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Objectives. Foot ulcers often occur in people with diabetes because of pressure-induced tissue ischemia. Vibration has been
reported to be helpful in alleviating mechanical damage and promoting wound healing. The objective of this study is to explore
whether vibration can relieve reactive hyperemia in foot tissue under occlusive compression. Methods. Thirteen healthy adults
participated in the study. Each foot was placed under occlusive compression without or with vibration intervention, which was
randomly assigned every other day. The dorsal foot skin blood flow (SBF) was measured pre- and postintervention for each subject
in each test. Temporal variations and spectral features of SBF were recorded for comparison. Results. The results showed that
subjects displayed an obvious reactive hyperemia in the foot tissue after pressure occlusion, whereas they displayed a more regular
SBF when vibration was applied along with occlusive compression. Moreover, the amplitude of metabolic, neurogenic, and
myogenic pathways for SBF was significantly reduced during the hyperemia process when vibration was applied. Conclusions. This
study demonstrated that vibration can effectively reduce the level of hyperemia in foot tissue under occlusive compression and
also induce less protective physiological regulatory activities. This is helpful for protecting foot tissue from pressure-induced
ischemic injury and foot ulcers.

1. Introduction

Diabetic foot ulcers are one of the most serious complica-
tions for diabetics, with an incidence rate of approximately
15% in the diabetic population [1]. Tissue ischemia is one of
the main causes of pressure ulcers [2]. When the external
pressure applied to foot tissue exceeds the capillary blood
pressure, the resulting occlusion of blood and lymph vessels
causes changes in the metabolism and can lead to the ac-
cumulation of waste products [1, 3, 4]. However, when the

pressure is removed, the increased blood flow reduces the
intensity of the ischemia [3, 5, 6]. Particularly in diabetics
with impaired microcirculation, the increased plantar skin
blood flow during reactive hyperemia may not be sufficient
to compensate for the hypoxia-ischemia and accumulation
of metabolic waste in the tissues, which can increase the risk
of developing infections and ulcerations [7-9]. Thus, an
effective method to alleviate ischemic damage and improve
tissue viability under prolonged pressure stimuli would be of
considerable benefit to diabetics.
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Previous studies have demonstrated the effectiveness of
vibration for alleviating mechanical and oxidative damage,
promoting angiogenesis and wound healing, and increasing
microcirculation. Wong et al. applied prolonged compres-
sion (100mmHg, 6h) to the biceps femoris of mice and
investigated differences in tissue reactions with and without
the use of whole body vibration intervention (35Hz, ac-
celeration 0.25 g) [10]. Wong found that the mechanical and
oxidative damage was significantly reduced following vi-
bration intervention, indicating the effectiveness of vibration
for maintaining antioxidative defense and relieving ischemic
injury during persistent mechanical stress. Weinheimer-
Haus et al. reported that the whole body low-intensity vi-
bration could promote angiogenesis and granulation and
facilitate the expression of growth factors and chemokines in
wounded tissue of diabetic mice, which can accelerate
wound healing [11]. Using rat models to investigate the
biological effect of vibration intervention, Sari et al. found
that whole body vibration could inhibit hypoxia and matrix
metalloproteinase activity and effectively attenuate the de-
terioration of deep tissue injury [12]. However, these studies
demonstrated the effectiveness of vibration for alleviating
mechanical damage in rats, which may not be truly repre-
sentative of the reaction in humans. Although Wilson et al.
and Midori et al. reported that local vibration on lower
extremity could facilitate the healing rate of ulceration in
patients with venous leg ulcers and stage I pressure ulcers
[13, 14], it is not yet known whether vibration could relieve
ischemia caused by pressure stimulus. Nakagami et al.
pointed out that promoting blood flow during the com-
pression of tissues may alleviate the degree of ischemia in
occluded tissues [15]. Also, Maloney-Hinds et al. found that
local vibration on the arm could increase the skin blood flow
of intervention limb [16]. Thus, we speculated that vibration
could also relieve the ischemia in the lower extremities
caused by pressure stimulus. Moreover, its impact on the
postocclusive hyperemia and regulatory mechanisms has not
yet been investigated.

Previous studies considered the hyperemia response
after the release of compression as a potential method for
evaluating the degree of ischemia in occluded tissues
[15, 17]. Normally, the level of postocclusive hyperemia is
correlated with the degree of tissue ischemia [15, 18, 19].
Skin blood flow (SBF) has also been widely used to assess
vasodilation of skin vessels and the degree of skin hyperemia
[20, 21]. Wavelet analysis of SBF oscillations can display the
physiological mechanisms of blood flow regulation. For
instance, SBF frequency bands ranging between
0.0095-0.02 Hz, 0.02-0.05Hz, and 0.05-0.15Hz are asso-
ciated with endothelial-dependent metabolic activity, neu-
rogenic controls of the vessel wall, and myogenic activity of
vascular smooth muscles in the local tissue, respectively
[21-24]. Thus, these characteristics which are embedded in
the SBF oscillations can be used to investigate the physio-
logical regulatory mechanisms of local reactive hyperemia
under vibration intervention.

The objective of this study is to investigate the effects of
vibration on postocclusive hyperemic foot tissue. We hy-
pothesized that vibration intervention could reduce the level
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of reactive hyperemia response in foot tissue when placed
under pressure occlusion.

2. Materials and Methods

2.1. Participants. Thirteen healthy adults (5 males and 8
females) participated in this study. The inclusion criteria
were as follows: (1) had no symptoms such as redness, callus,
inflammation, or wounds on the skin of the foot or legs and
(2) had no diseases such as hypertension, peripheral neu-
ropathy, vascular diseases, heart diseases, systematic in-
flammation, and malignant tumors. This study was
conducted in accordance with clinical protocols approved by
the institutional review board of Affiliated Hospital of
National Research Center for Rehabilitation Technical Aids
and conducted in accordance with the Declaration of
Helsinki. All subjects gave informed written consent prior to
participation.

2.2. Test Equipment. Custom-designed devices were devel-
oped to apply whole foot compression and whole foot vi-
bration in this study. Compression was applied using an air
operated pressure device consisting of an airbag, pressure
manometer, air pump, power supply, and a switch. When
placed on the foot, the pressure was increased to 150 mmHg
(calibrated by using a mercury gauge) and then maintained
for 15min at this level in order to provide compression
stimuli without discomfort and injury [25, 26]. The vibration
device consisted of an eccentric motor, controller, support
shell, power supply, and a switch. The test setup is shown in
Figure 1. As vibration with a frequency of 50 Hz and an
amplitude of 2 mm was proven to effectively improve mi-
crocirculation and wound healing [27], these parameters
were chosen to verify the effect of vibration on alleviating
pressure-induced ischemia. The compression and continu-
ous vibration were applied to the whole right foot of each
subject. The SBF in the dorsum of the right foot was
measured by using a laser Doppler flowmeter (PeriFlux 5001,
Probe 457, Perimed, Stockholm, Sweden) at a sampling
frequency of 32 Hz [28].

2.3. Test Protocol. Two tests were developed for this study:
(1) No Vibration test, where only a whole foot occlusive
compression stimulus (150 mmHg, 15 min) was applied to
the subjects’ right foot, and (2) Vibration test, where vi-
bration intervention (50 Hz, 2 mm, 15 min) was applied to
the whole foot when under occlusive compression
(150 mmHg, 15 min). Each subject received both tests in a
random order over two days, one test each day. Before each
test, the subject was asked to rest in a room at a temperature
of 24+ 2°C for 30 min.

There are three basic stages to each test: (1) baseline
stage is the first 5 min of the test right immediately after the
resting period where the compression and vibration devices
are attached to the patient but are not activated; (2) in-
tervention stage occurs after the baseline stage, during
which a whole foot occlusive compression stimulus
(150 mmHg, 15 min) was applied to each subject, with the
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FIGURre 1: Test setup for applying pressure and vibration to the whole foot and measuring skin blood flow of the dorsum of foot.
vibration intervention in the Vibration test or without in 0 d )
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5min period when the compression and vibration stimuli . _ )
are deactivated and the subject is allowed to rest. The dorsal ~ Where v, (1) is a wavelet function and is defined as
SBF of each subject’s right foot was measured continuously 1 u—t
throughout the entire test when in a seated position using a Yo () = NG v ( s )’ ()

flowmeter sensor placed on the midshaft between the 2"
and 3™ metatarsal [29-31]. Figure 2 shows a typical ex-
ample of the variation in SBF with and without vibration
during the baseline and the recovery stage, in which the
SBF with less physiological significance in the intervention
stage was removed.

2.4. Data Analysis. 'The relatively stable readings during the
baseline stage permitted the SBF to be characterized by its
mean value (see Figure 2). For the recovery stage, the mean
SBF was recorded every minute (total 5 min). The percentage
change in SBF during the recovery stage relative to the
baseline stage was calculated for further analysis.

Wavelet analyses of SBF oscillations during baseline and
recovery stages were evaluated to gain insight into changes
in the underlying SBF regulatory activities pre- and post-
intervention. The SBF oscillations are regulated by five
physiological mechanisms with frequencies ranging from
0.0095 to 2 Hz, relating to regulatory components of met-
abolic, neurogenic, myogenic, respiratory, and cardiac ori-
gins, respectively [22, 23]. However, this study focused on
the three major local physiological regulatory mechanisms:
endothelial-dependent metabolic activities
(0.0095-0.02 Hz), neurogenic activities (0.02-0.05Hz), and
myogenic activities (0.05-0.15 Hz).

The continuous wavelet transform of a signal f{u) of skin
blood flow was defined as

where v is the mother wavelet function, ¢ is the time factor,
and s is the scaling factor. A Morlet wavelet model was used
to achieve a continuous wavelet transform. Figure 3 shows
an example of the wavelet transform of the skin blood flow
signal. To overcome individual variations between subjects,
the amplitude of SBF oscillations during the recovery stage
was normalized to that of the baseline stage. The normalized
wavelet amplitudes were compared between the two tests
(Vibration and No Vibration) to explore the effect of vi-
bration intervention on these physiological regulatory
activities.

2.5. Statistical Analysis. The Wilcoxon matched-pair signed-
rank test was used to assess differences in SBF response pre-
and postintervention. The Mann-Whitney U test was used
to analyze differences in percentage change of SBF and its
underlying regulatory activities (characterized by the nor-
malized wavelet amplitudes within specific frequency bands)
between two tests. The level of significance was set at 0.05. All
statistical analyses were performed in SPSS (version 20; IBM,
Armonk, NY, USA).

3. Results

All recruited subjects participated in and completed the
experiments. All subjects’ details are shown in Table 1.
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F1GURE 2: Typical example of the variation in skin blood flow during the baseline and the recovery stage with and without vibration in two

tests.

The increments of SBF for both tests are illustrated in
Figure 4. The results showed that the increment of SBF
during the first 3min of the recovery stage in the No Vi-
bration test was significantly greater than that in the Vi-
bration test, which implied a distinct hyperemia was
observed in the No Vibration test but not in the Vibration
test.

From Figure 5, it can be seen that there was a signifi-
cantly greater percentage change in foot SBF between the
baseline and recovery stages for the No Vibration test than
the Vibration test. This indicated that applying vibration
while the tissue was compressed could help to reduce the
severity of pressure-induced reactive hyperemia.

The normalized wavelet amplitudes of SBF oscillations
associated with metabolic, neurogenic, and myogenic reg-
ulation pathways are shown in Figure 6. The results show
that the amplitudes for all three physiological pathways were
significantly higher in the No Vibration test than in the
Vibration test (p <0.05).

4, Discussion

This study investigated the effects of vibration intervention
on the hyperemia response and its regulatory mechanisms in
foot tissue under occlusive compression. The results showed
that vibration could reduce the level of reactive hyperemia
induced by persistent compression, which may be attributed
to the changes in physiological regulatory activities.

When excessive pressure is applied to the foot, micro-
vessels in the skin become blocked, leading to the

accumulation of xanthine oxidase. The oxygen-starved
hypoxic tissue needs a massive flow of blood to provide
nutrition and remove metabolic waste. Once the occlusion is
removed, a reactive hyperemia occurs to provide oxygen to
ischemic tissue and remove waste [3, 4]. The healthy subjects
in this study can be assumed to have a normal functioning
nervous system and endothelial regulation, and thus a
distinct reactive hyperemia was observed when the feet were
occluded, which compensates for the compression-induced
ischemia (Figures 4 and 5; No Vibration test). The blood flow
responses in the Vibration test did not display the same
hyperemic reaction, which may be attributed to the pro-
tective effect of vibration intervention on ischemic tissue
during compression.

Pressure-induced vasodilation of local microvascular
(reflected as postocclusive reactive hyperemia) is known to
be regulated by metabolic, neurogenic, and myogenic
pathways [22, 23]. Metabolic regulation is mainly related to
endothelial activities [32] and will regulate arterioles when
changes occur to the metabolite, pressure and/or flow of the
vessels [33]. Sympathetic nerves can regulate blood flow by
releasing neurotransmitters which act on endothelial cells
and vascular smooth muscle [34, 35], and the change in
metabolic demand will modulate neurogenic vasomotor
tone to control microvascular perfusion [33]. Myogenic
activities control the rhythmic constriction and dilation of
vasomotion by vascular smooth muscles and are a significant
factor in reactive hyperemia [36]. In the presence of hy-
peremia, myogenic regulation is activated to modulate the
diameter of vessels and blood flow resistance and to prevent
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TaBLE 1: Demographic and physiological information of subjects.

Variable Value (mean + SD)
Gender (male/female) 5/8

Age (years) 23.00+0.58
BMI (kg/m?) 20.61 +2.91
SBP (mmHg) 118.62 +£9.50
DBP (mmHg) 68.54 +7.62
Heart rate (bpm) 74.77 £10.73
Ankle-brachial index 1.03+0.07

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.

excessive pressure in the capillary network [33, 37, 38].  the microvascular network, leading to changes in metabolic
Prolonged epidermal loading, through compression in this ~ demands, nervous activities, and vasomotion [39, 40]. A
study, can disturb the blood flow and related regulations in ~ reduction in the oxygen supply to the occluded tissues is the
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test. xindicates a significantly greater percentage change in SBF for
the No Vibration test compared to the Vibration test. *p < 0.05.

principal cause of reactive hyperemia. In order to meet the
increased metabolic demand in occluded tissues, the three
pathways (metabolic, neurogenic, and myogenic) cooper-
ated to regulate vasodilation and control blood flow [33].
Previous studies reported that vibration could reduce
pressure-induced damage in compressed tissue by main-
taining enzymatic oxidation defenses and inducing vaso-
dilatation [2, 4, 41]. Thus, compared to the No Vibration test,
less blood flow supply and related physiological regulations
are needed to compensate for the pressure-induced ischemia
and disturbed circulation after the release of compression in
the Vibration test. In this study, the postocclusive reactive
hyperemia and related wavelet amplitudes (metabolic,
neurogenic, and myogenic origins) were all significantly
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FIGURE 6: Normalized wavelet amplitudes of foot SBF oscillations
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bration test. xindicates a significantly higher normalized wavelet
amplitude for the No Vibration test compared to the Vibration test.
*p<0.05 and **p<0.01.

reduced when subjects received compression stimulation
with vibration, indicating vibration could help to weaken
such compensatory responses and alleviate pressure-in-
duced ischemia.

Postocclusive reactive hyperemia is a common method
to assess peripheral vascular function in people with diabetes
[42, 43] and estimate therapeutic effect [44]. By drawing on
this inflation-compression model, this experiment applied
compression with 150 mmHg for 15 min to subjects’ whole
foot and measured microvascular responses under vibra-
tion/nonvibration to explore whether vibration could alle-
viate pressure-induced ischemia. In this experiment, the
pressure applied to the skin needs to be greater than the
capillary pressure in order to occlude the microvasculature
[45-47], meaning a pressure of at least 120 mmHg is re-
quired for blocking blood flow in healthy seated adults
[2, 48]. Studies have shown that compression with
150 mmHg does not induce discomfort or distraction [25] or
lead to tissue damage [49]. This value is also less than the
ankle systolic blood pressure (170 mmHg) and the safety
threshold of in-shoe pressure [49-51]. Winsor applied
15min cuff occlusion at the ankle to determine arterial
insufficiency [44]. Pu et al. used the cumulative pressure of
15min natural walking in people with diabetes as the
stimulus dose to investigate plantar microvascular responses
of diabetic foot [26]. Moreover, the accumulative com-
pression dose of 150 mmHg for 15min would not cause
microcirculation pathological damage [52]. Therefore, this
experiment applied compression at 150 mmHg for 15 min to
induce postocclusive hyperemia.

Vibration with a frequency of 50Hz was reported to
improve microcirculation and wound healing [16, 53]. The
depth of nutritive capillaries in the plantar dermal layer is
less than 3 mm [54], and 50 Hz vibration with an amplitude
of 2 mm was proven to effectively increase plantar skin blood
flow in people with diabetes [27]. Thus, a continuous
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vibration with a frequency of 50 Hz and an amplitude of
2 mm was selected to provide protective intervention for the
whole foot to verify its effect on alleviating pressure-induced
ischemia. The impaired endothelial function and disrupted
nerve conduction pathway in diabetics often affect the
protective microvascular responses to mechanical stimulus
[20]. Thus, it is necessary to relieve pressure-induced is-
chemia to avoid ischemic injury and foot ulcers in people
with diabetes. This study demonstrated that vibration could,
to some extent, alleviate the degree of ischemia in foot tissue
caused by compression stimuli. This suggests that vibration
could be effectively used to protect foot tissue from pressure-
induced ischemia and ulceration.

There are some limitations to this study that should be
noted. First, in this preliminary study, only healthy subjects
were tested. Future work may consider diabetic subjects to
further verify its clinical effectiveness. Second, this study
examined the skin of the dorsal foot where there would be
little intersubject variation in tissue hardness because the
hardness of skin tissue may affect the microvascular re-
sponse. This may be investigated in future studies by
recruiting diabetic subjects with similar plantar hardness.
Third, the method of pressure stimulation needs to be
improved and be closer to daily activities in the future study.

5. Conclusion

In this study, occlusive compression and vibration were
applied to the foot to examine the effectiveness of vibration
treatment on alleviating reactive hyperemia responses. The
results showed that vibration could effectively reduce the
level of hyperemia after prolonged whole foot occlusion,
which was attributed to the weakened protective regulatory
activities of the metabolic, neurogenic, and myogenic
pathways.
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