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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors in the
world. Currently, there are no approved targeted therapies for PDAC. Mutations in Kirsten rat sarcoma
viral oncogene homologue (KRAS) are known to be a major driver of PDAC progression, but it was
considered an undruggable target until recently. Moreover, PDAC also suffers from drug delivery
issues due to the highly fibrotic tumor microenvironment. In this perspective, we provide an
overview of recent developments in targeting mutant KRAS and strategies to overcome drug delivery
issues (e.g., nanoparticle delivery). Overall, we propose that the antitumor effects from novel KRAS
inhibitors along with strategies to overcome drug delivery issues could be a new therapeutic way
forward in PDAC.
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1. Introduction

Pancreatic cancer is the seventh most common cancer type globally and features an incidence to
mortality ratio of approximately one [1–3]. Alongside an immovable 5-year survival rate of 6–10% [2],
these dismal statistics makes pancreatic cancer one of the most difficult diseases to manage in modern
medicine. Of all pancreatic cancer types, 93% are ductal adenocarcinomas (PDAC). The main lethality
behind PDAC is the lack of early stage symptoms, resulting in disease progression to an advanced
metastatic stage at diagnosis. Extensive research into PDAC has been done, but it is yet to yield a
major breakthrough. While the scientific community continues to unearth the molecular mechanisms
involved in progression of PDAC, we still do not possess the therapeutic tools to treat it by targeting
these complex pathways.
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Currently, curative intent treatment for PDAC patients is limited to surgical removal of the
tumor [4]. However, of all the patients diagnosed with PDAC, only 20% of patients are deemed
resectable [4]. Thus, the majority of PDAC cases are managed palliatively by chemotherapeutic
approaches. The most commonly used therapeutic regimens against PDAC involve gemcitabine
and 5-fluorouracil (5-FU), both antimetabolites, which exhibit their antitumor effects by inhibiting
DNA synthesis, leading to the death of rapidly dividing tumor cells. However, recent “success” with
chemotherapy has been attained mainly through combination therapy since pancreatic tumors tend
to be highly resistant to chemotherapy. The large randomized phase III study by Von Hoff et al. [5]
compared the combination of gemcitabine and nab-paclitaxel (nab-P/G) to gemcitabine alone (G),
demonstrating an improved tumor response rate (RR) to 23%, and overall survival (OS), with 35% in
the nab-P/G group versus 22% in the G group alive at 1 year, and 9% versus 4% at 2 years, respectively.
Similarly, Conroy et al. [6] compared modified FOLFIRINOX (combination therapy of folinic acid, 5-FU,
Irinotecan and Oxaliplatin) to G monotherapy, also observing an improved RR to 31.6%, and a 43%
improvement in the survival rate (OS hazard ratio 0.57, p < 0.001), but at the cost of a significant increase
in toxicity and a corresponding detriment in quality of life. Both these regimens were adopted as
significant advances, and thus went on to be evaluated in the adjuvant settings. Here, Conroy et al. [7]
demonstrated an improved OS rate at 3 years of 63.4% with adjuvant modified-FOLFIRINOX compared
with 48.6% with G alone (OS HR 0.64, p = 0.003), but at the expense of greater toxicity, 75.9 % versus
52.9%, respectively. Additionally, in the adjuvant setting, in the APACT trial [8], nab-P/G failed to show
an increase in the primary endpoint of investigator-assessed disease-free survival, but the interim OS
was 40.5 months (nab-P/G) versus 36.2 months (G) (HR, 0.82; 95% CI, 0.680–0.996; p = 0.045).

While these improvements are positive steps forward, the survival period and rates are only
marginally extended for the toxicity trade-offs. Moreover, the “sledgehammer” approach of adjuvant
combination chemotherapy (applicable to FOLFIRINOX and to a lesser extent nab-P/G) can only be
applied to highly selected fit patients following curative surgery. PDAC is thus still widely considered
a chemotherapy-resistant disease where urgent high impact therapeutic breakthroughs applicable to
broader patient populations are required.

2. KRAS Inhibitors as Novel Anti-Cancer Agents for PDAC

PDAC is known to be a highly aggressive disease that usually features a highly mutated genetic
landscape. The most commonly mutated genes in PDAC includes Kirsten rat sarcoma viral oncogene
homologue (KRAS), cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein 53 (TP53), and mothers
against DPP homolog 4 (SMAD4) [9]. A specific oncogenic mutation of KRAS is known to be the first
mutational change leading to the initiation of precancerous lesions in the pancreas [10,11]. In its
wild-type state, KRAS is a membrane-bound GTPase that relays growth signals to the nucleus via the
MAPK and PI3K pathways through GTP binding [12]. Activated receptor tyrosine kinases (RTKs),
like epithelial growth factor receptor (EGFR), recruit guanine nucleotide exchange factors (GEFs) to
promote the exchange of KRAS-bound GDP into GTP [13]. Oncogenic KRAS mutants remain bound to
GTP in an active state and continue to perpetually exert cellular growth signaling [14].

KRAS is widely considered as one of the most frequently mutated oncogenes across all neoplasms
(~30%) and appears in over 90% of PDAC [12]. It most frequently mutates at codon 12 (i.e.,
G12A/C/D/F/L/R/S/V), which accounts for 98% of mutations, with G12D being the most common (51%),
followed by G12V (30%), G12A/C/S (2% each), and G12L/F (<1%) [15]. In addition, less frequent (<1%)
mutations are also observed at codon 13 (i.e., G13C/D/P/S) and codon 61 (Q61H/K/R) [15]. A recent
study demonstrated a strong selective pressure in the acquisition of the mutant KRAS allele in a
PDAC mouse model, with two thirds of cancers demonstrating amplification of the mutant KRASG12D

allele [16]. Moreover, allelic gain of mutant KRASG12D also correlated with an associated loss of the
KRASWT and increased metastatic potential [16].

KRAS is a 21-kDa protein with a nucleotide-binding site that is unsuitable for competitive
inhibition and lacks deep hydrophobic pockets for allosteric inhibitor binding [15,17]. Interestingly,
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studies have also elucidated transient pockets on the protein surface, which might be suitable for the
binding of small molecule inhibitors [18–20]. Recently, Marín-Ramos et al. [21] reviewed the KRAS
inhibition strategies developed over the past four decades, where they highlighted that the struggle
for an effective inhibitor stems from the inability of agents to effectively and efficaciously bind to
small binding pockets, coupled with a highly competitive GTP concentration, rendering the KRAS
protein undruggable. This problem inspired other possible indirect inhibitory routes involving the
downstream targets of KRAS: RAF, MEK, and subsequently ERK. However, MAPK pathway inhibitors
found an unexpected upregulation of the corresponding PI3K pathway, lacked efficacy, and exhibited
high toxicity [22,23]. Currently, there are no KRAS inhibitors that have made it past early phase clinical
trials. As such a common contributor to PDAC pathogenesis, it is understandable why inhibition of
KRAS or these pathways is deemed as a priority.

Recently, there have been some breakthroughs that have exploited KRAS as a therapeutic target,
with promising prospects of developing a novel therapeutic approach for PDAC treatment. In 2018,
a structure-based design study by Janes et al. [24] on the KRASG12C S-IIP-binding site pioneered
and reinvigorated the search for KRAS inhibition through the discovery of a covalent compound,
ARS-1620. This study demonstrated both in vitro efficacy and in vivo tumor regression from ARS-1620
and revealed novel KRAS inhibition. This result has refocused the spotlight back on KRAS as a
potential druggable target and inspired the search for a much-desired breakthrough. Furthermore,
Canon et al. [25] expanded the success of ARS 1620 to develop the superior compound named AMG
510, which was structurally very similar to ARS-1620. AMG 510 utilized the irreversible occupation of
the His95 groove near the cysteine pocket to maintain a high level of inactive KRAS. The extensive
study investigated in vitro, in vivo, and clinical assessments of this novel compound. They observed
an almost complete inhibition of KRASG12C and subsequent downstream MAPK signaling in metastatic
pancreatic and lung cancer cell lines (Mia-PaCa and NCI-H358). AMG 510 does not bind to wild-type
KRAS or alter the cell viability of non-KRASG12C mutated tumors, indicating that it would be
selective for mutant KRASG12C tumors. Following this initial success, the in vivo efficacy of AMG 510,
either alone or in combination with PD 0325901 (MEK inhibitor) or carboplatin, was assessed using
xenograft or syngeneic mouse models. Significant tumor regression was observed with AMG 510 alone,
with a more potent effect demonstrated with combination therapy. The researchers, using a syngeneic
mouse model, then incorporated a programmed cell death-1 antibody to block the immune checkpoint
and demonstrated that 90% of the mice experienced a complete tumor regression. The preliminary
clinical studies included four patients half responded with a >50% tumor shrinkage and one of them
achieved a complete response. This small clinical trial provided supporting evidence to demonstrate
the power of KRAS inhibition and the potential for compounds like AMG 510 to be developed
further. These encouraging results have led AMGEN to initiate a phase I/II clinical trial involving 533
participants with KRASG12C mutations suffering from various advanced solid tumors, investigating
the efficacy of AMG 510 as monotherapy or in combination with an anti-PD-1 immune checkpoint
blocker. The initial results from this clinical trial are promising, with all patients (locally advanced or
metastatic NSCLC patients treated with multiple failed prior therapies) treated at the highest/target
dose (960 mg) achieving disease control (54% demonstrating partial response and 46% demonstrating
stable disease) [26]. Only 35.3% of patients reported treatment-related adverse events, which were
predominantly grade 1 and 2 nausea and vomiting [26]. Although these results are encouraging for
cancers that majorly harbor KRASG12C mutations (e.g., lung cancers [27]), their utility for PDAC is
limited, with only ~2% KRASG12C mutation observed [15]. Nonetheless, these studies will stimulate
similar drug discovery initiatives targeting KRASG12D and KRASG12V mutations, which constitute
~80% of the KRAS mutations in PDAC [15].

It should also be mentioned that AMG 510 in the Canon et al. study exhibited EGFR accumulation
upon its inhibition of KRAS. This observation was in direct concordance with previous studies [24,28,29],
where MEK inhibitors potentiated HGF- and EGF-induced AKT pathway upregulation. It is understood
that this is a compensatory homeostatic mechanism to sustain growth signaling when cells are subjected
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to MAPK interference. As this interaction has been observed across multiple studies, it must be
investigated further. If not managed effectively, this counter mechanism could diminish the efficacy of
KRAS inhibitors. To overcome this clinical issue, MAPK and PI3K/AKT inhibitors have been combined
but also shown to have consistently reported severe toxicity [30,31], and hence, this is not considered as
an alternative option currently. For instance, a randomized phase II trial compared the combination of
Selumetinib (MEK inhibitor) and MK-2206 (AKT inhibitor) to modified FOLFIRINOX as a second-line
therapy for metastatic PDAC patients [32]. Unfortunately, their efficacy was inferior to FOLFIRONIX
and the toxicity greater [32]. Currently, there are approximately 10 ongoing clinical trials for MEK1/2
inhibitors (selumetinib, cobimetinib, and trametinib) for PDAC and it will be important to assess their
outcomes before considering the clinical utility of MEK1/2 inhibitors for PDAC.

The adaptive response to KRAS inhibition, either by direct inhibition of mutant KRAS or via
inhibition of the downstream signaling, is also shown to be mediated through upregulation of the
pro-survival autophagic pathway [33,34]. Interestingly, studies have demonstrated the synergistic
potential of KRAS- and autophagy-inhibitors in a variety of PDAC models [33,34]. Other mechanisms
of adaptive resistance response to mutant KRAS inhibition have been discovered recently, such as the
production of new mutant KRASG12C, reactivation of the MAPK pathway, and inability to inhibit the
PI3K-AKT pathway [35–38]. A recent study also identified collateral dependencies upon KRASG12C

inhibition, which can be simultaneously targeted to enhance the susceptibility of tumors to direct
KRASG12C inhibition [39]. Future clinical studies, utilizing combination studies of mutant KRAS
inhibitors with inhibitors of these adaptive response mechanisms [35–39], will hold potential for the
development of a potent and effective therapy for cancers harboring KRAS mutations.

Interestingly, AMG 510 is not the only novel KRAS inhibitor that has displayed clinical potential
that has surfaced in the past couple of years. In 2019, a study by McCarthy et al. [40] also discovered a
small molecule KRAS inhibitor, Compound 11, using a structure-based drug design approach and a
variety of cellular and biophysical assays. Compound 11 is an allosteric pyrazolopyrimidine-based
inhibitor that displayed high, sub-micromolar, affinity binding to an allosteric p1 pocket of both
wild-type and mutant KRAS subtypes but not HRAS or NRAS. Compound 11 significantly disrupted
KRAS signaling with downstream Raf, and hence, blocked the MAPK growth pathway in a way not
achieved before. Since each cancer phenotype features a different ratio of oncogenic KRAS subtypes,
the authors postulated that this allosteric inhibition will not be limited to certain cancer subtypes as it
unexclusively targets wild-type and mutant (KRASG12C/D and KRASQ61H) GTP-bound KRAS subtypes
and can be used across a range of tumor types as a first-line therapy. The study was conducted in four
oral and four lung cancer cell lines, with the latter known to be aggressive in nature, and features
frequent KRAS mutation. This provides promise to the potential applicability of compound 11 in the
treatment of other cancers with KRAS mutations, such as PDAC. Additionally, phosphorylated AKT
levels were slightly decreased upon compound 11 treatment and indicate a suppressive interaction
with the AKT pathway. This feature seems very important as it demonstrates an advantage over the
previous studies mentioned in this article [24,28,29], which suffered from increased AKT pathway
activation upon KRAS inhibition.

Recently, another novel compound MRTX849, developed by Mirati Therapeutics [41], has entered
clinical trials as a selective covalent KRASG12C inhibitor. MRTX849 is structurally and functionally
similar to AMG 510 in the way that it binds to KRAS and has also showed promising potency in a
range of cell lines, including lung and pancreatic cancers. In fact, the compound was able to exhibit
significant antitumor activity as a monotherapy in these cell lines. Among those examined, the IC50

value of three non-mutant KRAS cell lines were significantly higher than the mutant cells. Thus, similar
to AMG 510, this suggests that the presence of KRASG12C is required for MRTX849 activity. Phase I
clinical trials of the single agent were associated with a partial response in two patients with advanced
cancers (lung and colon). Further, recent results from this clinical trial have shown a partial response in
four patients and stable disease in the rest of the evaluable patients (n = 12) at the time of analysis [26].
These preliminary observations with KRAS inhibitors provide hope for their use in PDAC.
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3. Drug Delivery to PDAC

As well as a high rate of resistance to drug treatment, PDAC has the added complexity of
impaired tissue drug delivery issues [42,43]. As pancreatic tumors are often late-stage solid tumors,
they contain a thick stromal compartment, which can be difficult to perfuse [43]. These tumors also
tend to adapt to the stressful microenvironment with a low blood supply and become less reliant on
it [43]. These features provide a major barrier for any kind of drug since less blood flow to the cells
means a lesser chance of the drug reaching the target tumor site, and even if the compound enters the
tissue through the semi-permeable neovascular membranes, the thick stroma prevents it from reaching
the core tumor mass [43]. Not only is the actual delivery process difficult, but drugs like gemcitabine
also suffer from biochemical and physiological issues, such as a very short plasma half-life and fast
cellular degradation [44,45]. The combination of these features adds another level of complexity to
PDAC drug treatment.

An emerging cooperation between nanoparticles and chemotherapy that has been extensively
explored involves an anti-cancer compound that can piggy-back onto a nanoparticle for enhanced
entry to the tumor site [46]. Nanoparticles are biocompatible and non-toxic molecules less than
50 nm in size that either entrap, adsorb, or attach to the active compound [46]. In a broad-scale
review, Birhanu et al. [47] recently highlighted the prospects of nanotechnology in PDAC specializing
in gemcitabine administration. The most successful nanoparticle variants were chitosan, gold,
and albumin bound to gemcitabine, all of which were able to potentiate the anti-cancer efficacy
of gemcitabine [47]. Gemcitabine combination with paclitaxel bound to albumin (nab-paclitaxel)
is a common currently used chemotherapeutic regimen in PDAC treatment. Binding paclitaxel to
130-nm albumin particles allows it to cross the endothelial cell barrier more efficiently, allowing the
administration of a higher dose while significantly enhancing the antitumor effects in combination
with gemcitabine [5,48].

Other potential methods of tackling the tumor microenvironment are anti-fibrotic drugs. A dense
stromal compartment is commonly found surrounding the core of the pancreatic tumor and,
as mentioned previously, can act as a barrier against therapeutic entry and influence tumor progression
as a supporting matrix [43]. This layer is formed from a diverse range of cell types that have
been recruited by the tumor to assist in their survival [49]. The majority of the stroma, however,
consists of fibroblasts, which are overactivated and cause an increase in the extracellular matrix (ECM)
deposition [49]. This forms a tight ECM, which constricts nerve endings and local capillaries [49].
Methods of targeting fibroblasts have been investigated and found success by inhibiting the fibroblast
activation protein (FAP), the driving force in ECM production [50,51]. Since fibroblasts have a relatively
low activity under normal conditions and the PDAC stroma is highly active, antifibrotic drugs have
displayed selectivity towards the PDAC stroma. An anti-fibrotic compound called halofuginone
displayed in vitro and in vivo effectiveness against PDAC, which resulted in stromal breakdown,
immune cell infiltration, and necrotic effects on cancer cells [52]. An alternative targeting method by
Teichgräber et al. [53] used a human antibody, ESC11, and was able to fully deplete FAP to reduce
neoplastic cells’ motility and migration. As the stroma is a major part of the pancreatic tumor’s
composition, reducing the outer mass will allow for chemotherapeutics to penetrate the tumor more
effectively and suppress the supporting cells.

Most anti-cancer agents are designed via the targeting of a critical core mechanism, resulting in
potent anti-cancer activity under pre-clinical settings, but they usually tend to struggle in clinical trials
from delivery and bioavailability issues. The prospect of nanoparticles and anti-fibrotic drugs could be
an answer to the struggle against underwhelming PDAC therapy due to these critical clinical issues.

4. Conclusions

There is a big void to be filled in frontline PDAC therapy; here, “targeted” therapies and KRAS
inhibitors appear to be very promising. Combining the antitumor effects from innovative new KRAS
inhibitors like AMG 510 with other agents, nanoparticles, or other auxiliary processes that can overcome
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the PDAC biochemical and tissue delivery issues holds hope for a new therapeutic way forward
in PDAC.
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