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Abstract

Fast and accurate face processing is critical for everyday social interactions, but it

declines and becomes delayed with age, as measured by both neural and behav-

ioral responses. Here, we addressed the critical challenge of understanding how

aging changes neural information processing mechanisms to delay behavior. Young

(20–36 years) and older (60–86 years) adults performed the basic social interaction task

of detecting a face versus noise while we recorded their electroencephalogram (EEG).

In each participant, using a new information theoretic framework we reconstructed the

features supporting face detection behavior, and also where, when and how EEG activity

represents them. We found that occipital-temporal pathway activity dynamically repre-

sents the eyes of the face images for behavior ~170 ms poststimulus, with a 40 ms delay

in older adults that underlies their 200 ms behavioral deficit of slower reaction times.

Our results therefore demonstrate how aging can change neural information processing

mechanisms that underlie behavioral slow down.
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1 | INTRODUCTION

There is strong evidence that an age-related slowing down occurs

when performing various behavioral tasks (Salthouse, 2000). There is

also parallel evidence that age-related changes in the brain can slow

down neural processing (Gazzaley et al., 2008; Nakamura et al., 2001;

Rousselet et al., 2010, 2009; Wiese, Schweinberger, & Hansen, 2008).

Although these studies can inform where and when, in the brain, aging

can impact neural activity, a critical challenge remains to develop theo-

ries of cognitive aging that explain how the neural information pro-

cesses that are involved in a cognitive task contribute to slow down

behavior. It is imperative to address this challenge to understand how

aging impacts the specific cognitive mechanisms that mediate behavior.

To illustrate, consider the fundamental social cognition task of

detecting a face (see Figure 1). Although we expect older participants

to detect faces in this task more slowly, a more complete understanding

of the effects of aging on cognitive processing requires richer data. At a

minimum, we need to characterize the face information that young and

older participants selectively use when detecting faces, for example,

because slower face detection could result from older adults needing

more facial features, or simply because older participants do not use

the same features. We also need to characterize the information con-

tent of the neural activity underlying the behavioral task at hand,

because the age-related slowing could arise from neural representation

of several task-irrelevant features (a decline of selectivity). Finally, we

would also need to trace the origin of the behavioral delay in the neural

mechanisms that represent the face for the detection task per se, for

example, because older brains could be generally delayed in their onset

of neural activity when responding to any visual stimuli, rather than

specifically delayed when processing the task-relevant face features.
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F IGURE 1 Legend on next page.
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In this study, we present a new paradigm to advance and deepen

our understanding of information processing in cognitive aging. We

developed stimulus information representation (SIR), an information

theoretic framework, to tease apart stimulus information that sup-

ports behavior from that which does not. This new framework con-

siders the interactions between three important variables, not just

two, as is the norm: stimulus information, neural electroencephalo-

gram (EEG) activity, and behavior. We used the Bubbles technique

(Gosselin & Schyns, 2001) to randomly sample visual information from

the stimulus on each trial (see Figure 1a), which limits researcher bias

by not making a priori assumptions about the features that

participants in different groups use for the task. With the double rela-

tionship <stimulus information; behavior>, we coupled the stimulus

information sampled on each trial with the corresponding participant

detection behavior to reconstruct the features that underlie their

detection behavior (see Figure 1b). With the double relationship

<stimulus information; EEG activity>, we coupled the same sampled

information with the corresponding EEG activity of each participant's

brain engaging with the detection task, to independently characterize

where, when and how brain activity represents face features (see

Figure 1c–e). Finally, with the new triple relationship <stimulus infor-

mation; EEG activity; behavior>, we directly visualized with a single

F IGURE 2 Behavioral information. (a) Significant effects. The white number in the left (vs. right) upper corner of each face image indicates
the maximum number of participants showing a significant relationship between pixel visibility and RT at the same (vs. any) face pixel. Yellow
colors reflect that a high number of significant effects across participants cluster in the left eye region of the image in young and older
participants. As such, for most young and older participants, the left eye of the face image was associated with faster RTs (see also
Supplementary Results). (b) Mean difference. Images show the differences between average mutual information (MI) images (young–older) for
face trials (top) and noise trials (bottom). The scale represents normalized MI values (see Section 4). (c) Individual participants. Dot plot shows, for
each participant (colored dot), MI values summed within a mask that captures left eye pixels (represented as a red circle in the face inset; see
Supplementary Methods). Red bars correspond to the median of these per-participant averages. Distributions of individual participant values were
similar between the two groups

F IGURE 1
Illustration of the experimental paradigm and analyses. (a) Stimuli. Eighteen young and 19 older participants each detected faces versus noise

textures from 2,220 pictures that revealed information through Gaussian apertures (“Bubbles” Gosselin & Schyns, 2001), while we recorded their
face detection behavior (with key presses) and electroencephalogram (EEG) brain activity. We performed the following computations in each
individual observer. (b) Behavioral information. We used mutual information (MI) to compute <stimulus information; behavior>, the relationship

between stimulus pixel visibility on each trial and the corresponding reaction times (RTs). The same left eye of faces was associated with faster
RTs in both young and older participants. (c) Event-related potentials (ERPs). Based on these trials, a full brain analysis revealed larger average
ERPs associated with face detection at the right hemisphere occipital-temporal electrode (right electrode [RE], whose location is sketched with a
cranial view of the head underneath) of both young and older adults. (d) Brain information. Using MI, we computed <stimulus information; EEG
activity> every 2 ms poststimulus, which represents the relationship between stimulus pixel visibility in a single trial and the corresponding
electrode voltage amplitudes, to reveal the dynamics of any visual feature represented in the variations of the EEG. For illustration, we plotted
examples of these classification images every 12 ms between 118 and 238 ms poststimulus. The resulting MI images revealed that the N170 of
both young and older adults represented the same left eye, although older adults did so with a delay. (e) Max (brain information). To precisely
estimate this age-related, feature-processing delay, we plotted the time course of maximum MI (across the pixels of each MI image in (d))
between 0 and 400 ms poststimulus, which peaked 40 ms later in older participants. (f) Representation for behavior. Finally, we confirmed that
these features are represented in the brain to support face detection behavior. To do this, we computed feature redundancy (FeatRed), which
quantifies the common effect of stimulus information on both EEG activity and behavior from the triple relationship <stimulus information; EEG
activity; behavior>
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integrated measure the dynamic development of the representation

of a face in the brain to support face detection behavior (see

Figure 1f). We computed the dynamics of representation individually

in 17 young and 18 older participants and showed, using information

theoretic redundancy across participants, that delayed behavioral

information processing and delayed reaction time (RT) reflect a com-

mon aging factor within our sample. We now present each double

relationship in turn, followed by the triple relationship, and the group

redundancy analysis. Section titles indicate the specific relationship

that we evaluate between the three variables.

2 | RESULTS

2.1 | Behavioral information: <stimulus information;
behavior>

Seventeen young (median age = 23) and 18 older (median age = 66)

participants categorized 2,200 pictures of faces and noise textures

revealed through Gaussian apertures (so-called “Bubbles,” Gosselin &

Schyns, 2001), which sample random spatial regions of face and noise

images on each trial. Young participants were 198 ms faster to detect

faces (median RT in young = 378 ms, 95% confidence inter-

val = [349, 401] vs. RT in older participants = 576 ms [527, 604]).

To determine the relationship between sampled face information

(pixels) and the varying RTs on each trial, we computed mutuaI infor-

mation (MI) between <stimulus information; RT > (see Section 4). We

found that the presence of the left eye in image samples modulated

RTs in all young participants (17/17) and in most older participants

(16/18; see Figure 2). The presence of the right eye also modulated

RTs in a few young and older participants. However, whereas young

participants could use many other features to perform the task accu-

rately, older participants specifically used the eyes (see Supplementary

Results and Supplementary Figures S1–S4).

2.2 | EEG face information representation: <stimulus
information; EEG activity>

We now turn to the important question of where, when and how

brain processes represent task-relevant features to support behav-

ioral decisions. Before we proceed, we must first rule out low-level

optical factors as the main contributor to any age-related delay in

our analyses. To do this, we computed the time course of the stan-

dard deviation of the mean ERP across electrodes (ERPSTD) using

causal-filtered data (see Section 4 and Figure 3a). ERPSTD onsets

correspond to the initial activation of the occipital cortex that fol-

lows stimulus presentation (Foxe & Simpson, 2002), which could

F IGURE 3 N170 event-related
potentials (ERPs). (a) ERP onsets. Thin
gray lines show individual participants'
ERPSTD (μV/cm2). Colored thick lines
show group averages with shaded areas
indicating 95% confidence intervals
around the group means. Vertical dashed
lines mark the overlapped onset times of
cortical activity in each group. (b) ERP
topographies. For face only trials, we
averaged across participants the largest
squared ERP amplitude at the time of its
peak. (c). Right occipital-temporal ERP.
Thick lines show averaged ERPs across
young (green) and older (blue)
participants, for face (top panel) and noise
bubble trials (bottom panel), with shaded
areas corresponding to 95% confidence
intervals. In each panel, numbers indicate
the group median (and confidence
intervals) of N170 latencies, which are
delayed by ~20 ms in older adults
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reveal generic, age-related delays already present in the earliest

stages of the visual processing pathway. However, we found similar

ERPSTD onsets in young (68 ms [64, 72]) and older (69 ms [62, 75])

participants (Figure 3a), with a negligible difference between them

(−0.5 ms [−7, 5]), which suggests that there is no clear evidence for

a generic delay in the onset of cortical activity in response to visual

stimuli in older participants.

2.2.1 | N170 is delayed in older participants

Despite no clear generic neural delay in older participants, their peak

N170 response latencies to full faces on the right occipital electrode

(RE) were delayed relative to the N170 response of young participants

by 18 ms [9, 24] (and by 23 ms [9, 38], in response to the practice full

noise trials; see Section 4.2). These N170 peak delays on the RE were

confirmed in bubbles trials that sampled face and noise information

F IGURE 4 Brain information. (a) Right electrode (RE): frequency of significant effects. Using the maximum mutual information (MI) image
across time points on RE in each participant, the white number in the left upper corner of every image corresponds to the maximum number of
participants showing a significant effect at the same face pixel (on face and noise trials separately), whereas the number in the right upper corner
corresponds to the total number of participants showing significant effects at any pixel. (b) RE: mean difference. Averaging the maximum MI
images across young and older participants separately produced images of group differences (young–older) for face trials (left) and noise trials
(right). Average MI in the left eye region of the face image was higher for young than older participants. Throughout the figure, MI represents
normalized MI values (see Section 4). (c) Individual participants. Dot plot shows, for each participant (colored dot), MI values summed within a

mask that captures left eye-only pixels (represented as a red circle in the face inset; see Supplementary Methods). Red bars correspond to the
median of these per-participant averages. Distributions of individual participant values were different between the two groups. (d) RE: time
course of brain information are presented for both face and noise (insets) bubbles trials on RE. Color-coded numbers correspond to median
latencies of maximum MI in both groups. Shaded areas correspond to bootstrap 95% confidence intervals around the 20% trimmed mean. (e) MI
topographies. MI <face information; electroencephalogram (EEG) activity> (i.e., brain information) averaged across young and older participants
for each electrode across time points and face pixels. (f) Right electrode (RE): representation for behavior. A time course of behavioral redundancy
shows a 46 ms delay in the representation of the left eye on the RE for delayed face detection reaction time (RT) in older adults
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(i.e., 22 ms [10, 32] and 18 ms [7, 31], respectively, see Figure 3c; see

Figure 3b for a summary topography). The N170 latency delay on

bubble noise trials was unlikely to be attributable to false alarms. Anal-

ysis of behavioral responses revealed that older adults were less accu-

rate than young adults only on face trials (i.e., had more “misses”; see

also Supplementary Results), whereas both groups were highly accu-

rate on noise trials.

N170 peak amplitudes were similar in young and older partici-

pants, except on practice noise trials, where they were larger in older

than young participants (see Supplementary Results and Supplemen-

tary Figure S5).

2.2.2 | Contralateral eye representation over the
N170 time course

Our novel methodology enables us to directly visualize the dynamic

representation of facial features in the single-trial amplitude variations

of EEG activity during the detection task. To do this, we computed

the MI relationship between <pixel visibility information; EEG activ-

ity>, for each stimulus pixel, on the left (LE) and right (RE) electrode

(see Section 4.5), every 2 ms between 0 and 400 ms post-stimulus.

Figure 1d illustrates example MI classification images of brain infor-

mation on electrode RE.

As shown in Figure 4a, EEG activity at RE contralaterally represen-

ted the left eye in most young (N = 16/17) and older (N = 12/18)

adults (see Supplementary Figures S7 and S8 for LE results), with a

weaker overall representation in older adults (their peak MI was 57%

[42, 82] of that of young adults, see Figure 4b,c).

We then used the resulting images of brain information to com-

pute their maximum MI across all time points and pixel locations (see

Figure 4d). Peak EEG representation of the left eye occurred 40 ms

[23, 57] earlier in young adults relative to older adults (i.e., ~164 ms in

young vs. ~204 ms in older adults).

To rule out the possibility that maximum information was repre-

sented on other electrodes, we independently performed a full brain-

by-time analysis. To this end, we again computed the MI relationship

between <pixel visibility information; EEG activity> at each pixel and

time point between 0 and 400 ms poststimulus, on all electrodes. We

found that maximum MI peaked primarily in the left and right lateral-

occipital region in both young and older observers (see Figure 4e).

Furthermore, computing the maximum MI across all electrodes rev-

ealed similar results to those reported here for RE (see Supplementary

Figure S6).

At this juncture, it is important to emphasize that we also ruled

out a potential effect of participants paying spatial attention to the

location of the eyes in sample images (rather than one of representa-

tion of the eyes per se) by repeating the above analyses using only

noise trials. In these noise trials, we did not find sensitivity to the

image locations of the eyes (i.e., where the eyes of a face would be in

face trials), in any participant. Note that the midline electrode (Oz, see

Supplementary Figures S7 and S8) also revealed the weaker represen-

tation of various other facial features (such as eyes, chin, mouth, nose,

and forehead) in some participants. As these representations were

inconsistent across participants, we did not analyze them further.

2.3 | Stimulus representations in the brain to support
behavioral decision: <stimulus information; EEG
activity; behavior>

So far, we have shown that face detection behavior in all participants

involves the processing of eyes in the stimulus (particularly the left

one), with a ~200 ms decision response delay in the older group. We

have also shown that this left eye impacted neural EEG responses in

most participants, with a 40 ms representation delay in the older

group. Now, we integrate behavioral and brain results by showing

where the representation of the eyes in the EEG also modulates face

detection behavior, on the same trials.

To do this, we computed separately for each participant the infor-

mation theoretic feature redundancy (Ince et al., 2017), red (eye; EEG;

RT), which is the shared variability between three variable: single-trial

visibility of the left and right eye in the stimulus, at contralateral

electrodes (RE and LE), together with the corresponding RTs

(see Section 4.10). In this application, redundancy measures the

strength of the representational similarity of a given stimulus feature

(e.g., relative visibility of the left eye) between variations of EEG

amplitude (e.g., on the RE) and variations of face detection RT. On the

RE, we found a 46 ms [30, 81] redundancy delay between the young

and older participants (i.e., 165 ms peak [155, 178] for young, and a

215 ms peak [196, 246] for older adults; see Figure 4f). We observed

a similar 42 ms [20, 86] delay between young and older participants

on the LE, where right eye redundancy peaked at 172 ms [161, 186]

for young, and at 220 ms [196, 261] for older adults (see Supplemen-

tary Figure S10). These results confirm that the EEG and RT similarly

represent the eyes, but with a 42 ms delay in older adults.

2.4 | Delayed stimulus representations in the brain
underlie delayed behavioral RTs

We now demonstrate that the delayed representation of the eyes in

the EEG underpins delayed RT in older adults. We tested this by com-

puting the redundancy between the age groups, RT latency, and the

peak latency of EEG eye representation (see Section 4.11). Specifi-

cally, we first quantified (with MI) the strength of the relationship

between age group and each participant's median RT—it was 0.5 [0.36

0.81] bits—and also between age group and redundant eye represen-

tation latency in the EEG—it was 0.28 [0.08 0.64] bits for the left eye

(at RE) and 0.29 [0.08 0.69] bits for the right eye (at LE). Having

shown that both RT latency and EEG eye representation associate

with age group, we asked whether these two associations themselves

overlap—i.e., whether we can similarly predict age group from RT

latency and EEG eye representation. We found that the redundancy

between latency of the left eye representation (at RE) and RT was

0.28 [0.06 0.51] bits. This was 100% of the age prediction obtained

from the left eye representation alone (0.28 [0.08 0.64]). We also

found that redundancy between latency of the right eye (at LE) and

JAWORSKA ET AL. 1217



RT was 0.12 [−0.09 0.43] bits. This was 40% of the age prediction

obtained from the right eye representation alone (0.29 [0.08 0.69]).

These results demonstrate that only the left eye (at RE) representation

is purely related to the RT deficit between age groups. The results also

reflect the strongly lateralized relationship between stimulus and RT

(Figure 2).

To summarize, we used information theoretic redundancy at two

levels (within and across participants) to demonstrate a direct link

between behaviorally relevant neural information processing change

(48 ms delay in left eye redundancy) and a behavioral aging deficit

(200 ms RT delay across participants of our sample). Specifically,

within participants, we explicitly quantified the triple relationship

<stimulus information; EEG activity; behavior> within SIR to focus on

the aspects of information processing reflected in EEG signals that are

directly relevant to face detection RT. Across participants, quantifica-

tion of the triple relationship <age group; representational delay; RT

delay> suggests a group level interpretation in which right-lateralized

(but not left-lateralized) neural representational delays underlie

behavioral slowdown in aging.

3 | DISCUSSION

Here, we set out to investigate how information-processing delays in

the aging brain could slow down face detection behavior

(a fundamental social interaction task), using the novel information

theoretic measures of the SIR framework. Specifically, we considered

the interactions between three variables: stimulus information, neural

EEG activity, and RT, and compared the results between young and

older adults. We characterized the face information that young and

older participants selectively use when detecting faces (i.e., the eyes

of a face), and we traced the origin of the behavioral delay with aging

to a delay in the neural processes that represent the eyes of faces for

the task during the N170 period. We ensured that the neural eye rep-

resentation delay could not be explained by generic delays of onsets

of cortical activity in young and older participants.

This study provides an important step toward understanding

visual cognitive aging. First, we demonstrate that young and older

adults can use the same face information (the eyes) to quickly detect

faces. As such, our results contrast with previously published findings

that suggest that a differential use of horizontal versus vertical infor-

mation might underlie the impairment of older adults when identifying

faces (Chaby, Narme, & George, 2011; Obermeyer, Kolling, Schaich, &

Knopf, 2012). Here, although older adults had fewer correct

responses when detecting faces, the same face information modu-

lated their slower RTs. Our analyses of correct versus incorrect

responses (see Supplementary Results) revealed that while young

adults can use any facial features to detect a face, older adults relied

heavily on the eyes for correct detection. As such, it is possible that

rather than inefficiently extracting information from faces, older

adults were more conservative, detecting a face only when its eyes

were visible (see also van Rijsbergen, Jaworska, Rousselet, & Schyns,

2014), although another possibility is that older adults relied more on

local contrast information contained within the eye region of the face,

in line with previous studies showing that they require more contrast

to detect and discriminate faces (Lott, Haegerstrom-Portnoy, Schneck, &

Brabyn, 2005; Owsley, Sekuler, & Boldt, 1981). In any case, the

uncovering of such difference was made possible by Bubbles sampling

(Gosselin & Schyns, 2001), which limits researcher bias by not making a

priori assumptions about the features that participants should use

(Creighton, Bennett, & Sekuler, 2018; Éthier-Majcher, Joubert, &

Gosselin, 2013; van Rijsbergen et al., 2014).

Establishing equivalence of behavioral information in the two

groups is an important benchmark for comparing the task-relevant

neural coding of information. Here, we found that the EEG activity of

both young and older adults represented the eye pixels contralateral

to the lateral-occipital recording electrodes, an effect that was stron-

ger at the right hemisphere electrodes in both groups, in agreement

with the reported right hemisphere dominance for face processing

(Sergent, Ohta, & MacDonald, 1992). Although feature representation

was qualitatively similar across young and older adults, it was delayed

by 40 ms and weaker in older adults, in the absence of generic delays

in the onset of visual cortical activity in older participants. This sug-

gests that the reported delay occurred at the stages of cortical infor-

mation processing, and was not due to precortical neural factors;

thereby adding to the evidence that processing speed delays are

unlikely to be due to bottom-up optical factors, such as senile miosis,

contrast sensitivity (Bieniek, Bennett, Sekuler, & Rousselet, 2016;

Bieniek, Frei, & Rousselet, 2013), or visual acuity (Price et al., 2017).

Furthermore, we believe that bottom-up optical factors were unlikely

contributors to the observed differences at the neural level, because

any bottom-up factors should affect all neural responses irrespectively

of their category, whereas we observed much larger N170 to noise

textures in older than in young participants.

Although our stimuli were only frontal views of faces, it would be

interesting to test side views, in line with previous studies showing

age-related behavioral decrement on perception of faces across view-

points (Habak, Wilkinson, & Wilson, 2008; Wilson, Mei, Habak, & Wil-

kinson, 2011). Processing of facial/head viewpoints follows a distinct

sequence of encoding that reflects different levels of computational

complexity (Kietzmann, Gert, Tong, & König, 2017). Whether aging

affects different stages of viewpoint processing similarly would inform

whether processing speed is delayed in a constant or cumulative man-

ner along the visual cortical hierarchy (Price et al., 2017).

The age-related delay that we report here agrees with previous

cross-sectional results, which suggest that face processing slows

down from 20 years of age and onwards (Bieniek et al., 2013;

Rousselet et al., 2010, 2009). However, previous studies could not

ascribe these delays to the representation of task-relevant features,

as reported here (see also Rousselet, Ince, van Rijsbergen, & Schyns,

2014; Schyns, Petro, & Smith, 2007; Smith, Gosselin, & Schyns, 2004).

Such task-relevant feature representations in the brain are important

for two main reasons. First, by demonstrating the neural representa-

tion of task-relevant face features in older adults, we can show that

the reported delays (neural and behavioral) do not arise from an inabil-

ity to inhibit the task-irrelevant information that increases with age
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(Gazzaley et al., 2008; Zanto, Toy, & Gazzaley, 2010). Second, we can

use the direct evidence of neural representation of the same features

to demonstrate that the N170 time window is functionally equivalent

in young and older adults (cf. Rousselet et al., 2010). The N170 is an

early component of face processing (Bentin, Allison, Puce, Perez, &

McCarthy, 1996; Itier, Alain, Sedore, & McIntosh, 2007; Rousselet

et al., 2014) that is delayed in older participants (Gazzaley et al., 2008;

Nakamura et al., 2001; Rousselet et al., 2009; Wiese et al., 2008).

Comparing the latencies from the same component across age groups

presumes that it indexes the same neuronal processes over a life span.

However, prior to this current study, it was unclear whether the

single-trial activity evoked during the N170 time window represents

the same information content across age groups. Here, we show that

the N170 performs the same representation function in two age

groups detecting faces, albeit with a delay in older adults (Rousselet

et al., 2009; Schyns et al., 2007; Smith et al., 2004; van Rijsbergen &

Schyns, 2009). In fact, our results suggest that the 40 ms representa-

tion delay of the eyes over the N170 in older adults was directly

related to their 200 ms RT delay when using this information to

detect faces. We can thus trace the origin of the behavioral slowing

to the early stages of stimulus processing, which could complement

other studies that have indicated that slowing originates from motor

response generation (Kolev, Falkenstein, & Yordanova, 2006; Yordanova,

Kolev, Hohnsbein, & Falkenstein, 2004).

At this juncture, it is important to emphasize that the age-related

delay in the processing of the eye information from the sample image

cannot be attributed to the presence of Bubble masks. Bubbles can be

thought of as a “masking procedure” that degrades the visual input

and possibly entails object completion (Tang et al., 2014). The

processing of occluded stimuli by the visual system might require

additional resources to perform the task, leading to longer processing

times (Sekuler, Gold, Murray, & Bennett, 2000). As such, any delay

observed in a sample of older adults could be due to a combination of

factors: a genuine slowing down of processing speed, as well as an

increase in the time needed to process the occluded stimulus with

respect to young adults. However, our ERP results show that the

extra processing time of Bubbled images compared with full images

differed very little between young and older participants. Specifically,

even though the processing of the Bubbled stimuli was delayed with

respect to full images by about 20 ms in both young and older partici-

pants, there was only a weak interaction between age and masking

condition. In both practice (unmasked) and Bubble (masked) trials, the

N170 latency to face images in older participants was delayed by

about 20 ms (18 ms in practice trials and 22 ms in Bubble trials) with

respect to that in young participants. This agrees with a recent study

(Bieniek et al., 2013), which showed that even though stimulus lumi-

nance affects the entire ERP time course in both young and older par-

ticipants, it does not affect age-related differences in processing

speed.

Whether other stimulus characteristics (e.g., external features,

color pigmentation) affect processing speed and use of diagnostic

information with age remains to be explored. Here, we used relatively

sparse images of grayscale faces, presented in an oval mask, without

any external features such as hair. Additional information such as

color might increase the diagnostic information across the whole face,

whereas external features might become more relevant at longer

viewing distances. Furthermore, we only used images of young faces.

Aging is associated with changes to the physical appearance of the

face (e.g., wrinkling, pigmentation; van Rijsbergen et al., 2014) that

might affect the diagnostic information for a particular task. While

face processing strategies might vary depending on the age of the

observer relative to the age of the stimuli shown (own-age bias; van

Rijsbergen et al., 2014; Anastasi & Rhodes, 2005; Wiese et al., 2008),

we do not know whether these will affect N170 latencies or ampli-

tudes (Komes, Schweinberger, & Wiese, 2015; Wiese et al., 2008).

Altogether, future studies should aim to uncover the extent to

which delays in other processing stages (i.e., postperceptual decision,

sensorimotor integration, or motor generation processes) influence

the observed behavioral slow down. Our results also raise further con-

siderations regarding their generalization to other stimulus categories,

both simple and complex, such as scenes, objects, words, but also sen-

sory modalities and tasks. Recent evidence suggests that aging cannot

be regarded as a unitary concept that affects functionally relevant

brain regions in the same manner (Price et al., 2017). Instead, whether

the observed age-related delay is constant or cumulative, may depend

on a variety of factors other than structural differences in brain

regions (Peters, 2009; Price et al., 2017; Raz et al., 2005; Wang, Zhou,

Ma, & Leventhal, 2005), such as the sensory modality, task, and stimu-

lus complexity. Our new methods can address some of these issues

by linking tightly controlled stimulus information to brain response

and decision behavior in important social cognition tasks. These

methods can also be extended to other sensory modalities to study

group differences (i.e., cultural, developmental, clinical) in perception

and cognition.

To summarize, our results provide the first functional account that

advancing age involves differences in neural delays in the representa-

tion of task-relevant information for behavior. They address the fun-

damental challenge of developing theories of cognitive aging that

explain how the neural information processes involved in a cognitive

task slow down behavior.

4 | METHODS

4.1 | Participants

Eighteen young (nine females, median age = 23, min 20, max 36) and

19 older adults (seven females, median age = 66, min 60, max 86) par-

ticipated in the study (data of 15 of the young participants were used

in Rousselet et al. (2014)). Only one participant was >80 years, the

age range of all other older adults was 60–77, comparable to that of

the young adults. In a face discrimination task, we have shown a quali-

tative shift in the time course of brain activity around 47 years of age

(Rousselet et al., 2010), which we investigated here with age ranges

appropriate for the research question.

All older adults were local residents. We excluded participants if

they reported any current eye condition (i.e., lazy eye, glaucoma,
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macular degeneration, cataract), had a history of mental illness, were

currently taking psychotropic medications or used to take them, suf-

fered from any neurological condition, had diabetes, or had suffered a

stroke or a serious head injury. We also excluded participants if their

latest eye test was more than a year (for older participants) or 2 years

(for young participants) prior to the study taking place. Two older par-

ticipants reported having cataracts removed, and one older participant

reported having undergone a laser surgery. We included them

because their corrected vision was within normal range. In addition,

older participants completed the Montreal Cognitive Assessment to

screen for cognitive impairment. All participants achieved a score of

26 or above, indicating normal cognitive performance. We assessed

all participants' visual acuity and contrast sensitivity in the lab using a

Colenbrander mixed contrast card set and a Pelli–Robson chart. All

participants had normal or near-normal visual acuity as measured with

the 63 cm viewing distance (computer distance) chart (Table 1). Three

older participants had contrast sensitivity of 1.65, and all others had

contrast sensitivity of 1.95 log units, within the normal range of con-

trast sensitivity for that age group (Elliott, Sanderson, & Conkey,

1990). All young participants had contrast sensitivity of 1.95 log units

or above. During the experimental session, participants wore their

habitual correction if needed.

The study was approved by the local ethics committee at the Col-

lege of Science and Engineering, University of Glasgow (approval

no. FIMS00740), and conducted in line with the British Psychological

Society ethics guidelines. Informed written consent was obtained

from each participant before the study. Participants were compen-

sated £6/h.

4.2 | Stimuli

We used a set of 10 grayscaled, front-view photographs of faces, oval

cropped to remove external features, and pasted onto a uniform gray

background (Gold, Bennett, & Sekuler, 1999). The pictures spanned

9.3 × 9.3� of visual angle; the face oval was 4.9 × 7.0� of visual angle.

A unique image was presented on each trial by introducing phase

noise (70% phase coherence) into the face images (Rousselet, Pernet,

Bennett, & Sekuler, 2008). Noisy textures were created by fully ran-

domizing the phase of the face images (0% phase coherence). All stim-

uli had the same amplitude spectrum, set to the mean amplitude of

the face images. Face and noise images were revealed through

“bubble masks,” that is, masks containing 10 two-dimensional Gauss-

ian apertures (σ = 0.36�), with the constraint that the center of the

aperture remained in the face oval (Rousselet et al., 2014). We wrote

our experiments in MATLAB using the Psychophysics Toolbox exten-

sions (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997).

4.3 | Procedure

Participants came in for two experimental sessions on separate days.

During each session, we asked participants to minimize movement

and blinking, or blink only when hitting a response button. We

maintained a viewing distance of 80 cm using a chinrest.

In each experimental session, participants completed 12 blocks of

100 trials each, seated in a sound-attenuated booth. The first block

was a practice block of images without bubble masks. As such, across

the two sessions participants performed 200 trials without bubble

masks, and 2,200 trials with bubble masks. Practice blocks used a set

of 10 face identities and 10 unique noise textures, each repeated five

times were randomized within each block. Each practice session lasted

about 60–75 min, including breaks, but excluding EEG electrode

application.

On each trial, we instructed participants to categorize stimuli as

fast and as accurately as possible, by pressing “1” for face, and “2” for

texture on the numerical pad of a keyboard, using the index and mid-

dle finger of their dominant hand. Each trial began with a small black

fixation cross (12 × 12 pixels, 0.4 × 0.4� of visual angle) displayed at

the center of the monitor screen for a random time interval of

500–1,000 ms, followed by an image of a face or a texture presented

for seven frames (~82 ms). After the stimulus, a blank gray screen was

displayed until the participant responded. The fixation cross, the stim-

ulus, and the blank response screen were all displayed on a uniform

gray background with mean luminance of ~43 cd/m2. After each block

of 100 trials, participants could take a break, and they received feed-

back on their performance in the previous block and on their overall

performance in the experiment (median RT and percentage of correct

responses). The next block started after participants pressed a key.

4.4 | EEG recording and preprocessing

We recorded EEG data at 512 Hz using a 128-channel BioSemi

ActiveTwo EEG system (BioSemi, Amsterdam, the Netherlands). Four

TABLE 1 Visual test scores. Visual acuity scores are reported for HC and LC charts presented at the 63 cm viewing distance, and expressed
as raw VAS

HC 63 LC 63 CS

Young 108 [95, 110] 99 [94, 104] 1.95 [1.95, 2.25]

−0.16 [0.10, −0.20] 0.02 [0.12, −0.08]

Older 98 [93, 105] 89 [82, 95] 1.95 [1.65, 1.95]

0.04 [0.14, −0.10] 0.22 [0.36, 0.10]

Note: The corresponding logMAR scores are presented below in italics. Square brackets indicate the minimum and maximum scores across participants in

each age group. CS scores for young and older participants correspond to median log units across all participants in each age group.

Abbreviations: CS, contrast sensitivity; HC, high contrast; LC, low contrast; VASs, visual acuity scores.
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additional UltraFlat Active BioSemi electrodes were placed below and

at the outer canthi of both eyes. Electrode offsets were kept

between ±20 μV.

EEG data were preprocessed using MATLAB 2013b and the open-

source EEGLAB toolbox (Delorme et al., 2011; Delorme & Makeig,

2004). Data were first average referenced and detrended. Two types

of filtering were then performed. First, data were band-pass filtered

between 1 and 30 Hz using a noncausal fourth-order Butterworth fil-

ter. Independently, another dataset was created in which data were

preprocessed with fourth-order Butterworth filters: a high-pass causal

filter at 2 Hz and a low-pass noncausal filter at 30 Hz, to preserve

accurate timing of onsets (Acunzo, MacKenzie, & van Rossum, 2012;

Luck, 2005; Rousselet, 2012; Widmann & Schröger, 2012).

Data from both datasets were then downsampled to 500 Hz, and

epoched between −300 and 1,000 ms around stimulus onset. Mean

baseline was removed from the causal-filtered data, and channel mean

was removed from each channel in the noncausal-filtered data in

order to increase the reliability of independent component analysis

(ICA) (Groppe, Makeig, & Kutas, 2009). Noisy electrodes and trials

were then detected by visual inspection of the noncausal dataset, and

rejected on a participant-by-participant basis. Following visual inspec-

tion, one young participant and one older participant were excluded

from further analyses due to noisy EEG signal. MI analysis confirmed

the lack of sensitivity to any facial features in these participants. The

resulting sample size was 17 young and 18 older participants. In this

sample, more noisy channels were on average removed from older

than from young participants' datasets (older participants: median = 10,

min = 0, max = 24; young participants: median = 5, min = 0, max = 28;

median difference = 4 [2, 7]). More noisy Bubble trials were also

removed from older than from young participants' datasets (trials

included in analyses, older participants: median 2,130, min 1987, max

2,180; young participants: median 2,178, min 2,023, max 2,198;

median difference = 42 [23, 64]).

Subsequently, we performed ICA on the noncausal filtered dataset

using the Infomax algorithm as implemented in the runica function in

EEGLAB (Delorme & Makeig, 2004; Delorme, Sejnowski, & Makeig,

2007). The ICA weights were then applied to the causal filtered

dataset to ensure removal of the same components, and artifactual

components were rejected from both datasets (median = 4, min = 1,

max = 27 for one older participant who displayed excessive blink

activity; the second max was 17). Then, baseline correction was per-

formed again, and data epochs were removed based on an absolute

threshold value larger than 100 μV and the presence of a linear trend

with an absolute slope larger than 75 μV per epoch and R2 larger than

.3. The median number of bubble trials accepted for analysis was, out

of 1,100, for older participants: face trials = 1,069 [min = 999,

max = 1,092]; noise trials = 1,067 [min = 986, max = 1,088]; for young

participants: face trials = 1,090 [min = 1,006, max = 1,100]; noise

trials = 1,089 [min = 1,014, max = 1,098]. Finally, we computed

single-trial spherical spline current source density waveforms using

the CSD toolbox (Kayser, 2009; Tenke & Kayser, 2012). CSD wave-

forms were computed using parameters 50 iterations, m = 4, and

λ = 10−5. The head radius was arbitrarily set to 10 cm, so that the ERP

units are μV/cm2. The CSD transformation is a spatial high-pass filter-

ing of the data, which sharpens ERP topographies and reduces the

influence of volume-conducted activity. CSD waveforms are also

reference free.

4.5 | Electrode selection

We performed detailed analyses on the subset of four posterior mid-

line electrodes that are sensitive to face features or conjunction of

features: from top to bottom CPz, Pz, POz, and Oz (Rousselet et al.,

2014; Schyns, Thut, & Gross, 2011). We only report the results of Oz

because the other three electrodes had weak MI to face features in

the two groups. We also selected two posterior-lateral electrodes,

one in the right hemisphere (RE), and one in the left hemisphere

(LE) by measuring the difference between all bubble face trials and all

bubble noise trials at all posterior-lateral electrodes, squaring it, and

selecting the left and the REs that showed the maximum difference in

the period 130–250 ms. Across participants, the selected LE and RE

were P7/8, or PO7/8, or their immediate neighbors. These electrodes

are typically associated with large face ERPs in the literature.

4.6 | Event-related potentials

We compared the amplitude and latency of the N170 between the two

age groups. To this end, we computed mean ERPs across trials for each

participant, separately for face and noise trials, and for practice (without

Bubbles) and regular (with Bubbles) trials. For ERPs recorded at the

lateral-occipital electrode in the right hemisphere (RE), we defined the

N170 peak in individual participants as the minimum mean ERP between

110 and 230 ms, and considered separately its latency and amplitude.

4.7 | Statistical analyses

We conducted statistical analyses using MATLAB 2013b and the

LIMO EEG toolbox (Pernet et al., 2011). Throughout the paper, square

brackets indicate 95% confidence intervals computed using the per-

centile bootstrap technique, with 1,000 bootstrap samples. Unless

otherwise stated, median values are Harrell–Davis estimates of the

second quartile (Harrell & Davis, 1982).

4.8 | Mutual information

We used MI to quantify the dependence between stimulus features

and behavioral and brain responses (Ince et al., 2017; Ince, Petersen,

Swan, & Panzeri, 2009; Kayser, Ince, Gross, & Kayser, 2015; Park, Ince,

Schyns, Thut, & Gross, 2015; Schyns et al., 2011). We binned pixel visi-

bility across trials (due to random bubbles sampling), and behavioral and

EEG responses into three equiprobable bins (for details, see Rousselet

et al., 2014). We then calculated several MI quantities in single partici-

pants: MI(PIX; RT) to establish the relationship between image pixels

and RTs; MI(PIX; CORRECT) to establish the relationship between

image pixels and correct responses; MI(PIX; RESP) between pixels and

response category; and MI(PIX; ERP) to establish the relationship

JAWORSKA ET AL. 1221



between image pixels and ERPs. We computed these quantities sepa-

rately for face and noise trials. To control for the variable number of tri-

als in each participant arising as a result of EEG preprocessing, we

scaled every MI quantity for every participant by a factor of 2Nln2

(Ince, Mazzoni, Bartels, Logothetis, & Panzeri, 2012), using the formula:

MIscaled =MI×2×Nt× log2,

where MI refers to mutual information values and Nt is the number of

trials. MIscaled, therefore, reflects a measure of MI adjusted for a sys-

tematic upward bias in the information estimate that might arise due to

limited data sampling, especially if the numbers of trials in the two age

groups are systematically different. It also converts MI to be the effect

size for a log-likelihood test of independence (Sokal & Rohlf, 2012). All

group-difference analyses were performed using the scaled MI values.

4.9 | MI: Classification images

We refer to MI between pixels and behavior or ERPs as classification

images: they reveal the image pixels associated with modulations of

the responses. We computed the MI(PIX, ERP) classification images at

every time point within the first 400 ms following stimulus onset,

using the noncausal and causal-filtered datasets, and at each of the six

electrodes specified above. We summarized each classification image

with its maximum MI and reported these time courses per electrode.

4.9.1 | Single-subject analyses

To establish the statistical significance of the classification image

pixels while controlling for multiple comparisons arising from testing

at multiple pixels, we performed a permutation test coupled with the

threshold-free cluster enhancement technique (Smith & Nichols,

2009) on individual participants' data (Rousselet et al., 2014).

4.10 | Feature redundancy

We computed coinformation (coI) (Bell, 2003) (equivalent to interac-

tion information (McGill, 1954) but with opposite sign for three vari-

ables) to quantify the triple dependence between eye visibility, RTs,

and brain responses (Ince, 2017; Ince et al., 2017, 2016, 2015; Zhan,

Ince, Van Rijsbergen, & Schyns, 2018), that is, coI(eye; RT; EEG). Posi-

tive values of coI quantify redundancy, specifically here redundant or

overlapping information about the stimulus eye visibility, which is

common to both EEG and RT responses. We computed coinformation

redundancy with the following expression:

FeatRed=MIðEEG; eye visibilityÞ+MIðRT; eye visibility
−MIð½EEGRT�; eye visibilityÞ

We used here Gaussian-Copula Mutual Information a semi-

parametric rank-based estimator suitable for continuous variables

(Ince et al., 2017) (see also Supplementary Methods) and considered a

two-dimensional EEG signal consisting of voltage together with its

instantaneous temporal derivative (see Supplementary Methods).

If there is less information about eye visibility available from EEG

and RT considered jointly, MI([EEG RT]; eye visibility), than there is

when the two responses are considered independently, MI(EEG; eye

visibility) + MI(RT; eye visibility), then this shows that part of the rela-

tionship quantified by MI(EEG; eye visibility) overlaps with that quan-

tified by MI(RT; eye visibility). As such, redundancy quantifies the

overlapping information content (i.e., a common driving effect) within

both EEG and RT, about eye visibility. We computed this measure at

all time points and electrodes for each participant independently.

Then, for each participant, we plotted the time course of redundancy

at occipital-temporal electrodes specified above (i.e., RE and LE)

between 0 and 400 ms poststimulus.

4.11 | Group redundancy

We computed group-level redundancy to quantify the degree to which

median RT and individual peak redundancy time provide a common predic-

tion of the age group (young vs. older) across individual participants. For

these analyses, we quantized RT and peak redundancy time into three

equally populated bins (splitting on tertiles of the distribution across partici-

pants) and calculated MI from the standard discrete definition (Cover &

Thomas, 2005; Ince et al., 2017). We applied Miller–Madow bias correction

to the individual MI estimated before calculating group redundancy as:

GroupRed=MIðFRP; groupÞ+MIðRT; groupÞ−MIð½FRP RT�; groupÞ

where FRP is feature redundancy peak time, RT is reaction time, and

group is age group for each participant. We determined bootstrap confi-

dence intervals via resampling participants with replacement 1,000 times.

4.12 | ERP onset analyses

We quantified ERP onsets using the causal-filtered datasets. To con-

trol for multiple comparisons, we used a bootstrap temporal clustering

technique as implemented in LIMO EEG (Pernet et al., 2011; Pernet,

Latinus, Nichols, & Rousselet, 2015).

4.12.1 | ERPSTD onset

To test whether age-related delays reflect differences in the onset of

afferent activity to the visual cortex, we looked at the time course of

the SD across electrodes of the mean ERP (ERPSTD). ERPSTD provides

a compact description of the global ERP response, summarizing each

participant's evoked brain activity across electrodes in one vector.

This analysis was based on the notion that early visual activity can be

characterized by a sudden increase in SD of the mean ERP across elec-

trodes (Foxe & Simpson, 2002). We computed the ERPSTD time

course for each individual participant and mean baseline centered

it. Then, we localized the first peak the minimum height of which was

five times the height of any peak in the baseline. Then, using ARESLab

toolbox (Jekabsons, 2015), we built a piecewise-linear regression
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model with three basis functions using the multivariate adaptive

regression splines (Friedman, 1991) method. This approach divided

the data into two segments and fitted each segment with separate

models (regression splines). Onsets were defined as the location in

time of the first knot of the fitted spline, that is, the point where divi-

sion between the two models occurred.

4.12.2 | MI onset

We quantified MI onsets using the same technique as with ERPSTD onsets.

4.13 | Topographic analyses

We computed topographic maps for each participant from the whole-

scalp MI(PIX; ERP) results, and for the whole-scalp ERP results, at the

individual MI peak, or ERP peak latency, respectively. Individual ERP

topographic maps were squared. All topographic maps were interpo-

lated and rendered in a 67 × 67 pixel image using the EEGLAB func-

tion topoplot, and then averaged across participants in each age group.

Using the interpolated head maps, we then computed a hemispheric lat-

eralization index for each participant using MI results. First, we normal-

ized MI values in each participant between 0 and 1. Then, we saved the

maximum pixel intensity in the left and the right hemisphere (lower left

and right quadrants of the interpolated image), excluding the midline.

Finally, we computed the lateralization index in each group as the ratio

(MIleft − MIright)/(MIleft + MIright). Whole-scalp MI was strongest at

posterior-lateral electrodes, and tended to be right lateralized in both

groups (lateralization index for face trials, young = −0.18 [−0.31, −0.05];

older = −0.23 [−0.37, −0.09]; group difference = 0.07 [−0.07, 0.21]).
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