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Abstract: The aim of this study was to characterize 27 feed additives marketed as mycotoxin 

binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly,  

27 mycotoxin binders, commercially available in Belgium and The Netherlands, were 

selected and characterized. Characterization was comprised of X-ray diffraction (XRD) 

profiling of the mineral content and d-spacing, determination of the cation exchange capacity 

(CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) 

and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate 

the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free 

concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin 

binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration 

of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at 

the three pH levels. A low free concentration of ZEN was demonstrated using binders 

containing mixed-layered smectites and binders containing humic acids. 
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1. Introduction 

The contamination of feed with mycotoxins is a continuing feed safety issue, leading to economic 

losses in animal production [1]. Consequently, a variety of methods for the decontamination of feed has 

been developed, but the addition of mycotoxin detoxifiers to the feed is the most commonly-used  

method [2,3]. The additives used for this purpose can be divided into two groups: binders and modifiers. 

Mycotoxin binders aim to prevent the absorption of the mycotoxins from the intestinal tract of the  

animal by adsorbing the toxins to their surface. Mycotoxin binders are generally clay- (inorganic) or  

yeast-derived (organic) products [3]. Mycotoxin modifiers, on the other hand, aim to alter the chemical 

structure of the mycotoxins and, consequently, reduce their toxicity. Mycotoxin modifiers are usually of 

microbiological origin comprised of whole cultures of bacteria or yeasts, as well as specifically extracted 

components, such as enzymes [4]. 

The extensive use of specialized additives to diminish the effects of mycotoxins has led to the 

establishment of a new group of feed additives in 2009: “substances for reduction of the contamination 

of feed by mycotoxins: substances that can suppress or reduce the absorption, promote the excretion of 

mycotoxins or modify their mode of action” [5]. However, most of the mycotoxin detoxifiers are 

registered as technical additives, feedstuff or digestibility enhancers, as those are more easily being 

registered in comparison to the claim of a mycotoxin detoxifier. At the moment, only two products are 

registered as being a mycotoxin detoxifier [6], whereas a wide variety of products indirectly claiming 

mycotoxin binding or modifying abilities is available. In addition, European legislation does not require 

full transparency with regard to the content of these technical additives. 

Although many different types of ingredients are known to be used in additives marketed as 

mycotoxin binders (in brief, binders), no studies are available that provide a comprehensive overview of 

their exact composition. In most reports, the description of the products is limited to the product name 

and an entry of a generic name, such as hydrated sodium calcium aluminosilicate (HSCAS) or bentonite [3]. 

Despite this generic nomenclature of commercially-available binders, several physicochemical 

properties have been identified as having a possible correlation with adsorption of mycotoxins and might 

therefore be used to categorize the different available products. These characteristics originate from soil 

science and comprise cation exchange capacity (CEC), exchangeable K+, Na+, Mg++ and Ca++, acidity, 

linear swelling, mineral fraction and relative humidity [7].  

Exchangeable cations neutralize the interlayer charges in phyllosilicates and are involved in the 

binding mechanism of aflatoxin B1 [8,9]. The CEC is a measure of the amount of exchangeable cations, 

whereas the different types of exchangeable base cations (K+, Na+, Mg++ and Ca++) have different 

properties in terms of their affinity for the clay and osmolarity [10]. Although a correlation between the 

binding properties of mycotoxins and CEC values is not documented in the literature, this parameter is 

cited by manufacturers when discussing the binding properties of inorganic mycotoxin binders.  

The pH of the binder can provide insight into the saturation of a clay with exchangeable base cations, 

which results in a pH of seven or higher. An increase in pH can be due to the solvation of the 
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exchangeable base cations or the presence of carbonates. A low pH is indicative for exchangeable Al3+ 

or the presence of acidic functional groups, e.g., humic acids.  

Adsorption to clays is not limited to the surface of the clay particles, but extends also to the interlayer 

space of the clay. This interlayer space, characterized by the d-spacing, can be determined with X-ray 

diffraction (XRD) and is restrictive for the formation of one or more adsorbent layers. This space can 

increase if the clay swells, thereby increasing the number of binding sites [11]. Hydration of the minerals 

plays an important role in this process, as well, since it is related to the osmotic power of the  

mineral [12,13] and, hence, the ability to hydrate the interlayer space.  

Non-enzymatic organic compounds used in feeds are mostly products derived from yeast cell walls 

or organic mineraloids, such as leonardite and lignite, which are a rich source of humic and fulvic acids. 

Adsorption to these compounds can occur through hydrophobic interactions [14]. Such interactions were 

proposed for the binding of the antibiotic, oxytetracycline, to montmorillonites in the presence of 

dissolved organic matter [15]. To determine the mineral fraction of a sample, the organic compounds 

are discarded by dry combustion.  

With regard to the adsorption of mycotoxins, zearalenone (ZEN) is a secondary metabolite produced 

by several fungi of the Fusarium genus. It has lipophilic properties and exerts its effects on the 

reproductive system of animals [16,17]. Sabater-Vilar et al. described the ZEN-adsorption of three 

smectite-based minerals, six humic substances, four yeast-derived detoxifiers and six commercial 

products, which include, according to the commercial brochures, two yeast products, three mineral 

binders and a mixture of clay and yeast products. A large variation in the adsorption of ZEN is seen in 

all of the types of binders [18]. Yiannikouris et al. compared the ZEN binding properties of a yeast cell 

extract and a mineral binder and concluded that the yeast-based product had better adsorption properties 

than the mineral in the higher concentration range [19]. Avantaggiato et al. studied 19 binders and also 

found a large variation in ZEN adsorption [20]. These results indicate that ZEN can be adsorbed,  

but only by a limited number of binders, and there is a large variation in binding percentage. Therefore,  

ZEN binding can be used as model to evaluate which physicochemical properties are related to the 

binding of rather lipophilic mycotoxins. All of the studies cited above used activated carbon or charcoal 

as the positive control and found binding percentages of over 90%. 

The first aim of this study was to identify the qualitative composition of 27 commercially-available 

feed additives marketed as mycotoxin binders by XRD analysis and to determine the following 

physicochemical properties: CEC, exchangeable K+, Na+, Mg++ and Ca++, acidity, swelling, mineral 

fraction, presence of carbonates (HCl effervescence test) and relative humidity. 

The second aim was to discuss the relation between the observed free concentration of ZEN after 

incubation with the mycotoxin binders and the physicochemical properties of these binders.  

2. Results and Discussion 

2.1. Physicochemical Characterization 

The physicochemical properties of the 27 binders are presented in Table 1. These samples represent 

the vast majority of additives marketed as mycotoxin binders in Belgium and The Netherlands and are 

available in most European countries. All binders contain one or more mineral constituent, and some 
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products contain organic compounds. Most binders are mixtures of different mineral constituents, and 

most prevalent compounds are smectites, such as montmorillonite. The ratio of exchangeable base 

cations varies widely, even among products with similar compounds. The non-mineral content of a 

binder with a low mineral fraction (i.e., Sample Numbers 5, 12, 15 and 16) was confirmed by information 

provided by the manufacturer of the binder, who labelled these products as containing humic acids, 

leonardite or yeast-derived binders.  

2.2. Zearalenone Adsorption Screening and Correlation with Physicochemical Characteristics 

The in vitro ZEN adsorption is assessed using a high throughput screening model applied at different 

pHs, which are representative for the gastro-intestinal tract of most monogastric animals. Similar models 

were successfully applied in previous in vitro experiments [18–24]. Major differences include the use of 

other buffer systems or media and the construction of adsorption isotherms. The use of other buffers or 

media may influence chemical equilibria, whereas adsorption isotherms may reveal information on the 

binding mechanism, affinity and capacity. This study focused on the determination of the free 

concentration of ZEN in phosphate buffered saline (PBS) after incubation with each of the 27 binders. 

The amount of ZEN and mycotoxin binder used for incubation is in accordance with the ZEN-binder 

ratio of 1:20,000, which is based on the maximum guidance level for ZEN in European piglet feed of 

0.1 mg/kg [25] and the conventional binder inclusion level of 2 g/kg feed. The individual results of three 

replicates for the different pHs are presented in a ranked manner (Figure 1) to facilitate comparison 

between the binders. One-way analysis of variance (ANOVA) for the different binders indicates 

significant differences in free ZEN concentration (p < 0.05). Next, the free ZEN concentration was 

correlated with the physicochemical characteristics. The correlation matrix of free ZEN concentration 

and the physicochemical properties is presented in Table 2.  

 

Figure 1. Free zearalenone (ZEN) concentration after incubation of ZEN with 27 mycotoxin 

binders at three different pHs (Sample Numbers 1–27). Individual results of three replicates 

are shown. AC represents activated carbon, which is included as the positive control. 
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Table 1. Physicochemical characteristics of 27 additives marketed as mycotoxin binders and available in Belgium and The Netherlands. Mean 

values of triplicate analyses are presented.  

Sample 

Number 
XRD Result HCl 

d-spacing 

(10−10 m) 

CEC  

(cmolc kg−1) 
pH 

Ca2+  

(cmolc kg−1) 

K+  

(cmolc kg−1) 

Mg2+  

(cmolc kg−1) 

Na+  

(cmolc kg−1) 

Swelling 

(mL) 

MF  

(%) 

RH 

(%) 

1 Zeolite + 9.5 172.9 8.3 16.8 102.4 0.8 24.6 2.1 94.4 4.6 

2 Sepiolite, smectite + 12.4 31.9 7.7 7.3 1.5 9.8 1.3 7.7 96.0 8.7 

3 Clinoptilolite − 10.2 120.3 7.7 8.4 58.7 1.2 10.2 2.5 97.7 4.9 

4 Zeolite − 12.5 413.5 10.3 n.d. 35.4 0.1 363.3 0.0 93.8 7.1 

5 Humic substance, quartz − 26.2 185.9 4.2 7.2 1.5 3.4 19.2 2.5 15.8 10.6 

6 Mixed layer montmorillonite, quartz − 19.1 51.0 7.7 10.0 10.7 3.8 21.8 2.7 78.6 3.4 

7 Montmorillonite ++ 12.8 82.9 9.8 12.5 2.8 4.0 63.8 43.7 97.1 10.1 

8 Montmorillonite − 15.5 100.5 3.7 19.2 1.8 3.0 0.8 2.2 95.9 13.3 

9 Sepiolite, montmorillonite, quartz (t), dolomite (t), albite (t) + 12.1 39.3 8.2 8.2 0.6 10.2 0.6 7.9 96.3 5.4 

10 Montmorillonite, sepiolite, quartz (t), calcite (t) ++ 12.4 56.7 8.5 16.9 0.6 8.0 26.9 9.1 96.9 9.1 

11 Montmorillonite, quartz (t), calcite (t), feldspars (t) ++ 12.6 64.1 9.3 19.6 3.0 6.7 54.3 31.8 98.3 11.9 

12 Humic substance, quartz − 25.9 166.4 4.4 1.3 11.5 0.9 18.4 2.5 6.0 12.4 

13 Sepiolite, montmorillonite, calcite (t), quartz (t) + 12.2 22.1 7.1 17.7 2.2 9.3 4.4 5.9 80.3 6.7 

14 Montmorillonite − 9.2 109.4 5.6 21.7 17.2 1.9 4.2 2.9 92.8 7.2 

15 Calcite, dolomite, organic material ++ 6.9 12.6 5.7 35.5 19.1 4.2 26.0 7.5 38.9 5.1 

16 Thenardite, montmorillonite, quartz, organic material  14.8 7.8 4.1 2.3 26.0 7.0 131.8 4.0 27.3 6.4 

17 Montmorillonite − 12.6 71.8 8.0 9.5 4.0 2.7 49.5 7.6 90.2 9.8 

18 Clinoptilolite − 10.2 176.6 7.4 15.2 44.7 2.0 6.0 2.5 96.3 4.7 

19 Quartz, mica, montmorillonite, kaolin − 14.7 59.7 7.9 18.1 1.9 9.0 0.3 4.3 95.4 7.9 

20 Mica, kaolin, quartz, montmorillonite + 14.7 59.6 7.9 14.4 2.5 8.7 0.6 3.5 97.0 9.0 

21 Mixed layered smectite + 12.4 23.7 9.9 13.3 0.7 19.2 47.7 24.2 97.5 7.5 

22 Mica, calcite, smectite + 15.5 77.9 8.0 33.9 1.8 4.1 0.9 4.3 88.6 11.4 

23 Montmorillonite, sepiolite, calcite (t) ++ 12.4 46.5 7.9 24.2 1.4 4.7 55.2 8.6 92.7 7.3 

24 Montmorillonite, mica, feldspars − 12.3 7.0 6.2 8.1 12.9 3.3 4.9 3.8 94.8 5.2 

25 Calcite, montmorillonite (t) ++ 13.1 26.1 6.6 55.8 10.7 2.4 11.6 3.7 97.0 3.0 

26 Mixed layered montmorillonite, quartz, feldspars − 21.5 27.9 7.7 9.3 1.4 2.6 4.9 2.5 98.0 2.0 

27 Montmorillonite − 12.7 111.7 9.5 8.7 1.3 4.0 69.5 5.7 86.8 13.2 

−, + and ++ indicate minor, moderate and strong reaction in the HCl-effervescence test; n.d., not detectable; CEC, cation exchange capacity; MF, mineral fraction; RH, relative humidity;  

(t), indicates trace amounts. 
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Table 2. Correlation matrix of the free zearalenone (ZEN) concentration and the 

physicochemical properties of the 27 mycotoxin binders.  

Parameters 
Free ZEN  

concentration pH 2.5 

Free ZEN  

concentration pH 6.5 

Free ZEN  

concentration pH 8.0 

Average free ZEN 

concentration 

Free ZEN  

concentration pH 2.5 

R 1 0.887 ** 0.874 ** 0.948 ** 

Sig. - 0.000 0.000 0.000 

Free ZEN concentration  

pH 6.5 

R 0.887 ** 1 0.955 ** 0.979 ** 

Sig. 0.000 - 0.000 0.000 

Free ZEN concentration  

pH 8.0 

R 0.874 ** 0.955 ** 1 0.976 ** 

Sig. 0.000 0.000 - 0.000 

Average free ZEN 

concentration 

R 0.948 ** 0.979 ** 0.976 ** 1 

Sig. 0.000 0.000 0.000 - 

d-spacing 
R −0.631 ** −0.632 ** −0.659 ** −0.662 ** 

Sig. 0.000 0.000 0.000 0.000 

Swelling 
R 0.090 0.122 0.182 0.137 

Sig. 0.654 0.545 0.364 0.495 

CEC 
R 0.319 0.237 0.266 0.282 

Sig. 0.104 0.234 0.179 0.153 

pH 
R 0.192 0.285 0.357 0.290 

Sig. 0.339 0.149 0.067 0.142 

Ca2+ 
R 0.257 0.258 0.256 0.266 

Sig. 0.205 0.204 0.207 0.189 

K+ 
R 0.394 * 0.379 0.360 0.389 * 

Sig. 0.042 0.051 0.065 0.045 

Mg2+ 
R −0.399 * −0.316 −0.227 −0.321 

Sig. 0.039 0.108 0.254 0.102 

Na+ 
R 0.302 0.240 0.267 0.278 

Sig. 0.125 0.227 0.178 0.160 

RH 
R 0.082 −0.006 0.055 0.045 

Sig. 0.684 0.977 0.785 0.824 

MF 
R 0.421 * 0.419 * 0.525 ** 0.472 * 

Sig. 0.029 0.030 0.005 0.013 

R: Pearson correlation coefficient; Sig.: significance level; * significant at the 0.05 level (two-tailed);  

** significant at the 0.01 level (two-tailed); CEC, cation exchange capacity; pH, acidity of the samples;  

Ca2+, K+, Mg2+, Na+, exchangeable base cations; RH, relative humidity; MF, mineral fraction. 

A large variability in free ZEN concentration was observed, ranging from 200 ng/mL, which is 

indicative for no adsorption, to the limit of quantification, which corresponds with 100% adsorption 

under the given conditions. This is in accordance with previous binding experiments, where a large 

variability was also observed [18,20]. A significant correlation could be demonstrated between the free 

ZEN concentration and both the d-spacing and mineral fraction (MF). Figure 2 presents the two biplots 

of these parameters with the free ZEN concentration. In the low pH range (pH 2.5), exchangeable K+ 

and Mg2+ were also significantly correlated. The pH may influence the phenolic hydroxyl group of ZEN 

or the ionization-state of the functional groups of the mycotoxin binders and thereby alter the chemical 

sorption due to ionic interactions. A low pH can facilitate degradation of the minerals, but this effect is 
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mostly seen over a longer period. Deng et al. (2009) described the binding mechanism for aflatoxin B1 

(AFB1) to montmorillonite clays, a mechanism involving the exchangeable cations and water [8]. The 

correlation between the d-spacing and the free ZEN concentration suggests a cut off-value between 16 

and 19 × 10−10 m, as can be seen in the left plot in Figure 2. From this cut off-value, a similar mechanism 

might apply for ZEN as for AFB1, explaining the low free ZEN concentration in binders expressing a 

large d-spacing. However, some aspects need to be considered: AFB1 has a rather planar structure, which 

facilitates interlayer adsorption, whereas ZEN has a more spherical molecular geometry. Furthermore, 

AFB1 is more hydrophilic than ZEN (estimated log PAflatoxin B1 = 1.58 vs. estimated log PZEN = ca. 4.37 [26]). 

This is important, since the interlayer space is hydrophilic [27].  

  

Figure 2. Biplots of the average free concentration of zearalenone (ZEN) with the d-spacing 

(left) and the mineral fraction (right) of the 27 mycotoxin binders (Numbers 1–27). 

A low free ZEN concentration over the complete pH range was seen with the mixed-layer smectites 

(Sample Numbers 6, 21 and 26), which was also reported by [20]. The exact mechanism for this remains 

to be elucidated. XRD and infra-red (IR) spectroscopy of the binding complex can be used to study the 

role of the d-spacing and may unravel the binding mechanism.  

The humic acid-containing binders (Sample Numbers 5, 12 and 13) also presented a low free ZEN 

concentration. Similar results were observed in three out of five humic substance samples examined by  

Sabater-Vilar et al. [18]. Yeast cell wall-derived products also expressed a low free ZEN concentration, 

which was also observed by [18] and [19], but not by [20]. A high affinity of organic substances for 

oxytetracycline and AFB1 was described by [15,28]. The low free ZEN concentration when incubated 

with organic substances can be explained by the additional binding possibilities that these substances 

offer. The extra binding possibilities are hydrophobic in nature and comprise van der Waals, π–π and 

CH-π bonds [14]. Hydrophobic interactions were also suggested for the binding of ZEN to modified 

Japanese acid clay [24]. In addition, hydrated humic substances are more flexible than the ridged 

minerals; this flexibility enables a larger interaction surface with the humic substances. These binding 

possibilities are independent of possible interlayer adsorptions and might be a parallel mechanism for 

toxin binding, as can be seen in the right plot of Figure 2. The zeolites and sepiolites expressed a rather 

high free ZEN concentration and are probably not fit for ZEN adsorption. Zearalenone was effectively 

adsorbed by active carbon, and this was also the case in previously published studies [18–20].  
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3. Experimental Section  

3.1. Mycotoxin Binders, Chemical Products and Reagents 

Feed additives marketed as mycotoxin binders (n = 27) were collected after a market study to identify 

the most relevant products. The suppliers include the international companies, Poortershaven, Sanluc, 

Kemin, Biomin, Alltech, Agrimex, Cenzone tech, Tesgo international, Selko, Clariant, Tolsa, BASF, 

Miavit, Special Nutrients and American Colloid. Acid-washed sea sand, HCl, CaCl2·2H2O, NaCl and 

MgO were supplied by VWR (Leuven, Belgium). Technical ethanol was provided by Fiers (Kuurne, 

Belgium). The ammonium acetate, boric acid, H3PO4, Na2HPO4 and Neβler reagent were provided by 

Merck (Darmstadt, Germany). Sigma Aldrich (Bornem, Belgium) supplied KCl, MgCl2·6H2O and 

glycol. Acros Organics (Geel, Belgium) supplied methyl red, bromocresol green and tert-butyl methyl 

ether (tBME). Water and acetonitrile (ACN) used for the HPLC analysis were of MS-grade and provided 

by Fisher Scientific (Wijnegem, Belgium). ZEN and 13C18-ZEN were purchased from Fermentek 

(Jerusalem, Israel) and Romerlabs (Tulln, Austria), respectively. 

3.2. CEC and Exchangeable Base Cations 

A glass burette with a porous bottom was filled with, respectively, 10 g of acid-washed sand, 25 g of 

acid-washed sand that was thoroughly shaken on a horizontal shaker for 30 min with 0.5 g of binder and 

5 g of acid-washed sand to avoid splattering. After 20 min of equilibration, 150 mL of technical ethanol 

was percolated over the burette for two hours. Next, 150 mL of a 1 mol/L aqueous ammonium acetate 

solution was percolated in the same manner for a total time of 4 h. The ammonium acetate percolate was 

analyzed with inductive coupled plasma-atomic emission spectrometry (ICP-AES), as described by  

Burt et al. [7]. The device used was an IRIS Interpid II XSP (Thermofisher, Waltham, UK).  

The characteristic wavelengths used were 317.9 nm for Ca2+, 766.4 nm for K+, 285.2 nm for Mg2+ and 

589.5 nm for Na+.  

After the ammonium acetate percolation, the column was rinsed with 150 mL of technical ethanol to 

remove ammonium that was not adsorbed by the sample. This washing step was performed over a period 

of 2 h, respecting 20 min of equilibration. The percolate was tested for the presence of ammonia with 

the Neβler reagent. In case the test was positive, an extra 100 mL of ethanol was used to remove all 

ammonia. Next, 500 mL of KCl 1 mol/L were percolated over 4 h, again respecting 20 min of equilibration. 

Fifty milliliters of the KCl percolate were transferred to a Buchi-tube (Buchi labortechnik AG, Flawill, 

Switzerland), together with about 5 g of MgO. Ammonia was captured in a boric acid-containing solution 

(20 mL, 0.3 M). The boric acid solution was supplemented with indicators methyl red and bromocresol 

green. The formed tetrahydroxyborate was titrated back to boric acid with 0.01 mol/L of HCl, and the 

titration was considered complete when the red color reappeared. The reactions involved and formulas 

to calculate the CEC value are presented below: 

𝑁𝐻4
+
𝑇↑;𝑀𝑔𝑂
→     𝑁𝐻3(↑) 

(1) 

𝑁𝐻3 + 𝐵(𝑂𝐻)3 + 𝐻2𝑂 → 𝑁𝐻4
+ + 𝐵(𝑂𝐻)4

− (2) 

𝐵(𝑂𝐻)4
− + 𝐻3𝑂

+ ⇋ 𝐵(𝑂𝐻)3 + 2𝐻2𝑂 (3) 
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𝐶𝐸𝐶𝑝𝐻7 =
(𝑉2 − 𝑉0) × 𝑇 × 𝑉 × 100

𝑉1 × 𝐺
 (4) 

with (V2−V0) representing the volume of HCl used, T the titer of HCl (=0.01 mol/L), V the volume of 

KCl percolate (=500 mL), V1 the volume of KCl percolate sample (=50 mL) and G the mass of the binder 

(=0.5 g). A KCl solution was used as a blank sample for the titration; a pure sand sample was included 

for the percolation [7,29].  

3.3. Other Characterization Tests 

To measure the acidity of the samples, a 1:10 binder:water suspension was shaken for 2 h and was 

left to sediment for another 2 h under closed lid. The pH of the supernatant was measured using a  

glass-calomel electrode (Inolab WTW, Weilheim, Germany). 

The presence of carbonates in the samples was tested with a HCl effervescence test: a small amount 

of binder was mixed with a few droplets of concentrated HCl on a glass dish. The reaction in the first 10 

seconds was monitored and scored as follows: −, no reaction; +, moderate reaction; ++, strong reaction. 

To determine the relative humidity and the mineral fraction, 10 g of binder were dried in an oven 

(Memmert, Swabach, Germany) at 110 °C overnight. The sample was weighed before and after drying, 

and the moisture content was calculated based on the weight reduction. The mineral fraction was 

assessed by the dry combustion method by heating in a Muffle® furnace (Nabertherm, Lilienthal, 

Germany) to 400 °C for 16 h and then cooled in a desiccator [7]. 

The swelling volume was assessed by using an adaptation of the coefficient of linear extensibility 

(COLE) [7,21]. An aliquot of the binder (2.5 mL tapped bulk volume) was mixed with 15 or 50 mL of water, 

depending on the extent of swelling. The mixture was thoroughly vortexed (15 s) in the volumetric tube, 

incubated (4 h) and centrifuged (1070× g, 10 min, 4 °C) before measuring the volume of the sediment. 

XRD patterns, including d-spacing, were obtained with a Philips X'PERT SYSTEM (Phillips, 

Eindhoven, The Netherlands), the diffractometer (type: PW 3710) was equipped with a copper tube 

anode, a secondary graphite beam monochromator, a proportional xenon filled detector and a 35-position 

multiple sample changer. The incident beam was automatically aligned, and the irradiated wavelength 

was 12 mm. The secondary beam side surpassed a 0.1-mm receiving slit, a Soller slit and a 1°  

anti-scanner slit. The tube was operated at 40 kV and 30 mA. XRD data were collected in a theta,  

2-theta geometry from 3.00' onwards at a step of 0.020° 2-theta and a counting time of 1 s per step.  

XRD patterns of powder samples, oriented samples and glycol-saturated oriented powder samples  

were recorded. 

3.4. Zearalenone Adsorption Screening 

A saline solution was made by adding 24.0 g of NaCl, 0.3 g of MgCl2·6H2O, 0.6 g of KCl and 0.4 g 

of CaCl2·2H2O to 3L HPLC-grade water. Next, a phosphate buffer system was added to 1 L of saline 

solution to obtain phosphate buffered saline (PBS). The buffer system consisted of H3PO4 and KH2PO4 

for the acidic (pH 2.5) buffer and of KH2PO4 and Na2HPO4 for the buffers of pH 6.5 and 8.0. Total 

buffer concentration was calculated with the Henderson–Hasselbalch equation and the constraint to 

obtain a total osmolarity of 9.6 mmol/L in each buffer. The pH was measured and adjusted with H3PO4 

or Na2HPO4 to obtain buffers of pH 2.5, 6.5 or 8.0. A 60-mL flask was filled with 20 mg of each of the 
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binders and 5 mL of PBS; this was done for each pH, in triplicate. ZEN was added to a final concentration 

of 200 ng/mL. The flask was then shaken for 4 h at 37 °C in an incubator (New Brunswick Scientific, 

Rotselaar, Belgium). Next, samples were centrifuged (10 min, 1070× g, 25 °C), and 2 mL of the 

supernatant were transferred to a test tube. Next, 25 µL of the internal standard (IS, 13C18-ZEN, 1 µg/mL) 

were added and vortexed, followed by 4 mL of tBME. The tube was swirled on a roller bench  

(Stuart Scientific, Surrey, UK) for 20 min and centrifuged (10 min, 2,851× g, 4 °C). The supernatant 

was evaporated to dryness under a gentle nitrogen stream (40 ± 5 °C). The dry residue was reconstituted 

in 200 µL of ACN and transferred to a glass vial for LC-MS/MS analysis.  

The HPLC system consisted of a Waters 2690 pump and autosampler system with a Zorbax Eclipse 

C-18 HPLC column (3 mm × 100 mm; i.d. 3.5 µm) and a pre-column of the same type (Agilent, Diegem, 

Belgium). The injection volume was 10 µL. The mobile phases were ACN (A) and HPLC-grade water 

supplemented with 0.3% ammonia (B). The gradient elution program was as follows: 0–0.5 min, 50% 

A/50% B; 0.5–1 min, linear gradient to 70% A/30% B; 1–4.5 min, 70% A/30% B; 4.5–5.5 min, linear 

gradient to 50% A/50% B; 5.5–8 min, 50% A/50% B. The flow rate was set at 0.6 mL/min. The MS/MS 

detection system was a Micromass Quattro Ultima (Micromass, Manchester, UK) operated in the  

ESI-negative mode. The m/z transitions for quantification were 335 > 140 (13C18-ZEN) and 317 > 131 

(ZEN). The capillary and cone voltages were −3.47 kV and 60 V, respectively, and source temperature 

was set at 120 °C and desolvation temperature at 200 °C. The cone gas flow and desolvation gas flow 

were set at 848 L/h and 60 L/h, and the optimized collision energy was 30 eV. 

The analytical method was validated for the three pHs independently according to European 

guidelines (2002/657/EC, 2002) and was adapted from the method by De Baere et al. (2012) [30]. The 

validation included evaluation of linearity, within- and between-run accuracy and precision, limit of 

detection (LOD), limit of quantification (LOQ), specificity and carry-over. The correlation coefficients 

(r) and goodness-of-fit coefficients (g) of the 7-point calibration curves were calculated and fell within 

the limits of specification, ≥0.99 and ≤10%, respectively. For the precision, the relative standard 

deviation (RSD, %) fell within 2/3 of the values calculated according to the Horwitz equation,  

RSDmax = 2(1−0.5logConc) × 2/3, for within-run precision, with a minimum of 10%, and within the values 

calculated according to the Horwitz equation for between-run precision, RSDmax = 2(1−0.5logConc).  

The LOQ was determined by analyzing six samples spiked at 3.13 ng/mL, on the same day. Detection 

limits for pH 2.5, 6.5 and 8.0 were respectively 0.70, 1.07 and 0.66 ng/mL.  

3.5. Statistical Analysis 

Analysis of variance (ANOVA) was used to compare the free concentration of ZEN for the different 

binders. The free ZEN concentration was correlated with the continuous explanatory variables. p-values 

below 0.05 were considered statistically significant. All analyses were conducted using SPSS 22 (IBM, 

Chicago, IL, USA), and graphs were obtained with GraphPad Prism® version 5 (La Jolla, CA, USA). 

4. Conclusions 

Twenty-seven frequently-used feed additives and marketed as mycotoxin binders were characterized. 

A single concentration in vitro adsorption screening of ZEN was executed in three different PBS-buffers 

(pH 2.5, 6.5 and 8.0). A significant correlation between free ZEN concentration and both the d-spacing 
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and mineral fraction could be demonstrated. In the low pH range (pH 2.5), an additional correlation 

between the exchangeable K+ and Mg2+ could be demonstrated. Humic acid-containing binders and 

mixed-layered smectite-containing binders achieved the lowest free ZEN concentration. 
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