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The size of reference population is an important factor affecting genomic prediction.
Thus, combining different populations in genomic prediction is an attractive way to
improve prediction ability. However, combining multireference population roughly
cannot increase the prediction accuracy as well as expected in pig. This may be
due to different linkage disequilibrium (LD) pattern differences between population. In
this study, we used the imputed whole-genome sequencing (WGS) data to construct
LD-based haplotypes for genomic prediction in combined population to explore the
impact of different single-nucleotide polymorphism (SNP) densities, variant
representation (SNPs or haplotype alleles), and reference population size on the
prediction accuracy for reproduction traits. Our results showed that genomic best
linear unbiased prediction (GBLUP) using the WGS data can improve prediction
accuracy in multi-population but not within-population. Not only the genomic
prediction accuracy of the haplotype method using 80 K chip data in multi-
population but also GBLUP for the multi-population (3.4–5.9%) was higher than
that within-population (1.2–4.3%). More importantly, we have found that using the
haplotype method based on the WGS data in multi-population has better genomic
prediction performance, and our results showed that building haploblock in this
scenario based on low LD threshold (r2 = 0.2–0.3) produced an optimal set of
variables for reproduction traits in Yorkshire pig population. Our results suggested
that whether the use of the haplotype method based on the chip data or GBLUP
(individual SNP method) based on the WGS data were beneficial for genomic prediction
in multi-population, while simultaneously combining the haplotype method and WGS
data was a better strategy for multi-population genomic evaluation.

Keywords: genomic prediction, whole-genome sequencing, haplotype, combined populations, linkage
disequilibrium

Edited by:
Lingyang Xu,

Institute of Animal Sciences (CAAS),
China

Reviewed by:
George R. Wiggans,

Council on Dairy Cattle Breeding,
United States
Chao Ning,

Shandong Agricultural University,
China

*Correspondence:
Jiaqi Li

jqli@scau.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal
Frontiers in Genetics

Received: 25 December 2021
Accepted: 02 May 2022
Published: 09 June 2022

Citation:
Ye H, Zhang Z, Ren D, Cai X, Zhu Q,
Ding X, Zhang H, Zhang Z and Li J

(2022) Genomic Prediction Using LD-
Based Haplotypes in Combined

Pig Populations.
Front. Genet. 13:843300.

doi: 10.3389/fgene.2022.843300

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8433001

ORIGINAL RESEARCH
published: 09 June 2022

doi: 10.3389/fgene.2022.843300

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.843300&domain=pdf&date_stamp=2022-06-09
https://www.frontiersin.org/articles/10.3389/fgene.2022.843300/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.843300/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.843300/full
http://creativecommons.org/licenses/by/4.0/
mailto:jqli@scau.edu.cn
https://doi.org/10.3389/fgene.2022.843300
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.843300


1 INTRODUCTION

Genomic selection (GS), proposed by Meuwissen et al. (2001),
uses single nucleotide polymorphism (SNP) to estimate the
breeding values in younger individuals, which is with higher
accuracy than pedigree-based parent average for many
economically valuable traits. At present, GS has been widely
applied in animal and plant breeding that has the advantages
of decreasing the generation interval and accelerating the genetic
progress (Spelman et al., 2013; Desta and Ortiz, 2014).

The size of the reference population is an important factor
affecting GS. Generally, as the number of animals in the reference
population increases, the accuracy of GS also increases
(Meuwissen et al., 2001; Vanraden et al., 2009; Lund et al.,
2011). For a small reference population, some studies have
proposed to apply GS by combining multiple populations
(Hayes et al., 2009; Brendum et al., 2011; Pryce et al., 2011).
However, by simply combining the population, the accuracy of
GS was limited or even slightly decreased (Erbe et al., 2012; Song
et al., 2017; Song et al., 2019), which was probably due to the
different linkage disequilibrium (LD) pattern differences between
the population (Lei et al., 2013). Therefore, the accuracy of GS for
multi-population can be improved by considering the LD
consistency fragments across the genome between multi-
population.

Some studies proposed to construct haplotypes as explanatory
variables for GS (Edriss et al., 2013; Cuyabano et al., 2014;
Meuwissen et al., 2014). A haplotype block (haploblock) is a
region defined in the genome that consists of a set of neighboring
SNPs that are more likely to be inherited together. Compared
with the individual SNP markers, one main potential advantage
of haploblocks is that each haploblock may be in higher LD than
any individual nearby SNP with the causative mutations (Jonas
et al., 2016; Hess et al., 2017). Therefore, the construction of
haplotypes for GS can make up for the deficiency of multi-
population GS, thus theoretically improve the accuracy of
multi-population GS. In addition, constructing haplotypes to
fit as covariates rather than individuals SNP could increase the
prediction accuracy by improving the ability to capture short-
range epistatic effects (Yong et al., 2018).

The number of SNP markers a haploblock should contain and
for which regions of the genome the haploblocks should be
defined are needed to be considered when building haplotype
blocks. Some methods to define haploblock for GS are simply
setting windows with a fixed number of contiguous SNPs (Hayes
et al., 2007), a fixed range of base pairs on the genome (Hess et al.,
2017; Sharifi et al., 2021), and a fixed-length in centimorgans (Sun
et al., 2015), collectively termed as fixed-length haploblocks,
which are in equal sizes of segments in the genome. Some
complicated methods to define haploblock for GS attempt to
incorporate the LD pattern across the genome (Cuyabano et al.,
2015a; Won et al., 2021), for example, setting minimum pairwise
LD cutoffs to group SNPs into haplotypes, termed variable-length
haploblocks, which are in unequal sizes of the segments in the
genome and may result in less explanatory variables than fixed-
length haploblocks (Cuyabano et al., 2014). In theory, the
variable-length haploblocks are more advantageous for GS

than fixed-length haploblocks because the variable-length
haploblocks group SNPs that are most likely to be inherited
together across the genome.

However, the methods that have been proposed to construct
haplotypes are based on low-density or high-density SNP panels,
while the research on constructing haplotypes based on whole-
genome sequencing (WGS)markers has rarely been proposed yet.
The accuracy of genomic prediction was expected to increase by
using the WGS data, which can provide more potential causative
polymorphisms compared to the chip data (Meuwissen and
Goddard, 2010; Druet et al., 2014; Hayes et al., 2014). In
addition, a previous study suggested that fitting explanatory
variables for haplotype alleles based on the WGS data may
play an important role in the genomic prediction (Hess et al.,
2017). Therefore, it is interesting to evaluate the accuracy of
genomic prediction using the haplotype method based on
WGS data.

The objective of this study was to evaluate the performance of
multi-population GS, so as to explore the impact of SNP densities,
variants representation (SNPs or haplotype alleles), and reference
population size on the prediction accuracy. In our knowledge, this
is the first study to construct haplotypes based on LD for multi-
population GS at the sequence data level. When assessing the
accuracy of GS, the training populations consist of two Yorkshire
pig populations with different genetic backgrounds, and we
separately validate each population, which was not included in
the training populations.

2 MATERIALS AND METHODS

2.1 Population and Phenotypes
The multi-population consists of two Yorkshire pig populations,
termed as LM and XD, which were the progeny of American
Yorkshire and British Yorkshire pigs, respectively, and sampled
from two breeding farms in China. In the LM population, there
were 5,907 sows, in which 1,641 were genotyped. In the XD
population, there were 4,842 sows, in which 762 were genotyped.
Through the principal component analysis (PCA), we found that
population structure of the two pig population was different, and
there was obvious stratification of population structures
(Figure 1A). The r2 value (a common pairwise LD measures)
between the two population is approximate, which indicates that
the genetic backgrounds are also similar between the two pigs
population. However, the mean correlation of r between two pigs
population is only 0.538, which indicates that the LD consistency
between two pigs populations was not high (Figure 1B). The
detailed information can be found in a previous study (Song et al.,
2019). Both in the LM and XD population, the phenotypic data
consist of the total number born alive (NBA) and litter size
(TNB), which were used for subsequent analysis (Table 1).

In our study, we used the corrected phenotypic values as
response variables in the genomic prediction analyses. Based on
the pedigree, using a single-trait repeatability model to estimate
the breeding values (EBV), which was used to derived the
corrected phenotypic values for these traits. The
abovementioned model used to estimate EBV is documented
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by the Center of National Swine Genetic Evaluation of China. The
model is as follows:

y � Xb + Za +Wpe + e, (1)
where y is a vector of original phenotypic values; b is the vector of
the fixed effects, including herd-year-season, in which the season
is divided into four levels; a is the vector of additive genetic
effects; pe is the vector of random permanent environmental
effects; e is the vector of residual errors;X represents an incidence
matrix relating to fixed effects; Z and W represent an incidence

matrix relating to additive genetic effects and random permanent
environmental effects to phenotypic records, respectively. The
additive genetic effects a, random permanent environmental
effects pe, and residual errors e follow the distributions as:
g ~ N(0 , σ2aA), pe ~ N(0, σ2peI) and e ~ N(0 , σ2eI), σ2a is
the additive genetic variance; σ2pe is the variance of random
permanent environmental effects; σ2e is the residual variance; I
is an identity matrix; and A is a relationship matrix constructed
from the pedigree information. After adjustment by a single-trait
repeatability model, the corrected phenotypic values (yc) for each

FIGURE 1 | Population analysis between LM and XD. (A) Principal component analysis (PCA) for two population. (B)Genetic structure analysis for two population.

TABLE 1 | Summary of statistics between the two populations.

Population Trait Number of individuals Counts of observations Mean Sd Birth year Genotyped animals

LM NBA 5,907 19,660 9.83 3.03 2004 to 2016 1,641
TNB 5,907 19,660 10.85 3.06

XD NBA 4,842 18,369 9.88 2.94 2004 to 2015 762
TNB 4,842 18,369 10.35 2.95

NBA: total number born alive; TNB: litter size.

TABLE 2 | The comparison of prediction performance of the two methods.

Val Ref Trait Method Acc Regression coefficient Genetic variance Residual variance

LM LM NBA GBLUP 0.453 0.808 1.643 0.569
LM LM NBA GHBLUP_SNP1 0.453 0.807 1.642 0.569
LM Combined NBA GBLUP 0.459 0.857 1.193 0.491
LM Combined NBA GHBLUP_SNP1 0.458 0.857 1.193 0.491
LM LM TNB GBLUP 0.450 0.801 2.285 0.751
LM LM TNB GHBLUP_SNP1 0.450 0.801 2.284 0.751
LM Combined TNB GBLUP 0.460 0.861 1.634 0.624
LM Combined TNB GHBLUP_SNP1 0.460 0.861 1.634 0.624
XD XD NBA GBLUP 0.392 0.888 0.601 0.260
XD XD NBA GHBLUP_SNP1 0.392 0.888 0.601 0.260
XD Combined NBA GBLUP 0.387 0.740 1.193 0.504
XD Combined NBA GHBLUP_SNP1 0.387 0.740 1.193 0.504
XD XD TNB GBLUP 0.431 0.880 0.806 0.259
XD XD TNB GHBLUP_SNP1 0.431 0.880 0.806 0.259
XD Combined TNB GBLUP 0.439 0.785 1.636 0.653
XD Combined TNB GHBLUP_SNP1 0.440 0.785 1.635 0.653

Val: validation set of population; Ref: reference set of population; Acc: the prediction accuracy; NBA: total number born alive; TNB: litter size; GHBLUP_SNP1: the method of treating a
single SNP, as a haplotype.
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trait were calculated as EBV plus the average estimated residuals
over the parity of a sow. We used the DMUAI module in the
DMU software (Madsen et al., 2006) for implementing the model
and calculating EBV and EBV reliability.

2.2 Genotype Data and Imputation
A total of 2,403 sows selected from the LM (1,641) and XD 762)
population were genotyped using the PorcineSNP80 BeadChip
(Illumina, San Diego, CA). SNPs with a minor allele frequency
(MAF) < 1%, genotyping call rate <90%, a Hardy–Weinberg
equilibrium test p-value < 1 × 10−7, and the individuals whose
their EBV reliability was <0.3 were removed. After quality
control, the final marker dataset included 56,463 SNPs and all
the genotyped individuals were retained.

In a previous work (Song et al., 2019), the 80 K chip was
imputed to the WGS genotypes based on a combined
reference panel using Beagle 4.1 (Browning and Browning,
2009) and the average imputation accuracy was 0.92 across all
variants. The combined reference panel consists of 289 pigs
from six breeds, including 46, 766, 110 SNPs as reference data
for imputation (Yan et al., 2017). After genotype imputation,
to control the quality of WGS data, the variants were selected
on autosomes and the SNPs with a MAF <1% were removed.
In addition, for all the random pairs of SNPs that were in high
LD with each other (r2 ≥ 0.999), we kept one of them. After
the quality control, the final WGS dataset included 8,339,801
SNPs for the following analysis. The quality control was
implemented using PLINK(v1.90) (Chang et al., 2015).

2.3 Haplotype Construction
In our study, the genotypes were phased using Beagle 4.1
before constructing the haplotypes. The method to define
haplotype was based on LD between SNPs, and the
haploblocks were built separately for each chromosome.
The start and end points of haplotypes were designated by
the way in which r2 between every two SNPs in the
haploblocks was greater than or equal to a threshold value,
and the continuous SNPs within the point formed
haplotypes. For any pairs of SNPs, the r2 value was
computed using PLINK(v1.90) and was derived from the
following equation:

r2 � [cov(gi, gj)]
2

var(gi)pvar(gj)
, (2)

where gi and gj are the genotypes which are coded as 0, 1, or 2 for
SNP i and j. The r2 value is standardized from zero to one, and the
greater the r2 value is, the higher is the LD between SNPs. The
zero r2 value indicates no LD and the one r2 value indicates
complete LD between loci. We defined a haploblock by grouping
the SNPs if the LD between SNPs in this haploblock were greater
than or equal to the threshold, which was set into nine levels
(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, and 0.9). The extreme zero r2

threshold indicates that a whole chromosome is selected as a
haplotype block, while one indicates each individual SNP is a
haplotype block.

2.4 Haplotype Allele Re-Code
The haplotype was constructed from the continuous SNPs
throughout the region of the genome, and the haplotype
alleles were treated as a pseudomarker which were recoded as
0,1, and 2 by using numerical dosage coding strategies
(Meuwissen et al., 2014), which were based on the copy
number of the haplotype alleles carried by the individual. The
recoding of the haploblock formed by two biallelic SNPs (such as
A1/A2 and B1/B2) was detailedly illustrated in Supplementary
Table S1. After recoding, the haplotype genotype matrix (the
element is 0,1,2) was generated, in which the dimension was
N×H, where N was the number of individuals and H was the total
number of haplotype alleles. To investigate the influence of
recoding, this study also treated a single SNP as a haplotype
based on the 80 K chip data, which was then recoded as 0,1, and 2
and compared with a traditional genotype matrix based on SNP.

2.5 Genomic Prediction Model
Genomic prediction for NBA and TNB was performed, by
constructing the relationship matrix for either SNPs or
haplotypes in three models. The first model is the genomic
best linear unbiased prediction (GBLUP) model, which was
described by Vanraden (2008). The second model is the
genomic haplotype-based best linear unbiased prediction
(GHBLUP) model. The last model is based on a linear mixed
model with two random genomic effects, which we termed GH +
GBLUP.

2.5.1 GBLUP Model
The GBLUP model was described as

y � 1u + Zg + e, (3)
where y is a vector of the corrected phenotypic values; u is the
overall mean; 1 is a vector of ones; g is the vector of additive
genetic effects; e is the vector of residual errors; and Z
represents an incidence matrix relating to the additive
genetic values to phenotypic records. We assumed that the
additive genetic effects g and residual errors e as random
effects following the distributions as: g ~ N(0 , σ2gG) and
e ~ N(0 , σ2eI), σ2g is the additive genetic variance; σ2e is the
residual variance; I is an identity matrix; and G is a genomic
relationship matrix constructed from SNP. In our study, the
genomic relationship matrix G was calculated from the
following equation:

G � MMT

2∑pi(1 − pi)
, (4)

where M is a matrix of the centered SNP genotypes; MT is a
transpose matrix of M; and pi is the MAF of the ith SNP.

2.5.2 GHBLUP Model
GHBLUP is similar to GBLUP except for the genomic
relationship matrix GH, which was constructed from the
haplotypes. The genomic relationship matrix GH was
calculated from the following equation:
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GH � MHMT
H

2∑pi(1 − pi)
, (5)

where MH is a matrix of centered haplotype alleles; MT
H is a

transpose matrix of M; pi is the frequency of the ith haplotype
allele.

2.5.3 GH + GBLUP Model
Considering that there are higher LD between the blocked SNPs
than non-blocked SNPs (single SNP that lie outside the
haploblocks because of their low LD with other SNPs). Thus,
the third model was based on a linear mixed model with two
random genomic effects, one was captured by the haplotype
alleles (constructed from blocked SNPs) and the other was by
the non-blocked SNPs.

The GH + GBLUP model was described as:

y � 1u + Zgblock + Zgnon−block + e, (6)

where y, 1, u , and e are the same as in GBLUP; gblock is the vector
of genomic values captured by the haplotype alleles (constructed
from blocked SNPs); gnon−block is the vector of genomic values
captured by non-blocked SNPs; Z is an incidence matrix that
links gblock and gnon−block to y. We assumed that the additive
genetic effects gblock and gnon−block as random effects following the
distributions as: gblock ~ N(0 , σ2gblock

GBlock) and
gnon−block ~ N(0 , σ2gnon−blockGNon−block), σ2gblock

and σ2gnon−block are
the additive genetic variance, respectively, based on the
haplotype alleles and non-blocked SNPs; GBlock and GNon−block
are the same as in Eq. 4, Eq. 5, respectively. The variance
components in GBLUP, GHBLUP, and GH + GBLUP were
estimated by using the R package regress (Clifford and
Mccullagh, 2012).

2.6 Evaluation of Prediction Models
The performance of genomic predictions by using different
predictors (haplotype allele and individual SNP) was
compared. These comparison was based on different
genotype data dimensions (80 K SNP and WGS data),
different population sizes (single population and multi-
population), and different predictive models (GBLUP,
GHBLUP, and GH + GBLUP).

To evaluate the performance of genomic prediction, the
entire dataset was divided into training population and
validation population according to the birth data. In this
study, 223 and 196 younger animals from LM and XD were
assigned to the validation population, whose birth dates
were after December 2013 in LM population and after
April 2013 in XD population, respectively. The remaining
older animals were assigned to the training population,
which was used to build prediction models. The accuracy
of genomic prediction was calculated as the correlation
between the predicted genomic estimated breeding value
(GEBV) and the corrected phenotypic values in the
validation.

3 RESULTS

3.1 Haplotype Stastistics
The details about the statistics of haplotypes constructed based on
80 K SNP and WGS data in the single-population and multi-
population are presented in Figure 2 and Supplementary Figure
S1. The haplotype statistics include the haplotype alleles (variables),
haploblocks, and blocked SNPs at different r2 value levels. With the
increase of r2, the number of haplotype alleles, haploblocks, and
blocked SNPs decrease, indicating that the higher the LD level, the
more difficult to build haplotypes, and when the threshold
approaches 1, a haplotype is approximately composed of an
individual SNP. In addition, there are no significant differences in
haploblocks and blocked SNPs between the combined and single
population, even fewer in the combined population, but there are
importantly more haplotype alleles in combined population than in
single populations, suggesting that more information can be gained
from the haplotype constructed in the combined population. In our
results, the haplotype statistics based on both 80 K chip data and
sequence data follow the abovementioned rules.

3.2 Genomic Prediction Accuracy
In this study, we evaluated the accuracy of GS of two
reproduction traits in eight different scenarios which differed
in the maker density (80 K chip or WGS), the reference
population sizes (single population or combined population),
and explanatory variables (SNP or haplotype) ((Figure 3)).

3.2.1 Comparison of Accuracies of GS Between Chip
Data and WGS Data
Our result showed that the accuracies of genomic predictions
within-population using the WGS data were inferior to 80 K chip
data in most scenarios. When the maker density was increased
from the 80 K chip data to the WGS data, for LM population, the
accuracy of GBLUP had a small increase for NBA (0.453–0.461)
and no change for TNB, while the accuracy of GHBLUP and GH
+ GBLUP had worse performance on r2 < 0.3 for both trait. For
the XD population, there were no obvious differences in the
accuracy of GBLUP, while the accuracy of GHBLUP and GH +
GBLUP had small decrease both for NBA and TNB.

3.2.2 Comparison of Accuracies of GS Between
Individual SNP and Haplotype Alleles
When using the within-population as the reference population,
the accuracy of genomic prediction using the haplotype alleles
was increased compared to the individuals SNP whether using
80 K chip data or WGS data.

For using 80 K chip data to predict LM population, the accuracy
of GHBLUP and GH + GBLUP had significant improvement
compared to GBLUP. The maximum increase is 5.7 and 6.0% for
NBA and 5.1 and 5.3% for TNB. For predicting XD population using
80 K chip data, the accuracy of GHBLUP and GH + GBLUP had a
slight increase compared to GBLUP. The maximum increase is only
0.8 and 2.3% for NBA and 1.9 and 3.2% for TNB.

When genomic prediction using the WGS data, for predicting
LM population within-population, the accuracy of GHBLUP and
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GH + GBLUP had respectively an increase of 1.3 and 2.4% for
NBA and of 1.3 and 2.9% for TNB compared to GBLUP. While
for predicting XD population within-population, the accuracy of
GHBLUP and GH + GBLUP had no change for NBA and TNB.

3.2.3 Comparison of Accuracies of GS Between Single
Population and Combined Population
When the reference population was enlarged from the single
population to combined population for genomic prediction using
the 80 K chip data, the accuracy of GBLUP in LM population

slightly increased from 0.453 to 0.450 to 0.459 and 0.460 for NBA
and TNB, respectively. For the XD population, the accuracy of
GBLUP decreased for NBA and increased for TNB.
Correspondingly, when using the WGS data, the accuracy of
GBLUP had importantly improved from 0.461 and 0.451 to 0.475
and 0.470 for LM population and from 0.394 and 0.436 to 0.417
and 0.473 for XD population.

When genomic prediction used the haplotype alleles based on
80 K chip data, for LM population, the accuracy of GHBLUP and
GH + GBLUP in combined population both had improved at all

FIGURE 2 | Summary of single and combined population haplotype statistics at the chip data level. The bar plot of the counts of blocked SNPs, haploblocks, and
haplotype alleles in different LD threshold value, respectively.

FIGURE 3 |Genomic prediction accuracy of all scenarios with different r2 thresholds. The left side shows the trend of accuracy predicted using the 80 K chip data
while the right side using the WGS data. The different colored lines represent different prediction methods in which blue, orange, and purple line represent GBLUP,
GHBLUP, and GH + GBLUP, respectively. The solid line represents the prediction accuracy trend of combined population, while the dotted line represents the single
population.
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r2 thresholds compared to single population, while the
maximum accuracy of GHBLUP and GH + GBLUP both
increased 1.3% for NBA and 1.7% for TNB. For the XD
population, the accuracy of GHBLUP and GH + GBLUP in
combined population had improved at most of the r2

thresholds for NBA, and at all r2 thresholds for TNB
compared to single population while the maximum accuracy
of GHBLUP and GH + GBLUP increased 1.3 and 1.2% for NBA
and 4.3 and 3.1% for TNB, respectively. Correspondingly,
based on the WGS data, when the reference population was
enlarged from single population to combined population, for
the LM population, the maximum accuracy of GHBLUP and
GH + GBLUP increased to 2.1 and 1.5% for NBA and 3.5 and
2.8% for TNB. For the XD population, the maximum accuracy
of GHBLUP and GH + GBLUP increased to 6.1 and 6.3% for
NBA and 8.7 and 9.1% for TNB, respectively.

When genomic prediction using the 80 K chip data in
combined population is carried out, compared to GBLUP,
the accuracy of GHBLUP and GH + GBLUP had important
improvement at all r2 thresholds for NBA and TNB for the LM
population, while the maximum accuracy of GHBLUP and GH
+ GBLUP increased to 5.7 and 5.9% for NBA and 4.6 and 4.9%
for TNB, respectively. Correspondingly, when used the WGS
data, GH + GBLUP had the highest accuracy on the three
models and the accuracy of GHBLUP had slightly increased
compared to GBLUP, and the maximum accuracy of GHBLUP
and GH + GBLUP increased to 0.4 and 0.8% for NBA and 0.6
and 1.5% for TNB, respectively. For the XD population, we
found a similar trend. When used the 80 K chip data,

compared to GBLUP, the maximum accuracy of GHBLUP
and GH + GBLUP increased to 3.4 and 4.9% for NBA and 4.3
and 4.6% for TNB, respectively. Correspondingly, when used
WGS data, the maximum accuracy of GHBLUP and GH +
GBLUP increased to 0.5 and 1.0% for NBA and 0.2 and 1.1%
for TNB, respectively.

According to our results, GH + GBLUP had the best
performance on genomic prediction and using GH + GBLUP
based on the WGS data in multi-population displayed better
genomic prediction accuracy for most scenarios. In this scenarios,
we found that the building haploblock based on low LD threshold
(r2 = 0.2–0.3) had the highest genomic prediction accuracy
among the different LD thresholds for reproduction traits in
Yorkshire pig population.

3.3 Regression Coefficient of Genomic
Prediction
The regression coefficient of genomic prediction was assessed
using the slope of the regression of the adjusted phenotype on
the GEBV. In our study, the regression coefficients were
presented in Figure 4. When the reference population was
the combined population for predicting the LM population,
the regression coefficients were closer to 1 compared with
within-population. However, the trend of regression
coefficient was reversed in predicting the XD population. In
addition, regression coefficients using the WGS data based on
three methods almost had no change for different LD levels
whether predicted in within-population or multi-population.

FIGURE 4 |Regression coefficient of all scenarios with different r2 thresholds. The left side shows the trend of accuracy predicted using the 80 K chip data while the
right side using the WGS data. The different colored lines represent different prediction methods in which blue, orange, and purple line represent GBLUP, GHBLUP, and
GH + GBLUP, respectively. The solid line represents the prediction accuracy trend of combined population, while the dotted line represents the single population.
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3.4 Influence of Haplotype Allele Re-Code
In our study, when a single SNP was treated as one haplotype
(GHBLUP_SNP1), and compared with classical GBLUP, our
results showed that the accuracy and regression coefficient of
GHBLUP were equal to GBLUP (Table 2). In addition, the
genetic variance and residual variance of GHBLUP were also
consistent with GBLUP.

4 DISCUSSION

For the multi-population, the previous studies had found that
using the individual SNP method based onWGS data (Iheshiulor
et al., 2016; Ye et al., 2020) or haplotype method based on chip
data (Cuyabano et al., 2015b; Hess et al., 2017), which enhances
the ability to capture LD between the variant and QTLs, can
effectively improve the accuracy of genomic prediction. In our
study, we evaluated the impact of the WGS data, haplotype
method, and combined population on GS. For within-
population GS, our results presented, using the WGS data,
were inferior to 80 K chip data in most scenarios, while using
the haplotype method can improve the accuracy compared to
SNP whether using the 80 K chip data or WGS data. For multi-
population GS, our results were consistent with previous reports
that using the WGS data or constructing haplotype can improve
the prediction accuracy. In addition, we found that
simultaneously combining haplotype method and WGS data
could yield better performance for the multi-population
genomic prediction.

4.1 Genomic Prediction Performance of
Different Marker Densities
In this study, we compared the accuracy of genomic prediction
based on the 80 K chip SNP data vs the WGS data to evaluate the
GS performance of different marker densities. According to
previous studies, it is theoretical that the accuracy of genomic
prediction is expected to improve by using the WGS data
compared with using the chip SNP data (Meuwissen and
Goddard, 2010; Druet et al., 2014; Hayes et al., 2014), because
the WGS data contains higher marker density, more causal
mutations, which results in a high level of LD between SNPs
and QTL. In the simulation data, the prediction accuracy
increased within a population based on the WGS data
(Macleod et al., 2014; Yan et al., 2017). However, these
predicted results using the real data have not been observed in
practice, for example, a recent study found that the accuracy of
genomic prediction was not increased when using the imputed
sequence data in Holstein Friesian cattle (van Binsbergen et al.,
2015). Our result presented that the WGS data had better
performance than the chip data when using the GBLUP
method for the within-population genomic prediction. The
similar result was reported in Brown Swiss Cattle for the trait
of nonreturn rate in heifers (Frischknecht et al., 2018).

For the GHBLUP and GH + GBLUP model, our result also
presented that GS within a population based on the WGS data
had decreased the accuracy compared with the chip data. This is

consistent with the result reported in Chinese Simmental beef
cattle (Li et al., 2021). It is possible that increasing SNP density
can produce the number of identified haplotype alleles, which
includes some rare haplotype alleles, and thus shrink the effect of
these alleles toward zero when calculating the genetic effect
(Gianola, 2013). Hence, the haplotype approach may not
improve the prediction accuracy within a population when
marker density increased from the chip data to the WGS data.

A previous study has shown that the higher the imputation
accuracy, the higher is the prediction accuracy (Nasir et al., 2015).
The imputation accuracy is influenced by several factors
including marker density, imputation algorithms, reference
population size, and the structure of the target population
(Hayes et al., 2012; Ye et al., 2018). Thus, we consider that the
abovementioned factors to impute genotype is an attractive
strategy for genomic prediction. In addition, whether the
better predictive performance based on the data after
imputation depends on several factors such as LD, MAF, and
genotyping errors (Iwata and Jannink, 2010; Zhang and Druet,
2010; Ye et al., 2019).

4.2 Potential Impact of the Haplotype
Method on Genomic Prediction
In our study, we compared the genomic prediction performance
of three models (GBLUP, GHBLUP, and GH + GBLUP). To date,
the genomic prediction by constructing haplotype based on the
WGS data in pigs has rarely been investigated.

For the prediction based on the chip data within-population,
our results showed that GH + GBLUP method had the best
performance of prediction, followed by GHBLUP, which
indicated that the explanatory variables based on haplotypes
had certain advantages compared to the individual SNP. Some
studies have reported similar findings while using haplotypes in
genomic predictions. In the study of Hess et al. (2017), their
results showed that the prediction accuracy increased when used
the fixed-length haplotype than single SNP in admixed
New Zealand dairy cattle population. Cuyabano et al. (2014,
2015a) used LD information to construct haplotype and reported
that haplotype method based on the average LD threshold (r2 ≥
0.45) can increase the prediction accuracy for milk production
traits in the Nordic Holstein population. Similarly, Teissier et al.
(2020) reported that using LD-haplotype also had a better
prediction performance in French dairy goats. The advantage
of haplotype method can be explained by the assumption that
haplotypes are in stronger LD with the causative mutation than
the individual SNP, because a QTL is in complete LD with a
multimarker haplotype while not in complete LD with any
individual SNP. The haploblocks consist of multiple loci, when
a mutation occurred in a loci of a haploblock, SNP allele
frequencies had changed little while haplotype allele
frequencies had changed more, so the haplotypes can better
capture mutations compared to single loci (Curtis et al., 2012).
In addition, the fitting explanatory variables for haplotype alleles
instead of individual SNP can improve the ability to capture
short-range epistatic effects between the loci within the same
haploblock (Yong et al., 2018).
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As for the WGS data within-population, our result shows that
fitting covariates for haplotypes rather than SNPs could increase
the prediction accuracy but the increase is slight compared to the
chip data. The increase becoming smaller can be explained as
mentioned previously that the increased SNP density can produce
the number of identified haplotype alleles, which include some
rare haplotype alleles, and thus shrink the effect of these alleles
toward zero when calculating the genetic effect (Li et al., 2021).
Another reason could be explained that when the marker density
is high enough, the physical location range of a haploblock
constructed based on LD may approximate a single marker
locus, resulting in the LD between haplotype and QTL may be
close to the LD between a single marker and QTL. In addition, the
capture of mutations and short-range epistatic may be ineffective
because too many SNPs with high LDmay be considered as noise
(Song et al., 2019). Thus, the advantage of the haplotype method
compared to the individual SNP may become weak for the WGS
data. One possible way to solve this problem is to reasonably
reduce the dimension of the WGS data. Previous studies
suggested that preselected potential causal markers or QTL
obtained from the WGS data can improve the accuracy of
genomic prediction (Raymond et al., 2018; Song et al., 2019;
Ye et al., 2020). Although these studies are based on the individual
SNP, the prediction based on haplotype using this strategy is
expected to improve the accuracy. Gao et al. (2017) had reported
that incorporating gene annotation into the haplotype-based
method according to gene positions, which reduce the density
of WGS data, had better performance in genomic prediction in
the Drosophila Genetic Reference Panel. Thus, the evaluation of
the impact of constructing haplotype based on the preselected
WGS data is worth to be further explored in livestock.

In our study, the result shows that the GH + GBLUP method
had the best performance on genomic prediction based on both
the WGS data and chip data. Considering that there are higher
LD between blocked SNPs than non-blocked SNPs, so the GH +
GBLUP was based on a linear mixed model with two random
genomic effects which is similar to the Kernel Averaging model
(Gustavo et al., 2010), giving weight to each random genomic
effects according to their capture of genetic variation. Therefore,
the possible reason why the prediction of accuracy of GH +
GBLUP is higher than GHBLUP is that GH + GBLUP can give an
appropriate weight to the blocked SNPs and non-blocked SNPs.

4.3 Combined Population Genomic
Prediction
The size of the reference population and the relationship between
the reference and validation populations are two key factors that
can improve the multi-population genomic selection, which had
been reported in some previous studies (Brendum et al., 2011;
Lund et al., 2011).

Our result shows that the multi-population genomic
prediction, using GBLUP method based on the 80 K chip data,
achieves a higher accuracy compared with the within-population
prediction, except for predicting NBA in XD population. The
reason why the phenomenon occurs in that XD population with
NBA can explain that the phase difference is large enough

between a tagging SNP and a large QTL in the two population
for the target trait (Saatchi et al., 2014), and the GBLUP method
lack power to capture the population-specific effects. This is one
of the factors that limit the improvement in prediction accuracy
for some traits when predicting in multi-population.

For the haplotype method based on the 80 K chip data, our
result shows that the accuracy of multi-population genomic
prediction had improved compared with the within-
population, including predicting NBA in XD population as
opposed to using the GBLUP method. This may be explained
by the following fact: when the constructed haplotype is in multi-
population, the population-specific haplotype alleles are
generated, which are present in one population and not in
another. Fitting covariates for haplotype have a better ability
to capture the population-specific effects than SNPs if the
population-specific haplotype alleles contain population-
specific QTL. Hess et al. (2017) reported that combined
admixed reference population can increase the prediction
accuracy when using the fixed-length haplotype method
compared to the within-population prediction. Cuyabano et al.
(2015b) also reported a similar result but using the variable-
length haplotype. This indicated that using the haplotype method
in multi-population prediction may potentially improve the
accuracy.

In our study, we evaluated the haplotype method for multi-
population genomic prediction based on the WGS data. For multi-
population genomic prediction using the haplotype method, our
result shows that prediction based on the WGS data has better
performance compared to the chip data, which is contrary to the
result of single-population using the haplotype method. It is
possible that as the size of the reference population increases,
the information of phenotypic data becomes sufficient to detect
causative mutations by the haplotype alleles, which reduces the
number of rare haplotype whose effects are shrunk toward zero,
while increasing the number of effective haplotype alleles. This
allows us to accurately estimate the genomic breeding value of
animal, and improve the prediction accuracy. In addition,
incorporating causative mutations into the haplotypes will
enhance the ability to detect similar QTL which segregates
between population. Compared with the SNP panels, the WGS
data will improve the ability to differentiate the sequence-resolution
haplotype alleles within a haploblock (Hess et al., 2017), while all the
true haplotype alleles including causative mutations in the dataset
can theoretically be identified between multi-population at the
sequence level. It would better assess what extend genetic
variance due to haplotype effects is specific within-population or
common among populations. In addition, we have found that using
the haplotype method based on the WGS data in combined
population has better GS performance in most scenarios, and in
this scenario that building haploblock based on low LD threshold
(r2 = 0.2–0.3) produced an optimal set of variables for reproduction
traits in Yorkshire pig population. Similar as previous study
(Cuyabano et al., 2014), our result also revealed that to achieve
better prediction accuracy, the optimum LD threshold could be
considered when using the haplotype method for reproduction
traits in Yorkshire pig population, which can be used as reference
for genomic prediction considering LD.
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4.4 Impact of Haplotype Allele Re-Code by
Using Numerical Dosage Coding Strategies
of GS
In our study, to investigate the impact of haplotype alleles recode,
we compared the performance of GHBLUP_SNP1 and GBLUP
based on the 80 K chip data. There was no difference between the
performance of GHBLUP_SNP1 and GBLUP, which was what we
expected. A single SNP locus is a biallelic locus, the information it
carries is determined by the frequency of two alleles on its biallelic
loci. The frequency of haplotype alleles is equal to the frequency
of alleles on the biallelic loci, while treating a single SNP as a
haplotype and was recoded by using numerical dosage coding
strategies, which are based on the copy number of haplotype
alleles carried by the individual. In other words, the SNP locus
information is determined by the frequency of alleles, while the
haplotype information is determined by the copy number of the
haplotype alleles, which is divided by population size and is equal
to the frequency of alleles on biallelic loci. Therefore, recoding by
using numerical dosage coding strategies did not increase or
decrease the information of loci, which has no impact on GS.

4.5 Variable-Length Versus Fixed-Length
Haplotype
Our study evaluated haplotypes termed as variable-length haplotype
that were based on different LD levels thresholds in two Yorkshire pig
population. The methods to define haploblock that group together
consecutive SNPs or a fixed range of SNPs across the genome, termed
fixed-length haplotype. The variable-length haplotype involving the
calculation of LD usually reflects the characteristics of the genome
better than the artificially defined fixed-length haplotype. A previous
study has reported different recombination across the genome in
many species (Nachman, 2002), indicating that the variable-haplotype
is more likely inherited together, which suggests that the haploblock
length for genomic prediction may differ across the genome. Another
reason why the optimal haploblock lengths may differ across the
genome is the artificial selection which has resulted in some regions
around QTL undergoing selective sweeps (Hess et al., 2017).
Therefore, the variable-length haplotype theoretically has better
performance on genomic prediction than the fixed-length
haplotype, while the variable-length haplotype is more complicated
and time-consuming. In addition, the optimal size defining haplotype
for genomic prediction depends on the distance between the SNPs and
the LD structure of the population (Calus et al., 2008). Thus, the
optimal fixed-length or LD threshold for genomic prediction needs to
be evaluated for each dataset independently.

5 CONCLUSION

Our study suggested that using the haplotype method based on the
chip data can effectively increase the prediction accuracy of both
within-population and multi-population compared to the individual
SNP method, especially had better prediction performance in multi-
population. Comparing to the chip data, using the individual SNP

method based on the WGS data can improve the accuracy of
prediction in multi-population but not within-population. In
addition, we found that simultaneously combining the haplotype
method and WGS data could yield better performance for multi-
population genomic prediction, and in this scenario that it was
optimal to determine low LD threshold to build haploblocks for
the reproduction traits in Yorkshire pig population.
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