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A B S T R A C T

Background: Tuberculosis (TB) continues to be a critical global health problem, which killed millions of lives
each year. Certain circulating cell subsets are thought to differentially modulate the host immune response
towards Mycobacterium tuberculosis (Mtb) infection, but the nature and function of these subsets is unclear.
Methods: Peripheral blood mononuclear cells (PBMC) were isolated from healthy controls (HC), latent tuber-
culosis infection (LTBI) and active tuberculosis (TB) and then subjected to single-cell RNA sequencing
(scRNA-seq) using 10£Genomics platform. Unsupervised clustering of the cells based on the gene expres-
sion profiles using the Seurat package and passed to tSNE for clustering visualization. Flow cytometry was
used to validate the subsets identified by scRNA-Seq.
Findings: Cluster analysis based on differential gene expression revealed both known and novel markers for
all main PBMC cell types and delineated 29 cell subsets. By comparing the scRNA-seq datasets from HC, LTBI
and TB, we found that infection changes the frequency of immune-cell subsets in TB. Specifically, we
observed gradual depletion of a natural killer (NK) cell subset (CD3-CD7+GZMB+) from HC, to LTBI and TB.
We further verified that the depletion of CD3-CD7+GZMB+ subset in TB and found an increase in this subset
frequency after anti-TB treatment. Finally, we confirmed that changes in this subset frequency can distin-
guish patients with TB from LTBI and HC.
Interpretation: We propose that the frequency of CD3-CD7+GZMB+ in peripheral blood could be used as a
novel biomarker for distinguishing TB from LTBI and HC.
Fund: The study was supported by Natural Science Foundation of China (81770013, 81525016, 81772145,
81871255 and 91942315), National Science and Technology Major Project (2017ZX10201301), Science and
Technology Project of Shenzhen (JCYJ20170412101048337) and Guangdong Provincial Key Laboratory of
Regional Immunity and Diseases (2019B030301009). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
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1. Introduction

Tuberculosis (TB) is a chronic disease caused by Mycobacterium
tuberculosis (Mtb) infection. TB represents a major global health
problem, claiming »1.7 million lives annually [1]. As such, the World
Health Organization ranks this disease as the leading cause of death
from a single infectious agent. Nevertheless, the majority of those
infected with Mtb generate an effective immune response to elimi-
nate or control the infection; these patients remain clinically asymp-
tomatic in a state known as ‘latent TB infection’ (LTBI). A relatively
small proportion (5�10%) of patients with LTBI develop active TB.
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Research in context

Evidence before this study

Tuberculosis continues to be a critical global health problem,
which killed millions of lives each year. A major challenge for
TB control is the lack of biomarkers to distinguish active TB
from LTBI. While many efforts have been made to identify the
blood transcript profiles that define TB, the proportion of indi-
vidual immune-cell subsets in the blood can vary considerably
depending on the severity of disease or treatment exposure.
Sizeable fluctuations in subset-specific genes, particularly those
that characterize a minority cell subset, may also be overlooked
when whole blood is examined. Certain circulating cell subsets
are thought to differentially modulate the host immune
response towards Mycobacterium tuberculosis (Mtb) infection,
but the nature and function of these subsets is unclear.

Added value of this study

We performed scRNA-seq on PBMCs from HC, LTBI and TB in an
unbiased, surface-marker-free approach, to delineate the transcrip-
tomic profile of individual immune-cell subsets. Our data represent
the first scRNA-seq-based description of PBMC immune-cell sub-
sets in LTBI and TB We found 29 subsets in PMBC and identified a
large number of additional markers to these subsets, which could
be used as references for further study to investigate the role of
immune-cell subsets of PBMC in TB pathogenesis as well as protec-
tive immunity against TB. In addition, we observed a NK cell sub-
sets, CD3-CD7+GZMB+ gradually depletion from HC, to LTBI and
TB. The levels of CD3-CD7+GZMB+ is sensitive and specific to dis-
criminate active TB from LTBI and HC.

Implications of all the available evidence

Our scRNA-seq analyses confirm many important observations
made previously, and highlight key ongoing research areas and
challenges. Circulating cell subsets in HC, LTBI and TB provides
a useful framework to examine the role of cell subsets in TB dis-
ease progression. A cytotoxic NK cell subsets, CD3-CD7+GZMB+
could be used as a novel biomarker for distinguishing TB from
LTBI and HC. Further dissecting the mechanism behind dysre-
gulation of TB-associated cell subsets such as CD3-CD7+GZMB+
NK cell, might open new avenues for therapeutic intervention
against TB.
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A major challenge for TB control is the lack of biomarkers to distin-
guish active TB from LTBI, estimate disease severity, monitor drug treat-
ment efficacy, predict disease outcome (recovery or relapse) and
evaluate vaccine-induced protection[2,3]. In considering high propor-
tions of active TB with negative bacteriology, an ideal TB biomarker
should be sputum-free, reliable, high sensitivity and specificity. Blood is
the most readily accessible sample in humans with high immune cell
content. Better understanding the impact of Mtb infection on the host
defense, through which identify any underlying differences in the
immune-cell and gene expression profile in blood between healthy and
diseased conditions, is one approach to reveal TB biomarker. Indeed,
transcriptomic profiling of blood has provided an unbiased analysis and
comprehensive overview of the host factors that are perturbed in TB
[4�10]. However, bulk RNA-sequencing (RNA-seq) or microarray can-
not reflect the proportion of individual immune-cell subsets in the
blood that vary considerably depending on the status and severity of TB
disease [11,12]. Consequently, sizeable fluctuations in subset-specific
genes, particularly those that characterize a minority cell subset, may
also be overlooked.
Compared to bulk RNA-seq which only provides the average
expression signal for millions of cells, single-cell RNA sequencing
(scRNA-seq) now allows for simultaneous analysis of >10,000 single-
cell transcriptomes and thus characterization of novel cell subsets
[13�17]. Consequently, scRNA-seq can reliably identify even closely-
related cell populations [17], and reveal changes that render each
individual cell type unique, and elucidate the heterogeneity in gene
expression patterns in peripheral blood cell populations in health
and disease [7,15]. In this study, we performed scRNA-seq on PBMCs
from healthy controls (HC), LTBI and TB in an unbiased, surface-
marker-free approach, to delineate the transcriptomic profile of indi-
vidual immune-cell subsets.

2. Methods

2.1. Ethics statement

This study was approved by the Institutional Review Board of the
Shenzhen University School of Medicine, China. and informed written
consent was obtained from each participant. All experiments and
samplings were carried out in accordance with ethical and biosafety
protocols approved by the Institutional guidelines.

2.2. Subjects and clinical sample collection

Whole blood samples were collected from HC, LTBI and TB admit-
ted to the Shenzhen Third People’s Hospital (China), Shenzhen Uni-
versity General Hospital (China), Yuebei Second People's Hospital
(China) and Shenzhen Baoan Hospital (China) between Aug 2018 and
Oct 2019. The first cohort included HC (n = 2), LTBI (n = 2) and TB
(n = 3) was used for the 10£ genomics scRNA-seq. The second cohort
included HC (n = 81) and TB (n = 50) and the third cohort included HC
(n = 39), LTBI (n = 27) and TB (n = 37) were used for flow cytometry
analysis (Table S1 in the Supplementary Appendix). 11 TB patients in
the second cohort were follow-up to 3 months after anti-TB treat-
ment. At the time of enrolment, all TB patients had no record of prior
TB disease of anti-TB chemotherapy. We also recruited 73 TB patients
who received anti-TB treatment from 1�10 months (Table S1 in the
Supplementary Appendix). Diagnosis of active TB was based on clini-
cal symptoms, chest radiography and microscopy for acid fast bacilli
(AFB), sputum Mtb culture and response to anti-TB chemotherapy. A
previously established Mtb-specific IFN-g ELISPOT assay (IGRA) was
used to differentiate individuals with LTBI from uninfected HC [18].

2.3. 10£ genomics single-cell sample processing and cDNA library
preparation

PBMCs were isolated from whole blood as previously described
[19]. Cell viability was assessed by trypan blue staining and the sam-
ples (cell viability >90%) were prepared using a 10£Genomics Single
Cell 30 v2 Reagent Kit according to the manufacturer’s instructions.
Single-cell libraries were prepared as previously described [20] and
sequenced on an Illumina HiSeq X Ten system (Illumina).

2.4. Single-cell data preprocessing, gene expression quantification and
cell-type determination

For each sample, the cleaned data filtered for the low quality reads
and unrelated sequences were imported to CellRanger (version 2.2.0) and
aligned to human reference genome (hg19, GRCh37). Cells were sorted
according to the barcodes and the unique molecular identifiers (UMIs)
were counted per gene for each cell. In total, 7711�10,928 (averagely
9767) cells were captured for individual libraries, and 835�1292 (aver-
agely 1046) genes were detected with UMIs per cell (Table S2 in the Sup-
plementary Appendix). To remove the possible doublets, we removed
the top 7% cells with the highest number of UMIs and the cells with
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>3500 total expressed genes, followed by another round of doublet
check and filteringwith Scrublet [21]. The cells with<500 total expressed
genes or with >7% mitochondria-expressed genes were also removed.
With this procedure, averagely 8946 (7064�9871) cells were retained for
each sample (Table S2 in the Supplementary Appendix). Gene expression
matrices for the remaining cells were normalized to the total cellular and
mitochondrial read counts using a linear regression model, implemented
with the Seurat Regress Out function of the Seurat R package (version
2.3.4) [21]. Differentially expressed genes were selected based on a
normalized expression value between 0.0125 and 8.0, and a quantile-
normalized variance >0.4. Principle component analysis (PCA) was per-
formed and tSNE were used for dimensionality reduction [22]. Cells were
represented in a two-dimensional tSNE plane, and clusters were identi-
fied and annotated according to the marker gene composition. A marker
gene was defined as being >0.25 log-fold higher than the mean expres-
sion value in the other sub-clusters, and with a detectable expression in
> 25% of all cells from the corresponding sub-cluster. Raw sequencing
reads are available at the NCBI Short Read Archive (SRA) under the acces-
sion numbers SRR11038989-SRR11038995.

2.5. Gene set variation analysis (GSVA)

Pathway analyses were performed on the 50 hallmark pathways
annotated in the molecular signature database [23], which was
exported using the GSEA Base package (version 1.40.1). The GSVA
package (version 1.26.0) was applied with default settings to assign
pathway activity estimates to individual cells [24]. A previous strat-
egy was adopted to assess differential activities of pathways between
sets of cells, with modifications [16]. Briefly, the activity scores for
each cell were compared using a generalized linear model (GLM). The
outputs of these GLMs were visualised in heat maps.

2.6. Flow cytometry and intracellular cytokine staining

Fresh whole blood samples (200ml each) from HC, LTBI and TB were
obtained for flow cytometry. Erythrocytes were removed with lysing
solution (BD Biosciences), and the samples were first stained with the
surface markers using mAbs against CD3, CD7, CD56, CD14, CD19 (BD
Biosciences) and ghost dye (Tonbobio) for 30min at 4 °C following per-
meabilization for 30min at room temperature and then stained with
mAbs against GZMB for 30min at room temperature (BD Biosciences).
All antibodies were validated by the manufacturer for flow cytometry
application. The cells were re-suspended in 200 ml 2% paraformalde-
hyde and then acquired using FACSDiva software (BD Biosciences) and
analysed using FlowJo software version 10.

2.7. Statistical analysis

A one-way ANOVA Newman�Keuls multiple comparison test was
used to compare the differences among multiple groups. An unpaired
t-test was used to analyze the differences between two groups. All
statistical analyses were performed in GraphPad Prism (version 5.0).
Two-tailed statistical tests were conducted and a P <0.05 was consid-
ered statistically significant.

3. Results

3.1. scRNA-seq reveals new cell type markers in PMBC

We first isolated and sequenced a total of 68,369 cells from PBMC
suspensions derived from seven individuals, including two HC
(20,711 cells), two LTBI (17,185 cells), and three TB (30,473 cells).
After removing »8.5% cells that could represent doublets, empty
droplets and low-quality ones (refer to Materials and Methods), we
took forward 62,628 cells for further analysis (Fig. 1a, Fig. S1 and
Table S2 in the Supplementary Appendix). Unsupervised clustering
using the Seurat package [25] identified three distinct cell clusters
across all three groups (Fig. 1b and). Cluster 1 (»69.5% of all cells)
comprised T cells (Fig. 1c and Table S3 in the Supplementary Appen-
dix) expressing CD3D, CD3E, IL32 and CD2 (Fig. 1d�f and Fig. S3 in
the Supplementary Appendix). Cluster 2 (»17.3% of all cells) com-
prised myeloid cells expressing Lyz, S100A9, S100A8, S100A12 and
CD14 (Fig. 1c�e and Fig. S3 in the Supplementary Appendix). Cluster
3 (»13.2% of all cells) comprised B cells expressing CD79A, CD79B
and MS4A1 (Fig. 1c�e and Fig. S3 in the Supplementary Appendix).

We also identified a large number of additional markers: FCN1,
CST4, SERPINA1, MNDA, LST1 and MS4A6A for myeloid cells; BANK1,
VPREB3, FCER2 and ADAM28 for B cells; and IFITM1, GIMAP7, CD247
and LCK for T cells. (Fig. S3 and Table S4 in the Supplementary Appen-
dix). These markers might be valuable PBMC cell-specific markers for
future analyses.

3.2. Myeloid and B cells are enriched and T cells are depleted in TB

It has been reported that the frequencies of lymphocytes (T cells, B
cells and NK cells) vary are in the range of 70�90%, monocytes from 10
to 20%, while dendritic cells are rare, accounting for only 1�2% in
human [26]. Consistently, our scRNA-seq indicated that the isolated
PBMCs from the HC consisted largely of T cells (»78%), followed by
myeloid (»14%) and B cells (»8%) (Fig. 1c and Table S3 in the Supple-
mentary Appendix); these frequencies were largely similar in LTBI
(Fig. 1c and Table S3 in the Supplementary Appendix). Conversely, we
found higher frequencies of B cells (»18%) and myeloid (»23%) and a
lower frequency of T cells (»59%) in TB compared to HC or LTBI (Fig. 1c
and Table S3 in the Supplementary Appendix). These described patterns
in TB are consistent with previous reports [27�29]. In addition, the
decrease of lymphocytes in TB was further confirmed by routine blood
analysis in an independent cohort (Fig. 1g).

3.3. PBMC scRNA-seq identifies thirteen myeloid subsets

TB induces an accumulation of myeloid cells that express high levels
of the inflammatory markers S100A8, S100A9 and S100A12 [30,31]. We
therefore looked more closely at our Cluster 2 myeloid cells to determine
whether the subset frequency changed between the three donor groups
(HC, LTBI and TB). First we aimed to detect the three monocyte subsets
defined as classical (CD14+CD16�), non-classical (CD14lowCD16+) and
intermediate (CD14+CD16+) monocytes [32], scRNA-seq analysis con-
firmed the presence of these three distinct monocyte populations in all
donor groups (Fig. 2a,b and Fig. S4 in the Supplementary Appendix). We
were also able to subdivide the classical CD14+CD16- cells into six subsets
(M1-M5) based on distinct marker expression (Fig. 2c,d and Table S5 in
the Supplementary Appendix). Specifically, M1, M2 and M4 represented
inflammatory monocytes, expressing high levels of S100A9, S100A12,
RETN and S100A8 [33] (Fig. 2d,e and Fig. S5a in the Supplementary
Appendix).M3 contained inflammatory monocyte/macrophage showing
enrichment in IL1B, CCL3 and IL8 [34]. M5 cells enriched for PPBP
(CXCL7) and PF4 (CXCL4) (Fig. 2d,e and Fig. S5a in the Supplementary
Appendix), indicative of monocyte migration and autocrine, receptor-
desensitizing chemokine ligand release [35,36]. Intermediate monocytes
(M6) express high level of HLA-DPB1, HLA-DPA1 and CCL3 (Table S5 in
the Supplementary Appendix). Non-classical monocytes (M7-M9) shared
CDKN1C, RHOC and LYPD2 marker expression without S100A12 (Fig. 2d,
e, Fig. S5a and Table S5 in the Supplementary Appendix); these cells were
previously reported to belong to CD16+ (FCGR3A) monocytes [37]. We
found a DC specific marker CLEC10A [37] distributed in M6 but enriched
in M10 (Fig. S5a and Table S5 in the Supplementary Appendix), indicative
of a DC-like subset. In addition, we also found a pDC subset M11, which
specific expressed high level of pDC markers, including LILRA4, MZB1,
ITM2C and CLEC4C [37�39] (Fig. 2d,e, Fig. S5a and Table S5 in the Supple-
mentary Appendix). M12 specific enriched for mesenchymal cell-like
makers, including COL1A1, IGFBP7, COL1A2 and SERPINH1 [40] (Fig. S5a



Fig. 1. Single-cell transcriptional profiling of PBMCs from HC, LTBI and TB. (a) Schematic of experimental workflow for defining and comparing PBMC between all three donor
groups. (b) tSNE of single cell profile with each cell color-coded for sample type and associated cell type. (c) The fraction of cells for three cell type in HC, LTBI and TB. (d)Expression
of marker genes for the cell types defined above each panel. (e) The expression of known cell type discriminating genes in T, B and Myeloid from all donors.(f) Differential expression
analysis was performed comparing cells from HC, LTBI and TB within T, B and Myeloid cells. Heatmaps are shown representing the up- and down-regulated genes in T, B and Mye-
loid cells. (g) Blood routine analysis of the numbers and frequencies of monocytes and lymphocyte from HC and TB. Unpaired t-test were used and the data represent the means §
SEM. ***P < 0. 001, ***P < 0. 0001.
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Fig. 2. Myeloid clusters in PBMC from HC, LTBI and TB. (a) tSNE of single cell profile with each cell color coded for myeloid subsets (left to right): the associated cell type, the corre-
sponding status (HC, LTBI and TB) and merged all status. (b)The fraction of cells for myeloid subsets in HC, LTBI and TB. (c) Differential expression analysis was performed comparing
myeloid subsets from HC, LTBI and TB. Heatmaps are shown representing the up- and down-regulated genes in Myeloid subsets. (d) Expression of marker genes for the myeloid sub-
sets. (e) Differential expression analysis was performed comparing cells from HC, LTBI and TB within Myeloid cell subsets. (f) Differences in pathway activities scored per cell by
GSVA between the different myeloid subsets.
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and Table S5 in the Supplementary Appendix).We also find a small group
of megakaryocyte-like cells (M13; PPBP, PF4 and GNG11) (Fig. 2a�d and
Table S5 in the Supplementary Appendix) [41]. In conclusion, our scRNA-
seq revealed thirteen subsets in myeloid cells with distinct markers,
although the functions of these subsets remained to be elucidated. These
findings provided a point of reference for examining the role of myeloid
subsets in the circulating immune cells.

3.4. Four subsets of monocytes are enriched in TB

The frequency of intermediate monocyte CD14+CD16+ typically
increases in inflammatory diseases and cancers [29,42�44]. In TB,
these CD16+ circulating monocytes are more prone to produce TNF-a
and undergo cell death in response to Mtb infection [29]. Consis-
tently, we found that M6 (CD14+CD16+) monocytes were enriched in
patients with TB (2%) compared to HC (1.19%) and LTBI (0.9%) in our
cohort (Fig. 2b and Table S3 in the Supplementary Appendix). In addi-
tion, M1 (»5.6%), M4 (»4.0%) and M5 (»3.4%)subsets were also more
abundant in patients with TB than in HC (»2.3%,»1.0% and »1.7%,
respectively) and LTBI (»1.8%, »1.5% and 1.2%, respectively) (Fig. 2b
and Table S3 in the Supplementary Appendix). Pathway analysis
showed that M1 and M5 showed down-regulated Notch signaling,
Myc-Targets, suggesting that these cells are exhausted. M4 and M6
subsets had up-regulated hedgehod signaling, with strong inflamma-
tory response(Fig. 2f), suggestive of immune activity. Together, our
data confirm and extend the abundant of CD14+ cell in TB and further
reveal that three subsets of CD14+ cells (M1, M4 and M6) were spe-
cific enriched in TB. Future studies are required to reveal their func-
tions in TB.
3.5. PBMC scRNA-seq identifies five B-cell subsets

The role of B cells in combating Mtb infection is unclear, with only a
few studies explaining their function in TB [45]. Furthermore, informa-
tion on B-cell phenotype and function is limited due to difficulties in
manipulating B cells. Our scRNA-seq analysis identified six distinct B-cell
subsets, each representing different stages of B-cell development
(Fig. 3a�c and Fig. S6 in the Supplementary Appendix): B1 and B5
expressed high TCL1A, CD79A, CD79B, MS4A1 levels and lacked CD27
and CD138 expression. This expression pattern is indicative of follicular
B cells [46,47] (Fig. 3c�e and Table S6 in the Supplementary Appendix).
B2 and B4 was specifically enriched in PMAIP1(NOXA), ABCA6 and TCF4
(Fig. 3d and e, Fig. S5B and Table S6 in the Supplementary Appendix),
which is a critical mediator of B-cell development and apoptosis in acti-
vated B cells [48,49]. B3 expressed high MS4A1, CD79A, CRIP1 and IGJ
levels and low TCL1A, PMAIP1 levels, indicative of mature B cells (Fig. 3d
and e, Table S6 and Fig. S5B in the Supplementary Appendix) [47].

Studies enumerating B-cells in patients with TB disease have yielded
conflicting results [27,50,51]. In our scRNA-seq data, all five B-cell subsets
were present in all seven donors, albeit in variable proportions. Of these
subsets, B2 and B4 were enriched in patients with TB (Fig. 3b and Table
S3 in the Supplementary Appendix). We thus characterised the functions
of B2 and B4 cells by pathway analysis (Fig. 3e). GSEA analysis showed
that B2 and B4 were similar in terms of exhibiting high rates of TNFa-,
TGFb-, PI3K-AKT- signaling, but differed in terms of WNTb catenin
signaling and inflammatory response, indicating immune function differ-
ences (Fig. 3e). Together, these data reveals five B cell subsets with dis-
tinct markers in PBMC and exhausted B cells (B1) are abundant in TB. Our
data will be useful in studying the roles of B-cell subsets in TB disease.



Fig. 3. B cell clusters in PBMC from HC, LTBI and TB. (a) tSNE of single cell profile with each cell color coded for B cell subsets (left to right): the associated cell type, the correspond-
ing status (HC, LTBI and TB) and merged all status. (b)The fraction of cells for B cell subsets in HC, LTBI and TB. (c) Differential expression analysis was performed comparing B cell
subsets from HC, LTBI and TB. Heatmaps are shown representing the up- and down-regulated genes in Myeloid subsets. (d) Expression of marker genes for the B cell subsets. (e) Dif-
ferential expression analysis was performed comparing cells from HC, LTBI and TB within B cell subsets. (f) Differences in pathway activities scored per cell by GSVA between the dif-
ferent B clusters.
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3.6. scRNA-seq identifies nine CD4 and CD8 subsets and reveals an
altered T-cell subsets distribution in TB

T cells have a critical role in controlling Mtb infection in patients
with TB [52,53]. Our scRNAseq analysis detected 43,537 T cells in all
three donor groups that could be sub-clustered into 11 subsets
(Fig. 4a�d and Fig. S7). We thus attempted to identify marker genes
for each of these subsets and to assign them to known T-cell types
based on the expression of established markers reported in the Cell-
Marker database [54]. Among 11 subsets, there are 9 subsets
expression high level of CD3 (Fig. 4e). We next identified four distinct
CD4+ T-cell subsets: T1, T6, T8 and T10 (Fig. 4a,d). T1 expressed high
CCR7 levels, indicative of naïve-like CD4 T cells [55]. Both T6 and T8
expressed high levels of the activated CD4 T-cell marker LTb
(TNFSF3) [56] and other functional markers such as AQP3, GPR183
and LDHB (Table S7 in the Supplementary Appendix), which regulate
T-cell trafficking and migration [57,58]. GSEA revealed that T9 exhib-
its a high rate of myogenesis, angiogenesis, coagulation and KRAS sig-
naling, suggesting these cells are strongly activated (Fig. 4f). T6 and
T8 displayed up-regulated pathways associated with peroxisome,



Fig. 4. T cell clusters in PBMC fromHC, LTBI and TB. (a) tSNE of single cell profile with each cell color coded for T cell subsets (left to right): the associated cell type, the corresponding status (HC,
LTBI and TB) andmerged all status, (b) The fraction of cells for T cell subsets in HC, LTBI and TB. (c) Differential expression analysis was performed comparing T cell subsets fromHC, LTBI and TB.
Heatmaps are shown representing the up- and down-regulated genes in T subsets. (d) Expression of marker genes for the T cell subsets. (e) Differential expression analysis was performed com-
paring cells fromHC, LTBI and TBwithin B cell subsets. (f) Differences in pathway activities scored per cell by GSVA between the different T clusters.
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E2F- and MYC- targets and glycolysis (Fig. 4f), indicating that these
cells are exhausted. The frequencies of T1, T6 and T8 were not signifi-
cantly differences between the three donor groups (Table S3 in the
Supplementary Appendix).

We also identified five diverse CD8 T-cell subsets, including naïve
CD8 T cells (T5; CCR7) [59], cytotoxic CD8 effector T cells (T3 and T4;
GZMH, NKG7 and FGFBP2), transitional CD8 effector T cells (T11;
GZMK, KLRB1 and LYAR4) [60] and a small group of megakaryocyte-
like cells (T9; PPBP, PF4 and GNG11) (Fig. 4a�d, Fig. S5C and Table S7
in the Supplementary Appendix) [41]. The proportions of CD8 T-cell
subsets were slightly increased in HC, compared to LTBI and TB
(Fig. 4b and Table S3 in the Supplementary Appendix).
3.7. A cytotoxic NK cell subset is depleted in TB

Sub-cluster analysis also revealed two distinct clusters of NK cells: T2
and T7 (Fig. 4a�e). T2 and T7 expressed lower level of CD3 (Fig. 4e) indi-
cating that they are most likely NK cells. T2 was expressed high level of
FCER1G, GZMB, GNLY, SPON2, PRF1, CD7, MYOM2 and KLRF1 expres-
sion (Fig. S5C and Table S7 in the Supplementary Appendix), indicative
of high cytotoxic activities. T7 was enriched in GZMH, FGFBP2, GNLY
and selectively expressed KLRC2 (NKG2) suggesting the memory-like
NK cells (Fig. 4e, Table S7 and Fig. S5C in the Supplementary Appendix)
Fig. 5. Flow cytometry analysis of CD3-CD7+GZMB+ subsets in HC, LTBI and TB. (a) Gating str
HC and TB in the second cohort (HC=81, TB=50). (c) The frequency of CD3-CD7+GZMB+ in HC
CD7+GZMB+ to separate TB from HC (d, e) or LTBI (f). AUC=0.93 (d), AUC=0.96 (e), AUC=0.8
anti-TB treatment in TB patients. (g) follow-up TB patients (n = 11) and (h) TB patients receiv
multiple comparison test was used to compare the differences among multiple groups. An un
was used to analyze the differences in the follow-up patients. The data represent the means §
[61]. We found that some pathways were differentially regulated
between the NK-like cell subsets. T2 and T7 showed high allograft rejec-
tion activities and strong IFN-g and IFN-a responses, indicative of cell
activation (Fig. 4f). Although T2 and T7 showed a high level of similarity
based on the pathway analyses, the proportions of these subsets varied
between HC and patients with LTBI and TB. Specifically, T2 gradually
decreased from LTBI to TB, compared to HC; by contrast, T7 was most
frequent in LTBI (Fig. 4b). Gene Ontology enrichment analysis of the
upregulated expression genes in T2 of TB revealed that regulation of cell
death pathway were highly enriched in T2 from TB, compared to HC
and LTBI (Table S8 in the Supplementary Appendix), which may be
responsible for the depletion of T2 in TB. Taken together, our scRNA-seq
identified two NK-like subsets which are variable proportions among
three donor groups and a cytotoxic NK subset (CD3-CD7+GZMB+) with
high level of SPON2 andMYOM2 is depletion in TB.
3.8. CD3-CD7+GZMB+ subset efficiently differentiates TB from HC and LTBI

To better understand the nature of the T2 NK-cell subset, we vali-
dated T2 by flow cytometry. To do so, we used the markers CD7, CD3
and GZMB that identified from scRNA-seq data to gate the cells. We first
identified that CD3-CD7+GZMB+ cells were all CD56+ and CD14-CD19-,
supporting that T2 comprises NK cells (Fig. 5a and Fig. S8 in the
ategy of CD3-CD7+GZMB+ by flow cytometry. (b) The frequency of CD3-CD7+GZMB+ in
, LTBI and TB in the third cohort (HC=39, LTBI=27, and TB=37). (d�f) ROC curve for CD3-
5 (f). AUC, area under curve. (g,h)The frequency of CD3-CD7+GZMB+ is increased after
ed anti-TB treatment from 1 to 10 months (n = 73). A one-way ANOVA Newman�Keuls
paired t-test was used to analyze the differences between two groups. An paired t-test
SEM. **P < 0. 001, ***P< 0. 001, ****P < 0. 0001.
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Supplementary Appendix). Next, we compared the frequency of this sub-
set among HC, LTBI and TB in two independent cohorts. Results showed
that the frequency of CD3-CD7+GZMB+ cells was significantly decreased
in patients with TB, compared to HC and LTBI (Fig. 5b,c); this finding is
consistent with our original sc-RNAseq results (Fig. 4b). To further evalu-
ate the diagnostic value of this subset for TB biomarker, we performed
receiver-operating characteristic (ROC) curve analysis in these two
cohorts. ROC curve analysis of TB vs HC or TB vs LTBI indicated that CD3-
CD7+GZMB+ subset could serve as valuable biomarker, with the area
under curve being 0.93 (Fig. 5d, TB vs HC in second cohort), 0.96 (Fig. 5e,
TB vs HC in third cohort), 0.85 (Fig. 5f, TB vs LTBI in third cohort). We fur-
ther analyzed the frequency of this subset after anti-TB treatment. As
shown in Fig. 5g and h, the level of CD3-CD7+GZMB+ increased 3months
after initiation of treatment. Thus, by scRNA-seq and flow cytometry, we
confirmed CD3-CD7+GZMB+ NK cell is useful for differentiating TB from
LTBI and HC.

4. Discussion

In this study, we aimed to understand the impact of Mtb infec-
tion on circulating immune-cell subsets during TB development
through scRNA-seq of PBMC from HC,LTBI and TB. We isolated
>60,000 and performed scRNAseq followed by pathway analysis to
annotate the nature and frequencies of PBMC subsets between
donor groups. At this resolution, we distinguished three major cell
types (T cells, B cells and myeloid cells) and subsequently sub-clus-
tered these into 29 subsets based on quantitative gene expression.
Although some of the markers were already known, we identified a
large number of additional markers, including IFITM1, GIMAP7,
CD247 and LCK for T cells, BANK1, VPREB3, FCER2 and ADAM28 for
B cells and FCN1, CST4, SERPINA1, MNDA, LST1 and MS4A6A for
myeloid cells. These markers might be further explored as PBMC
cell-specific markers and use as references for further study to
investigate the role of immune-cell subsets in TB pathogenesis as
well as protective immunity against TB.

Comparing scRNA-seq datasets between HC and LTBI and TB
revealed that disease gives rise to changes in subsets of known cell
types, especially cell subsets that seem to be specific for disease, such
as M1, M4 and B2 specific enriched and T2 depleted in TB. The cellu-
lar composition of PBMCs changes during pathological stress
[62�64]. Consistently, our routine blood analysis and scRNA-seq con-
firmed that circulating immune cells frequencies change among HC,
LTBI and TB. Our PBMC cell atlas not only provides additional insights
into the cell subsets of PMBC in humans, but also provides insights
into cell subsets related to different outcome of Mtb infection.

NK cells can kill Mtb-infected cells directly or through antibody-
dependant cellular cytotoxicity (ADCC) [65]. However, NK cells were
shown to have a minimal role in host protection in a mouse model of
Mtb infection [66]. Although NK cell depletion has been noted during
HIV infection [67], many studies have shown that the frequency of NK
cells does not change in TB compared to HC or TB plus HIV co-infected
patients [64,68]. Others cell frequency between pre- and post- TB treat-
ment [62]. In line with previous reports, we also found that total NK cell
was not significantly change between TB and HC. However, no prior
studies have analysed NK cell subsets in TB. Here, we identified qualita-
tive and quantitative changes that occur in circulating NK subsets
among HC, and LTBI and TB. Interestingly, in our scRNA-seq, we found
two NK subsets (T2 and T7) differentially represented between the three
groups. T2 was gradually depletion from HC to LTBI to TB. By contrast,
T7 was most frequent in LTBI, compared to HC and TB. These two sub-
sets were specifically enriched for distinct markers, indicative of func-
tional differences. Specifically, T7 selectively expressed NKG2, an
activating NK cell receptor [69] that is critical for the pulmonary clear-
ance of bacteria [70,71]. This subset was increased in LTBI, compared to
HC and patients with TB, suggesting that this subset might be involved
in controlling Mtb infection in LTBI [68]. The depletion of T2 in TB were
further verified with two independent cohorts by flow cytometry. T2
was specifically enriched for GZMB and SPON2. SPON2 is a secreted
ECM protein [72] that binds to integrin receptors and bacterial lipopoly-
saccharide [73]; this mechanism is essential for initiating an immune
response and represents a unique pattern recognition molecule for
microbial pathogens [74]. SPON2 also functions as an integrin ligand for
inflammatory cell recruitment and T-cell priming [75,76]. This subset
may be involved in host immunity to Mtb infection. A probable scenario
of T2 depletion in human in TB is that this subset is easier to die in active
TB, as we found that the upregulated genes in T2 from TB are enrich-
ment in cell death pathway, compared to HC and LTBI.

While TB biomarker research is a highly active field, the impact of
the data thus far has been limited. Except for sputum culture, the only
WHO-endorsed tests for active TB detection are based on DNA detection
in sputum, which is not perfect in TB diagnosis as sputum is not avail-
able with some of TB patients. Here, we found that the change in
peripheral CD3-CD7+GZMB+ levels is sensitive and specific to discrimi-
nate active TB from LTBI and HC. As blood is the most readily accessible
sample in humans, we propose that CD3-CD7+GZMB+ could be used as
a novel biomarker for distinguishing TB from LTBI and HC.

There are also limitations to our study that highlight the need for
further work to optimize and expand single-cell RNA-Seq datasets for
TB. First, our scRNA-Seq dataset includes a relatively small samples
and might create gender bias due to sex of samples. Even in this small
cohort, however, we were able to identify many of know and novel
markers in PBMC subsets, and validate a subset (CD3-CD7+GZMB+) by
flow cytometry with two independent cohorts. Second, due to the
antibody availability, we could not further confirmed the changing of
some subsets with the markers from scRNA-seq in HC, LTBI and TB,
such as B and myeloid cell subsets. Third, the present study data do
not have the resolution to characterize the less-frequent immune-cell
populations. We thus suggest that these clusters are likely multiple
cell populations. For example, mucosal associated invariant T (MAIT)
cells likely fall within our myeloid and T-cell subsets, as we found the
MAIT cell marker CD161 (KLRB1) [77] distributed in T-cell subsets. Fur-
ther characterization of these subsets will require including more cells
and additional single-cell analysis tools, such as surface protein label-
ing (10£Genomics Single Cell 30 v3 Reagent Kit). These approaches
will improve our ability to detect and identify these important cell
populations in future analyses.

In describing key molecular differences among HC, LTBI and TB,
our analyses confirm many important observations made previously,
and highlight key ongoing research areas and challenges. For exam-
ple, how specific circulating cell populations change and contribute
to the development of TB disease is an ongoing topic of discussion. To
the best of our knowledge, our data represent the first scRNA-seq-
based description of PBMC immune-cell subsets in LTBI and TB. We
consider that our characterization of circulating cell subsets in HC,
LTBI and TB provides a useful framework to examine the role of cell
subsets in TB disease progression. Further dissecting the mechanism
behind dysregulation of TB-associated cell subsets such as CD3-CD7
+GZMB+ NK cell, might open new avenues for therapeutic interven-
tion against TB.
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