Similarly, in the cytosolic fraction RACK1 expression was decreased 
in vulnerable animals (− 65 %, p < 0.01 vs No stress) and increased in 
resilient vs vulnerable animals (+220 %, p < 0.01 vs CMS vul) (Fig. 3D). 
Moreover, in the crude synaptosomal fraction (Fig. 3E), RACK1 protein 
levels were specifically enhanced in resilient animals with respect to no 
stress (+295 %, p < 0.01 vs No stress) and CMS vul animals (+287 %, p 
< 0.01 vs CMS vul). 

All in all, these data highlighted the strict connection among the 
behavioral phenotype, glucocorticoids and RACK1 expression. 

3.4. Bdnf isoform IV was up-regulated in CMS-resilient rats 

Bdnf, the main neurotrophin essential for synaptic plasticity, has 
been linked with the activity of Rack1 in the central nervous system 
through the activation of cAMP signaling (Neasta et al, 2012, 2016). 

As shown in Fig. 4A and B, we did not observe a significant effect of 
stress on total Bdnf and Bdnf long 3′UTR mRNA levels (one-way ANOVA: 
F2-21 = 0.195, p = 0.8240; F2-19 = 2.13, p = 0.1469). By contrast, we 
observed a significant effect of stress in the one-way ANOVA analysis on 
Bdnf isoform IV expression (F2-20 = 3.69, p = 0.0432), with its mRNA 
levels being upregulated in resilient animals in comparison to the No 
stress group (+45 %, p < 0.05 vs No stress) (Fig. 4C). 

Fig. 3. Analysis of Rack1 mRNA levels (A) and RACK1 protein levels in the whole homogenate (B), in the nucleus (C), in the cytosol (D) and in the crude synap-
tosomal fraction (E), in vulnerable and resilient animals exposed to two weeks of CMS. Data are expressed as percentage of non-stressed animals (set at 100 %). *p <
0.05, **p < 0.01 vs No stress; §p < 0.05, §§p < 0.05, §§§p < 0.001 vs CMS-vul (one-way ANOVA with Tukey’s multiple comparison test). 
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Fig. 4. Analysis of total Bdnf (A), Bdnf long 3′UTR (B) and Bdnf isoform IV (C) mRNA levels in vulnerable and resilient animals exposed to two weeks of CMS. Data 
are expressed as percentage of non-stressed animals (set al 100 %). *p < 0.05 vs No stress (one-way ANOVA with Tukey’s multiple comparison test). 

Fig. 5. Effects of stress-mimicking cortisol concen-
trations on Rack1 and mBDNF expression. Analysis of 
Rack1 mRNA and protein levels (A-D) in SH-SY5Y 
cells exposed to either 1 or 5 µM cortisol or vehicle 
control (DMSO < 0.1%) for 24 h (A-B) and 48 h (C-D). 
Analysis of mBDNF protein levels (E-F) in SH-SY5Y 
cells treated with either 1 or 5 µM cortisol or 
vehicle control (DMSO < 0.1%) for 24 h (E) and 48 h 
(F). Data are expressed as percentage of CTRL (set at 
100%). *p<0.05, **p < 0.01 vs CTRL (one-way 
ANOVA with Tukey’s multiple comparison test).   
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These data suggest that resilience to CMS is possibly associated with 
an increased expression of Bdnf isoform IV, which might be mediated by 
the association of RACK1 with the promoter IV region of Bdnf (He et al., 
2010). 

3.5. Cortisol-induced RACK1 negative regulation was correlated with 
mature BDNF down-regulation in vitro 

In the attempt to link the activation of the Gr-RACK1-Bdnf pathway 
more tightly to stress-induced cortisol release, we shifted our approach 
to in vitro experiments to be able to dissect a putative underlying 
mechanism. Accordingly, we exposed SH-SY5Y cells to increasing con-
centration of cortisol and analyzed the results at different times. 

Specifically, we tested the SH-SY5Y cells with 0.1, 0.5, 1 and 5 μM of 
cortisol for 6, 12, 24 and 48 h, to mimic acute and chronic stressors (Choi 
et al., 2021; Silva et al., 2019). As reported in Supplementary Figure 1, 
regardless of the cortisol concentrations herein used, Rack1 gene and 
protein expression were not altered at the earliest time points (6 and 12 
h) while we observed a decrease of Rack1 mRNA and protein levels at 24 
and 48 h with 1 and 5 μM of cortisol. These results, in line with our 
previous promoter luciferase findings (Del Vecchio et al., 2009), show 
that stress-mimicking cortisol treatments (1 and 5 μM) induced a sig-
nificant down-regulation of Rack1 expression. 

As showed in Fig. 5 (and in Supplementary Figure 1), we found a 
significative effect of cortisol in the one-way ANOVA analysis on Rack1 
mRNA level at 24 h (F2-6 = 9.3, p = 0.0145). Indeed, Rack1 mRNA levels 
were significantly downregulated by both 1 μM (− 57.8 %, p < 0.05 vs 
CTRL) and 5 μM (− 50.2 %, p < 0.05 vs CTRL) cortisol concentrations 
(Fig. 5A). In line, one-way ANOVA revealed a significant effect of 
cortisol also on RACK1 protein levels at the same time point (F2-15 =

9.05, p = 0,0026) with cortisol specifically inducing a significant 
decrease of RACK1 protein levels with both 1 μM (− 41 %, p < 0.05 vs 
CTRL) and 5 μM (− 43.8 %, p < 0.01 vs CTRL) treatments (Fig. 5B). 
Moreover, we observed a similar modulation at 48 h on both Rack1 
mRNA (Fig. 5C) and protein levels (Fig. 5D) (one-way ANOVA: F2-16 =

10.6, p = 0.0011; F2-6 = 52.8, p = 0.0002, respectively) that were 
reduced after cortisol administration (mRNA: 1 μM: − 74.8 %, p < 0.001 
vs CTRL; 5 μM: − 73.8 %, p < 0.001 vs CTRL; protein: 1 μM: − 51.7 %, p 
< 0.01 vs CTRL; 5 μM: − 61.5 %, p < 0.01 vs CTRL). 

To confirm the cortisol-mediated modulation of RACK1, we treated 
the cells with the GR inhibitor mifepristone (RU486), and we observed 
that it abolished the cortisol-induced RACK1 protein down-regulation 
(Supplementary Figure 2) confirming that RACK1 expression involves 
Gr-mediated gene transcription. 

Next, we investigated whether cortisol would reduce mature BDNF 
(mBDNF) protein levels via inhibition of RACK1 nuclear translocation. 
We observed a significant effect of the one-way ANOVA on the protein 
expression of mBDNF both at 24 h (F2-10 = 9.06, p = 0.0057) and at 48 h 
(F2-13 = 9.102, p = 0.0034). Our data showed that cortisol reduced 
RACK1 nuclear translocation (Supplementary Figure 3) that eventually 
resulted in a significant down-regulation of mBDNF protein levels with 
1 μM (− 43.72 %, p < 0.05 vs CTRL) and 5 μM (− 60.13 %, p < 0.01 vs 
CTRL) cortisol concentrations at 24 h (Fig. 5E). Similarly, mBDNF 
expression was decreased at 48 h with both 1 μM (− 51.96 %, p < 0.01 vs 
CTRL) and 5 μM (− 59.77 %, p < 0.01 vs CTRL) cortisol concentrations 
(Fig. 5F) in line with literature data demonstrating that RACK1 silencing 
significantly decreases BDNF expression in both SH-SY5Y cells and 
hippocampal neurons, thus highlighting that RACK1 is required for 
BDNF expression (He et al., 2010; Neasta et al., 2012). 

Taken together, in vitro data identify the Gr-RACK1-Bdnf pathway as 
a target of stress-induced cortisol release. 

4. Discussion 

In this study we demonstrated that chronic stress differently affected 
the Grβ-RACK1-Bdnf pathway, which appears to be selectively activated 

in animals resilient to the negative external cues. 
In line with our previous evidence (Calabrese et al., 2017), we found 

that ~70 % of stressed animals developed the anhedonic-like behavior 
whereas the remaining ~30 % was resilient to chronic stress exposure 
showing the normal hedonic phenotype as the non-stressed rats. Inter-
estingly, we observed that the vulnerability and resilience to the CMS 
paradigm were correlated with a specific activity of the HPA axis. 
Indeed, as expected, chronic stress led to elevated levels of circulating 
corticosterone suggesting a stress-mediated alteration of the function-
ality of the HPA axis (McEwen, 2007; Miller et al., 2007). By contrast, 
we found that resilience was correlated with normal corticosterone 
plasma levels, in line with the notion that the mechanisms that promote 
resilience may be protective against HPA axis overactivation (DeVries 
et al., 2003; Ong et al., 2006). 

To better understand the underlying mechanisms, we observed that 
animals resilient to chronic stress showed overexpression of the beta 
isoform of Gr and of the SRSF9 protein, the serine/arginine-rich protein 
that mediates the post-transcriptional modification leading specifically 
of Grβ. 

In previous experiments, we demonstrated that the expression of 
both GRβ and SRSF9 was enhanced by the treatment with the functional 
antagonist of glucocorticoids dehydroepiandrosterone (DHEA), sup-
porting the link among glucocorticoids and Grβ-SRSF9 mediated 
splicing (Buoso et al., 2017a; Pinto et al., 2015). Moreover, given the 
regulation of Rack1 by glucocorticoids through the binding with the 
GRE sites on its promoter, we investigated whether cortisol could 
modulate the activity of mapped Rack1 promoter. By using two different 
constructs, the Δ1 and the Δ6 (obtained through Δ1 deletion) lacking 
GRE binding sequence, we demonstrated a GRE-dependent inhibition of 
Rack1 promoter transcriptional activity in SH-SY5Y cells. Indeed, only 
the luciferase activity of Δ1 construct was significantly reduced sug-
gesting a role of glucocorticoids in RACK1 regulation (Del Vecchio et al., 
2009). Accordingly, we observed that prolonged DHEA treatment 
counteracts the negative effect of cortisol on RACK1 expression by 
modulating GRβ (Buoso et al., 2011, 2017b; Muller et al., 2004), an 
effect that was supported by the silencing of Grβ with a specific 
small-interfering RNA (Pinto et al., 2015). 

In our CMS protocol, we found that Rack1 gene and protein 
expression was increased in resilient animals, whereas vulnerable ani-
mals showed reduced levels of Rack1. Accordingly, given the role of 
RACK1 as scaffolding anchoring protein that, through PKC activation, 
regulates several membrane-related pathways (Adams et al., 2011; Ron 
et al., 1994; Yang et al., 2019), the enhancement of RACK1 in the crude 
synaptosomal fraction of resilient animals may be required to modulate 
synaptic activity thus promoting the coping of this group of rats with the 
stress procedure. 

Moreover, to further link the connection among glucocorticoids and 
Rack1, we mimicked a prolonged stressful condition by treating the SH- 
SY5Y cells with 1 and 5 μM of cortisol for 24 and 48 h and observed an 
overall reduction of both the gene and protein expression of Rack1, an 
effect that was abolished by the GR inhibitor mifepristone, thus con-
firming that Rack1 expression involves Gr-mediated gene transcription. 

RACK1 has been demonstrated to be involved in the spatial and 
temporal orchestration of signaling cascades mediated by Bdnf (Neasta 
et al., 2012) and it has been also reported to display a role as a mediator 
of chromatin remodeling in an exon-specific expression of Bdnf gene. 
Indeed, it has been shown that nuclear RACK1 is connected to the 
chromatin complex through its interaction with histone H3 and H4 thus 
leading to the dissociation of the transcription repressor MeCP2 from the 
promoter and the subsequent induction of the promoter-controlled 
transcription of BDNF exon IV (He et al., 2010). Here, we found that 
animals resilient to chronic stress showed increased Bdnf isoform IV 
expression, a modulation that may be driven by the binding of RACK1 
with the promoter of the promoter IV region of Bdnf (He et al., 2010), 
whereas the in vitro stress-mimicking cortisol concentrations not only 
significantly reduced RACK1 expression but also its nuclear 
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translocation, ultimately leading to a strong decrease of mBDNF, further 
supporting the existence of a correlation between RACK1 and mBDNF 
expression. 

Accordingly, accumulating data indicated the negative effects of 
chronic stress on Bdnf expression (Miao et al., 2020), as well as the role 
of Bdnf in promoting resilience (Krishnan et al., 2007; Taliaz et al., 
2011). 

Our results are in line with the evidence recently reviewed by Ramos- 
Ramirez and Tilba showing that Grβ does not act exclusively as antag-
onist of Grα, but also it can directly induce or repress the expression of a 
large number of genes regardless of Grα antagonism (Ramos-Ramírez 
and Tliba, 2021). 

Under our experimental conditions, the enhancement of Grβ seems to 
be a strategy set in motion by the resilient subpopulation of stressed rats 
to face with the negative effects of chronic stress. 

Moreover, further studies are needed to demonstrate that the mod-
ulation of Grβ-SRSF9, RACK1 and Bdnf IV is causally, and not correla-
tively, related to stress resilience as reported in the present work, 
although we must emphasize that our in vitro data provide evidence to 
this effect. 

A limitation of our study is that corticosterone levels are measured 
only at one time point, which does not allow us to provide indications 
about changes in the circadian release of the hormone or on the potential 
impairment in the negative feedback functionality. Furthermore, we are 
aware that the basal levels of corticosterone, measured in the control 
group, are quite high, an effect that could be due to several reasons, such 
as for instance, the strain of the rats used (Kühn et al., 1983) and the type 
of ELISA kit employed for the analyses (Kinn Rød et al., 2017). 

All in all, our in vivo data coupled with the in vitro approach suggest 
that the activation of the Grβ-RACK1-Bdnf cascade compensates and 
provides resilience to the detrimental effects caused by chronic stress. 
Interestingly, our data add novel critical information for the discovery of 
novel targets for the treatment of stress-related disorders, including 
depression. 
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