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Abstract

Background: Inflammatory skin diseases such as atopic dermatitis and psoriasis represent a complex interaction
between the skin and infiltrating immune cells, resulting in damage to the skin barrier and increased inflammation.
Polymorphisms in PHFT1 have been associated with dermatitis and allergy and PHF11 regulates the transcription of
T-cell cytokines as well as class switching to IgE in activated B-cells. The importance of skin barrier homeostasis in
the context of inflammatory skin diseases, together with reports identifying PHF11 as an interferon-induced gene,
have led us to examine its role in the innate immune response of keratinocytes.

Results: We developed a cell culture model that allowed us to analyze the effects of the double-stranded RNA
analogue poly(l:C) on a confluent cell monolayer immediately after a 24-h treatment, as well as three days after
withdrawal of treatment. Immediately after treatment with poly(l:C), PHF11, IL8, and interferon-dependent ISG15 RNA
expression was increased. This was accompanied by nuclear localization of PHF11 as well the tight junction protein
claudin-1. Knock-down of PHF11 resulted in increased interleukin-8 expression and secretion immediately following
treatment with poly(l:C), as well as changes in the cellular distribution of membrane-bound and increased nuclear
claudin-1 that was observed up to 3 days after the withdrawal of poly(l:C). This was associated with lower cell
density and a decrease in the number of cells in the G1 phase of the cell cycle.

Conclusions: In addition to a role for PHF11 in lymphocyte gene expression, we have now shown that PHF11 was
part of the keratinocyte innate immune response by poly(l:C). As knock-down of PHF11 was associated with increased
expression of the pro-inflammatory chemokine IL-8 and changes in the cellular distribution of claudin-1, a change
normally associated with increased proliferation and migration, we suggest that PHF11 may contribute to epidermal

recovery following infection or other damage.
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Background

Plant homoeodomain finger protein 11 (PHF11) is highly
expressed in circulating immune cells, with increased
expression in T-helper 1 (Th1) T-cells relative to Th2 T-
cells [1]. Knock-down of PHF11 using small interfering
RNA (siRNA) decreases expression of the interferon-y
(IFNG) gene in Thl cells [1] through a mechanism that
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involves a reduction in NFkB-dependent transcriptional
activity [1, 2]. A role for PHF11 in IFNG gene expres-
sion, and more recently the finding that PHF11 increases
class switch recombination to IgE in murine B-cells [3],
supports a role for PHF11 in allergic disease. A link be-
tween PHFI1 and allergic disease was shown in earlier
genetic linkage and association studies [4—6], with alternate
alleles of a single nucleotide polymorphism in the 3’ non-
translated exon of PHF11 associated with a change in the
expression of this gene in Thl cells [1] through dif-
ferential binding of the transcription factor Oct-1 [7].
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Although recent genome-wide association studies (GWAS)
of asthma and atopic dermatitis have not supported a gen-
etic association between PHF11 and allergy, it remains pos-
sible that there may be an association in selected cohorts
of severely affected individuals who show a very early age
of onset with highly elevated IgE levels and who are more
likely to require treatment by specialist clinicians [8].
Allergic asthma and dermatitis are characterized by im-
mune sensitization, which refers to the initial recognition
of an antigen by the immune system and the production
of antigen-specific IgE antibodies. In susceptible individ-
uals any subsequent exposure to the same allergen will re-
sult in a robust and aggressive immune response. It is now
apparent that there is a link between immune sensitization
and the integrity of the skin barrier. As an example, filag-
grin is a protein found in the outermost layer of the epi-
dermis called the stratum corneum and is essential for the
integrity of the skin barrier (for review, see [9]). Mutations
in the gene encoding filaggrin (FLG) are associated with
immune sensitization in allergic dermatitis and asthma
[10, 11] and these mutations cause an impairment of the
skin barrier function [12, 13]. Genetic association between
a locus containing the gene C110rf30 is highly reproduced
in GWAS of asthma and dermatitis [14—16], and although
the functional relationship between CIIorf30 or other
nearby genes with asthma and dermatitis is not under-
stood, the protein product of CIIorf30 (EMSY) is import-
ant in epithelial tumours of the breast and ovary [17, 18].
In addition to a genetic basis for a compromised skin
barrier, elevated expression of Th2-type cytokines such
as interleukin (IL)-4 and IL-13 in the skin of individuals
with atopic dermatitis decreases filaggrin expression [19].
These cytokines also decrease the expression of the tight
junction protein claudin-1 in the skin of individuals with
atopic dermatitis [20]. The combination of genetic and in-
flammatory triggers that result in a decrease in the in-
tegrity of the skin barrier are also linked to the high
rate of bacterial and viral skin infections of individuals
with atopic dermatitis [21, 22]. Keratinocytes express
several members of the Toll-like Receptor (TLR) family
that are pattern recognition receptors for viral and bac-
terial pathogens. The TLR3 recognizes double-stranded
RNA that is a replication intermediate for a number of
viruses, as well as RNA that is released from damaged
cells. Activation of TLR3 is an important part of the
keratinocyte innate immune response [23], as well as
the repair and maintenance of the skin barrier [24, 25].
A review of the literature revealed that PHFII is an
interferon stimulated gene (ISG) and that its expression
is increased following infection by several different
viruses [26—29]. Although previous functional studies of
PHFI11 have centered on its role in the regulation of
cytokine gene expression in T-lymphocytes [1, 2], the
susceptibility of individuals with atopic dermatitis to
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viral infection and the finding that PHFI1 is an ISG has
led us to test for PHFI1 expression in keratinocytes and
whether its expression is regulated by polyinosinic:po-
lycytidylic acid (poly(I:C)), a ligand for TLR3 and an
analogue of double-stranded RNA.

In this study we report that PHFI11 is expressed in the
human HaCaT keratinocyte cell line and that treatment
of this cell line with the double-stranded RNA (dsRNA)
analogue poly(I:C) resulted in an increase in PHF11 expres-
sion and the localization to the nucleus of the PHF11 pro-
tein. Furthermore, siRNA knock-down of PHF11 mRNA
resulted in a loss of PHF11 from the nucleus and this was
accompanied by an increase in IL-8 expression, altered
appearance of claudin-1 at the cell membrane and the
appearance of claudin-1 in the nucleus. We suggest that
in addition to its role in circulating T-cells, PHF11 also
plays a role in the innate immune response of keratino-
cytes and that a reduction in PHFI1 expression may con-
tribute to inflammation and tissue remodeling following
infection or tissue damage.

Methods

Cell culture

HaCaT Keratinocytes were grown in a complete cell cul-
ture medium consisting of Dulbecco’s Modified Eagle
Medium (DMEM) and 10 % fetal bovine serum (FBS) at
37 °C in a humidified atmosphere containing 5 % CO,.

cDNA synthesis and quantitative real-time PCR

Total RNA was harvested using the PureLink® RNA Mini
kit (Ambion‘/Life TechnologiesTM, Austin, TX, USA) and
¢DNA was synthesized from 1 pg of RNA using the
Applied Biosystems High-Capacity cDNA Reverse Tran-
scription Kit according to the manufacturers instructions.
Quantitative real-time PCR was done using SYBR® PCR
Master Mix (Applied Biosystems, Austin, TX, USA),
0.1 uM of forward and reverse primers in a final vol-
ume 10 pl. Reactions were transferred to an Illumina
Eco 48-well plate and analysed using an Illumina® Eco
real-time PCR system. Primer sequences are shown in
Table 1.

siRNA knockdown

All siRNAs have been previously tested and validated
[2]. The sequence of PHF11-specific siRNAs are: siRNA
siRNA_1 CACCGTGGGATGTGATTTAAA (Qiagen,
Hilden, Germany, cat no. SI00113554) and siRNA_5
ATCATCGCTCAAAGTGCTAAA (Qiagen, cat no. SI0
3047198), mapping to exons 4 and 5 of PHF11 isoform
NM_001040443.1, respectively. On the day of transfection,
HaCaT keratinocytes were harvested and resuspended at a
concentration of 1x 10° cells in 300 pl of complete cell
culture media. 600 ng of siRNA was diluted in 100 pl of
Optimem culture media (Gibco®/Life Technologies, Austin,
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Table 1 Primers used for Quantitative real-time PCR

Primer Product size (bp) Sequence (5-3")
Forward (F), Reverse (R)
Claudin-1 109 F: GGTCAGGCTCTCTTCACTGG
R: GCCTTGGTGTTGGGTAAGAG
IL-8 109 F: TCTGCAGCTCTGTGTGAAGG
R: AAATTTGGGGTGGAAAGGTT
ISG15 97 F: AGCATCTTCACCGTCAGGTC
R: GAGAGGCAGCGAACTCATCT
KRT10 91 F: CCTGGCTTCCTACTTGGACA
R; TTGCCATGCTTTTCATACCA
KRT14 90 F: TCCTCAGGTCCTCAATGGTC
R: CGACCTGGAAGTGAAGATCC
KRT1 110 F: CAACCAGAGCCTTCTTCAGC
R: AGGAGGCAAATTGGTTGTTG
PHF11 140 R: TCCTGCTTCCTTGCATTTCT
F: GGAAGGAAGAAACCCCTCTC
SDHA 86 F: TGGGAACAAGAGGGCATCTG

R: CCACCACTGCATCAAATTCATG

TX, USA), followed by the addition of 6 ul of Hiperfect®
Transfection reagent (Qiagen, Hilden, Germany). Fol-
lowing a 10 min incubation at room temperature, the
siRNA mixture was combined with the HaCaT cells and
plated directly onto 24-well plates (1 x 10° cells/well) or
an 8-well Nunc® Lab-Tek® Chamber slide (5 x 10* cells/
well) and incubated overnight at 37 °C/5%CO,. The
transfection solution was then replaced with complete
cell culture medium and the cells were returned to the
incubator for a further 2 days, and then treated with
poly(L:C) for 24 h. Cells were harvested either 24 or
96 h after treatment with poly(I:C).

HEK Cell transfection and PHF11 expression plasmids
Full-length PHF11 ¢DNA was cloned into the plasmid
expression vector pEGFP-C1 (Clontech) and was then
used as a template to generate the two C-terminal dele-
tion constructs del218 and del165 that terminate at val-
ine residue 218 and alanine residue 165, respectively.
Numbering of amino acids is based on NCBI reference
sequence NP_001035533.1. Transfection of HEK cells
was done as previously described [1]. Identification of a pu-
tative nuclear localization sequence was done using the fol-
lowing online tool: http://nls-mapper.iab.keio.ac.jp/cgi-bin/
NLS_Mapper_form.cgi. Western blot analysis confirmed
that each recombinant protein was expressed at the pre-
dicted molecular weight (data not shown). Images were
analysed using Image] (http://imagej.nih.gov/ij/).
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Immunofluorescence

In experiments to visualize IL-8 production, 0.5 mM
Monensin sodium salt (Sigma, St. Louis, USA) was added
to the culture media and cells returned to 37 °C/5%CQO,
for the final 4 h of stimulation by poly(I:C) [30]. To
visualize IL-8, as well as claudin-1 and PHF11, cells
were fixed in a 4 % formaldehyde solution for 10 min at
room temperature, washed and permeabilized by wash-
ing for 3 x 5 min in PBS/0.01 % Triton X100. Cells were
then blocked in Image-iT™ FX Signal Enhancer (Mo-
lecular Probes, Oregon, USA) for 30 min and washed a
further 3 x 5 min in PBS/0.01 % Triton X100. The cells
were incubated with the following primary antibodies
in blocking buffer (1%BSA, 0.01 % Triton X100, 5 %
ECS in PBS) overnight at 4 °C: rabbit anti-Claudin 1
(1:1000, Sigma-Aldrich, SAB4503546), rabbit anti-PHF11
(1:100, ProteinTech Group, 10898-1-AP), mouse anti-
CXCLB/IL-8 (10 pg/ml, R&D systems, MAB208). Cells
were then washed for 3x5 min in PBS/0.01 % Triton
X100 and then incubated with a 1:1000 dilution Alexa
Flour® 488 goat anti-rabbit IgG (H + L) and/or a 1:1000 di-
lution of Alexa Flour® 555 goat anti-mouse IgG (H + L)
(Molecular probes/Life Technologies™, Austin, TX, USA)
in blocking buffer at room temperature for 1 h in the dark.
Cells were washed 2 x 5 min in PBS/0.01 % Triton X100,
and nuclear DNA was stained using a solution of 1 pug/ml
Hoechst 33342 (Molecular probes/Life Technologies™,
Austin, TX, USA) for 10 min at room temperature pro-
tected from light. After a final 5 min wash in PBS/0.01 %
Triton X100, 2 drops of ProLong” Gold antifade reagent
was added to the slide and covered with a glass cover slip.
Slides were viewed on an Olympus BX43 Microscope fit-
ted with an X-Cite Series 120Q EXFO Halogen Lamp
using cellSens standard software or using a TCS-SP5 con-
focal microscope (Leica Microsystems, Germany).

IL-8 enzyme-linked immunosorbent assay (ELISA)

Cells were transfected with siRNA as described and 1 x 10*
cells were plated per well in a 96-well plate in triplicate.
Following 24 h treatment with poly(L:C), the concentra-
tion of secreted IL-8 was determined using the Human
CXCL8/IL-8 Quantikine ELISA (R & D Systems, MN,
USA, Cat no. D8000C). The amount of secreted IL-8
was normalized to cell number using the CyQUANT
NF Cell Proliferation Assay Kit (Molecular probes/Life
Technologies™, Austin, TX, USA). Results represent the
outcome of 4 independent siRNA transfections.

Cell cycle analysis

At the conclusion of an experiment, cell culture media
was removed and the cells harvested using trypsin. Cells
were washed once in 5 ml of PBS, and then resuspended
and fixed in 5 ml of 70 % (v/v) ethanol (Sigma-Aldrich)
at 4 °C for up to 7 days. Following fixation, cells were
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centrifuged at 300 x g for 5 mins at room temperature,
washed in PBS, and then resuspended in a solution of 1 pl
RNase, 2 pl 10x propidium iodine (PI) (Sigma-Aldrich) in
PBS and incubated at 37 °C for 50 min. Cells were then
collected by centrifugation at 300 x g for 5 min at room
temperature and the cell pellet resuspended in 1 ml of
PBS. Samples were analysed using a FACSCanto II (BD
Bioscience, Franklin Lake NJ, USA). Ten thousand events
were collected per sample and data was exported and
analysed using FlowJo Flow Cytometry Analysis Soft-
ware 7.6.5 (Tree Star, Ashland, OR, USA). A scatterplot
was created and the region containing the G1, S and
G2/M peaks was gated to select singlet cells. A histo-
gram of the gated region was produced and live cells as
well as sub-G1 cells were defined. Cell cycle analysis
was done using the Dean-Jett-Fox model.

Results

Poly(l:C) increased the expression and nuclear localization
of PHF11

The HaCaT cell line was used to test whether poly(I:C)
regulates the expression of PHFII in keratinocytes. The
induction of interferon signaling by poly(I:C)-dependent
activation of toll-like receptor 3 (TLR3) has previously
been reported in this cell line [23, 31]. Since poly(I:C) is
able to activate innate immune signaling pathways as
well as induce apoptosis [32], we were interested in
examining the regulation of PHFI11 to poly(I:C) at 1 and
3 days after the commencement of treatment.

To do this, HaCaT keratinocytes were cultured for
3 days to reach a confluent monolayer and then treated
for 24-h with poly(I:C). Cells were either analyzed imme-
diately (i.e., 24 h after commencing treatment; a total of
4 days in culture) or poly(I:C) was removed and cells
cultured for a further 3 days, making a total of 7 days in
culture (Fig. 1).

Analysis of gene expression 24 h after commencing
treatment with 1 pg/ml of poly(I:C) showed an approxi-
mately 4-fold increase in PHF11 RNA (Fig. 2a, 1 ug/ml
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poly(I:C), 4 days in culture) relative to untreated cultures.
Three days after withdrawal of poly(I:C), expression of
PHFI1 had declined to be no different from cultures not
treated with poly(I:C) (Fig. 2a, 1 pg/ml poly(I:C), 7 days in
culture). There was no change in the expression of RNA
encoding the tight junction marker claudin-1 (CLDNI)
between different treatment conditions (Fig. 2a, CLDNI1).
To confirm that the cells had responded to poly(L:C), we
also analyzed the expression of genes encoding interleukin
(IL)-8 and ISGIS5, both of which are regulated by poly(I1:C)
[33, 34]. Analysis of RNA expression immediately after
24 h of treatment with poly(I:C) showed /L8 was increased
by more than 140-fold while ISG15 expression was in-
creased approximately 20-fold (Fig. 2b, 1 pg/ml poly(I:C),
4 days in culture). Analysis of RNA expression three days
after withdrawal of poly(I:C) showed ISGI5 expression
had declined to levels not different from untreated cul-
tures, while IL8 RNA remained approximately 50-fold
higher than that seen in untreated controls (Fig. 2b, IL8,
7 days in culture).

As the activation of TLR3 can promote skin barrier re-
pair [25], we also looked for changes in the expression
of keratin genes that are normally active in undifferenti-
ated keratinocytes (keratin 14) or in keratinocytes during
early differentiation (keratins 1 and 10). After 3 days in
culture, treatment for 24 h with poly(I:C) did not change
the expression of keratin-14, although the expression of
both keratin-1 and —10 were decreased 2.5 to 3-fold under
the same conditions (Fig. 2c, 4 days in culture). Assaying
the expression of each keratin gene three days after the
withdrawal of poly(I:C) revealed a significant decrease in
the expression of keratin-14, independently of poly(L:C)
treatment (Fig. 2¢, 7 days in culture), whereas the expres-
sion of keratin-1 and keratin-10 were either not different
from untreated controls or showed only a small increase
in expression, respectively (Fig. 2c).

We have previously shown that in Jurkat T-cells PHF11
localization is mainly cytoplasmic, although stimulation
with PMA/ionomycin increases the amount of PHF11

Day[!) 1 2 3

Analysis Day 4
(24hrs after adding poly(l:C))

Analysis Day 7
(72hrs after withdrawing poly(l:C))

I I I I
t t

Plating of cells
siRNA transfection

SiIRNA was done on the day of plating

Add poly(l:C)

Remove poly(l:C)

Fig. 1 Summary of siRNA transfection and culturing of HaCaT keratinocytes. Cells were cultured for up to 7 days, with poly(l:C) treatment commencing
on day 3 of culture for 24 h. Cells were analyzed immediately after treatment, or were washed and cultured for a further 3 days. Transfection with




Muscat et al. BMC Immunology (2015) 16:69

Page 5 of 13

A
c 9] *
il
%’; 4 - PHF11
5 m CLDN1
3 3
]
& 2
o
o I I
2 1
E s H N
I} : poly(I:C)
0 1 0 1 (ug/ml)
4 7 days in culture
B
200 1 *

=
S 175 1
7
o 150 1 L8
g 125 1 M /SG15
% 100 1
o *
o 751
=
E 50 1 * ]
) B

0 = E— ——— poly(I:C)

0 1 0 1 (ug/mi)

C 4 7 days in culture
s °]
% O KRT14MKRT1 m KRT10
@
1]
c
)
9 14 *
% i*i . Fh
i3]

0 " " I—h y poly(l:C)

1 0

1 (ug/mi)

4

Fig. 2 Profile of gene expression in HaCaT keratinocytes in response to poly(l:C) at 4 and 7 days in culture. Cells were left untreated or treated
with 1 pug/ml of poly(:C) on day 3 and harvested on day 4 or on day 7. Quantitative real-time PCR was used to analyse the expression of PHF11,
claudin-1 (CLDN1), IL-8 (IL8), interferon-stimulated gene 15 (/SG15) and keratins 1, 14 or 10 (KRT1, 10, 14). Results represent 4 independent experiments.
Bars indicate average + standard deviation, asterisks indicate significant difference relative to control (p < 0.05, Mann-Whitney U-test)

7 days in culture

in the nucleus [2]. In HaCaT keratinocytes, nuclear
localization of PHF11 was strongly increased following a
24 h incubation with poly(I:C) (Fig. 3a). Three days after
withdrawal of poly(I:C) the nuclear localization of PHF11
had decreased and, similar to untreated cultures, showed
strong cytoplasmic localization (data not shown). The dis-
tribution of PHF11 in the nucleus had a highly speckled
or punctate appearance and differed from nuclear distri-
bution of NF-kB (Fig. 3b).

The stimulus-dependent nuclear localization of PHF11
led us to search for sequences that control its cellular
localization. To do this, we first searched for possible

nuclear localization sequences (NLS) using an online
mapping tool (cNLS Mapper) [35]. This identified a pu-
tative monopartite NLS beginning at residue 172 and
consisting of the sequence SGVKRKRGRK (Fig. 4a).
Next, full-length PHF11 as well as two C-terminal dele-
tion mutants that terminate at amino acids 218 and 169
(Fig. 4a) were cloned into a green fluorescent protein
(GFP) expression vector. Transfection of human embry-
onic kidney (HEK) cells showed that the expressed full-
length protein was present in the cytoplasm, as well as
in a speckled pattern in the nucleus (Fig. 4b, full-length).
Deletion to amino acid 218, which retained both the
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A
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PHF11 nuclei

is shown

NF-xB
Fig. 3 Nuclear localization of PHF11 is induced by poly(l:C). a Confocal microscopy of PHF11 localization in HaCaT keratinocytes on day 4 of culture in

the absence of poly(I:C) (untreated), or after a 24-h poly(l:C) treatment (+poly(l:C)). b Higher magnification image of the nuclei of cells treated with
poly(:C) and stained for PHF11 (green), NF-kB (red). A merged image of PHF11 and NF-kB (lower left), as well as DAPI-stained nuclei (lower right)

PHD domain as well as the putative NLS, resulted in nu-
clear localization (Fig. 4b, del218). However, the PHF11
deletion mutant that terminated at residue 169 and
lacked the putative NLS also showed strong nuclear
localization (Fig. 4b, dell69). These results showed
that the deletion of sequences in the C-terminal half
of PHF11 between amino acids 218 and 331, but not
of a sequence rich in basic residues located between
residues 172 and 181, resulted in nuclear localization
of PHF11.

siRNA knock-down of PHF11: analysis immediately after
poly(l:C) treatment

To explore the role of PHF11 in keratinocytes, HaCaT
cells were treated with siRNA that has previously been
used to successfully knock-down PHFI11 expression in T-
cells [2]. In HaCaT cells transfected with a control siRNA
and treated with poly(I:C), PHF11 immunoreactivity
was clearly visible in nuclei after 24 h of treatment with
poly(I:C) (Fig. 5, siCon). Under the same conditions, trans-
fection of HaCaT cells with PHF11-specific siRNA resulted

101
151
201
251
301

ETTSESDYEE

full-length

1 MAQASPPRPE RVLGASSPEA RPAQEALLLP TGVFQVAEKM EKRTCALCPK
51 DVEYNVLYFA QSENIAAHEN CLLYSSGLVE CEDQDPLNPD RSFDVESVKK
EIQRGRKLKC KFCHKRGATV GCDLKNCNKN YHFFCAKKDD AVPQSDGVRG
IYKLLCQQHA QFPIIAQSQK 13SGVKRKRGR
IRQVKEEHGR HTDATVKVPF LKKCKEAGLL NYLLEEILDK VHSIPEKLMD
IGSALFDCRL FEDTFVNFQA AIEKKIHASQ QRWQQLKEEI
ELLODLKQTL CSFQENRDLM SSSTSISSLS Y

WKPLEGNHVQ PPETMKCNTF

==FullHength
—del218
—del169

<
>

nucleus

Fig. 4 C-terminal deletion mutants of PHF11 are localized in the nucleus. a The amino acid sequence of PHF11 showing the PHD domain (grey
highlight), predicted nuclear localization sequence (red highlight) and the location of the C-terminal deletion mutants del218 (S) and del169 (A)
(blue shading). b Left: Cellular localization of full-length, del218 and del169 GFP-tagged PHF11 proteins in HEK cells. Right: plot of pixel density
across cells expressing full-length or deletion mutants of PHF11. The position of the nucleus is indicated and the vertical axis indicates the pixel
density (arbitrary units)
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Fig. 5 SiRNA knock-down of PHF11 decreases nuclear PHF11 in
poly(l:C) treated cells. Cells were transfected with control (siCon) or
PHF11-specific (siPHF11) siRNA (day 1) and then treated with 1 pg/ml
of poly(l-C) (day 3) for 24 h. a. Image of transfected cells showing an
absence of PHF11 in cell nuclei. Arrows indicate the location of nuclei
with reduced PHF11. Green: PHF11; blue: nuclei. Scale bar 10 uM. b.
Western blot showing knock-down of PHF11 in nuclear lysates in the
absence and presence of PHF11. Shown are the results for control (c)
and two different PHF11-specific siRNAs either singly (1 & 5) or in
combination (1/5)

in a loss of nuclear PHF11 (Fig. 5a). Western blot analysis
detected an approximately 40 kDa PHF11-specific band in
control siRNA transfected nuclei that increased following
treatment with poly(Il:C) (Fig. 5b, siRNA ¢) Two PHFI1I-
specific siRNAs (1 & 5, Fig. 5b) were equally efficient at
knocking-down PHF11 when transfected singly or in com-
bination (Fig. 5b, 1/5). All siRNA experiments described
in this paper use the combination of PHFII-specific
siRNA 1 and 5.

We next examined the expression and localization of
the tight junction marker claudin-1 in siRNA-transfected
cells. In cells transfected with control siRNA and cultured
for a total of 4 days but not treated with poly(L:C),
claudin-1 immuno-reactivity was visible at the membrane
with some cells displaying intense intracellular claudin-1
immuno-reactivity (Fig. 6a, untreated). Treatment with
poly(L:C) resulted in increased intracellular claudin-1,
as well as the appearance of claudin-1 in the nucleus
(Fig. 6a, +poly(l:C)). In parallel cultures transfected with

A Control siRNA

+paly(1:C)

B PHF11 siRNA

+poly(l:C)

/
| 4 /

Fig. 6 Knock-down of PHF11 increases nuclear claudin-1. Cells were
transfected with either: a. control (control siRNA) or b. a mixture of
PHF11 siRNA_T & 5 (PHF11 siRNA) and left untreated or treated on
day 3 with 1 mg/ml poly(l:C) for 24 h and analyzed immediately
thereafter. Shown are representative images of claudin-1 and nuclei
(left hand column) or claudin-1 only (right hand column) from one
of three independent experiments. Green: claudin-1; blue: nuclei.
Arrows indicate nuclear claudin-1. Scale bar 20 mM

PHF]11-specific siRNA but not treated with poly(L:C),
there was an increase in intracellular claudin-1 as well as
evidence of nuclear claudin-1 (Fig. 6b, untreated). Treat-
ment of cells transfected with PHF11-specific siRNA with
poly(I:C) reduced membrane claudin-1 and increased
the number of cells displaying intracellular claudin-1
immuno-reactivity (Fig. 6b, +poly(I:C)).

Assaying poly(I:C)-dependent gene expression showed
there was no difference in the expression of ISG15 be-
tween cells transfected with either control or PHFI1-
specific siRNA and this was independent of treatment
with poly(I:C) (data not shown). However, knock-down
of PHF11 expression resulted in an approximately 2-fold
greater increase in poly(l:C)-dependent IL8 expression
24 h after adding poly(I:C) (Fig. 7a, 4.7 +0.2 Vs 2.1 + 1.2,
respectively), relative to cells transfected with control



Muscat et al. BMC Immunology (2015) 16:69

*

5 4
34
2 4
14
o 4

relative gene expression }
&

I
o 1 0 1 0 1 0 1 poly(lC)(ug/ml)
con  PHF11 con  PHF11 siRNA
PHF11 L8 gene analysed

B

SiRNA control

60

siRNA PHF 11

IL-8

nucleus

C 350

% of cells with IL-8 immunoreactivity
-y
o

[JsiRNA_Con
300 AsiRNA_1
BsiRNA_5
250 # [siRNA1 &5
= L]
- 150 2’;
Z

1
ug/mi poly(l:C)

Fig. 7 Knock-down of PHF11 expression increases IL-8 expression
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cells transfected with control siRNA. b Immunohistochemistry of IL-8
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combination of 1 & 5) and then treated with poly(IC) (1 or 10 ug/ml) for
24 h prior to assaying for secreted IL-8. Results represent 4 independent
experiments; asterisks indicate significant differences (p < 0.05,
Kruskal-Wallis test). Scale bar 20 uM

siRNA. The expression of IL-8 in cells transfected with
control or PHFII-specific siRNA was next assayed by
immuno-fluorescent imaging of monensin-treated cells
and by quantitative ELISA. Analysis of fixed, monensin-
treated cells revealed a significant increase in IL8 immuno-
reactivity in cells transfected with PHFI1-specific siRNA
(Fig. 7b). Quantitative ELISA analysis of IL-8 secretion
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from siRNA-transfected HaCaT cells showed knock-down
of PHF11 resulted in a significant 1.8 to 2.1-fold increase
in IL-8 secretion at 1 pg/ml of poly(I:C) (Fig. 7c). Knock-
down of PHFI11 also resulted in a non-significant 1.5-fold
increase in secretion of IL-8 in HaCaT cells treated with
10 pg/ml of poly(I:C), relative to control siRNA (Fig. 7c).

siRNA knock-down of PHF11: analysis 3 days after
poly(l:C) treatment

We first ascertained whether any differences could be
detected in PHF11 expression between cells transfected
with control and PHFI11-specific siRNA at day 7 in cul-
ture (3 days after withdrawal of poly(I:C)). In cells that
had been transfected with control siRNA, nuclear accu-
mulation of PHF11 was still evident against a back-
ground of PHF11 expression (Fig. 8, Left hand panels).
In contrast, cells that had been transfected with PHF11-
specific siRNA show a uniform level of PHF11 expres-
sion with no evidence of concentration in the nucleus
(Fig. 8, Right hand panels).

After 7 days in culture, claudin-1 immunoreactivity was
clearly visible at the cell membrane of cells transfected
with control siRNA with this distribution independent of
prior treatment with poly(l:C) (Fig. 9a, control siRNA).
Knock-down of PHFI11 RNA resulted in decreased cell
density and increased cell size while claudin-1 immuno-
reactivity at the membrane exhibited a more irregular ap-
pearance when compared to cells transfected with control
siRNA (Fig. 9a & b, boxed and enlarged areas). Both ef-
fects were independent of prior treatment with poly(I:C)
(Fig. 9b). Nuclear claudin-1 immunoreactivity was also ob-
served in cells transfected with PHFII-specific siRNA
with nuclear claudin-1 was observed more frequently in
cells treated with poly(I:C) (Fig. 9b, PHF11 siRNA, aster-
isks). No difference in the expression of IL-8 was observed
between control and PHF11-specific siRNA 3 days after
the withdrawal of poly(I:C) (data not shown).

An analysis of cell number in cultures transfected with
control or PHFI11-specific siRNA, and treated or not
treated with poly(I:C), showed no difference in cell num-
bers on day 4 of culture (Fig. 10a, 4 days in culture).
However, relative to day 4, on day 7 of culture there was
a greater than 2.5-fold increase in cell number for cul-
tures transfected with control siRNA but not treated
with poly(I:C), with a smaller 1.7-fold increase in cell
number when treated with poly(I:C) (Fig. 10a, 4 & 7 days
in culture, con siRNA). In contrast, for cultures trans-
fected with PHFI11-specific siRNA there was no signifi-
cant increase in cell number, irrespective of treatment
with poly(I:C) (Fig. 10a, 4 & 7 days in culture, PHF11
siRNA). To investigate this further, we next analyzed the
cell cycle distribution of cells transfected with control or
PHF11-specific siRNA.
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Control siRNA

Fig. 8 PHF11 expression in siRNA-transfected cells on day 7 of culture, 3 days after withdrawal of poly(:C). Left panels: cells transfected with
control siRNA; Right panels: cells transfected with PHF11-specific SiRNA. Green: PHF11; Blue: nuclei. Scale bar 20 uM

PHF11 siRNA

After 4 days in culture there was no difference in the
cell cycle distribution of cells transfected with either
control or PHFII-specific siRNA or between cultures
treated or not treated with poly(I:C) (Fig. 10b, 4 days in
culture). After 7 days in culture there was an increase in
the percent of cells in G1 phase in cells transfected with
control siRNA that was independent of poly(I:C) treat-
ment (Fig. 10b, siRNA con, 4 Vs 7 days in culture: no
poly(I:C), 57.8 £ 1.9 Vs 74.7 £+ 3; 1 ug/ml poly(I:C), 55.8 + 1
Vs 76.5 £ 1). In contrast, transfection with PHF11-specific
siRNA resulted in significantly fewer cells in G1 after
7 days in culture in culture not treated or treated with
poly(I:C) (Fig. 10b, siRNA PHF11, 7 days in culture: no
poly(I:C), 59.4 £ 2; 1 pg/ml poly(I:C), 66.1 £ 1.3).

Discussion

Extending on our previous work showing increased nu-
clear localization of PHF11 in activated T-cells [2], we
show here that stimulation of HaCaT keratinocytes by
poly(I:C) increased PHF11 RNA as well as the nuclear
localization of PHF11. The distribution of PHF11 be-
tween the cytoplasm and the nucleus was dependent
upon a region that included a putative NLS that was dis-
tinct from the single PHD finger. Knock-down of PHF11
led to an increase in IL-8 expression immediately follow-
ing poly(I:C) treatment. A decrease in cell number, re-
distribution of claudin-1 within the cell membrane and
an increased frequency of claudin-1 in the nucleus was
seen three days after the withdrawal of poly(I:C).

In the HaCaT cell line, poly(I:C) induces apoptosis in a
caspase-8 dependent manner [32], as well as inducing
the transcription and synthesis of IL-8 [23]. Normal ker-
atinocytes and the HaCaT cell line synthesize IL-8 and

express the IL-8 receptors CXCR1 and CXCR2 [36, 37],
allowing IL-8 to act as an autocrine factor for keratinocyte
migration and proliferation [36], in addition to promoting
the recruitment of neutrophils to a wound site [38]. The
binding of dsRNA to TLR3 on keratinocytes initiates
signaling pathways that include the activation of the NEF-
KB transcription factor as well as anti-viral interferon-
dependent pathways. The cellular response to intracellular
influenza A virus and extracellular poly(I:C) is very similar
in lung epithelial cells, although adding poly(L:C) directly
to the cell culture media, as was done in the study re-
ported here, may also mimic the release endogenous cellu-
lar or viral dsRNA from damaged cells and the activation
of TLR3 [39].

Consistent with a pro-inflammatory and pro-apoptotic
role for poly(I:C) on cultured keratinocytes, poly(I:C)
treatment leads to the loss of tight junctions from airway
epithelial cells [40]. However, poly(I:C) also increases the
expression of genes involved in skin barrier formation in
cultured keratinocytes [25], while topical application of
poly(I:C) accelerates wound healing in mice through the
production of CXCL2 and the recruitment of neutro-
phils and macrophages to the wounded site [41]. Given
the range of these effects and their importance to epithe-
lial damage and repair, it is important to identify genes
involved in TLR3-dependent signaling pathways that
mediate the response to poly(I:C).

In experiments described here, HaCaT cells were
transfected with siRNA and then two days later treated
with poly(I:C) for 24 h, with knock-down of PHFI11 expres-
sion correlated with an increase in poly(I:C)-dependent IL-
8 expression. Three days after withdrawal of poly(I:C) we
observed marked differences in the appearance of cultures
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A control siRNA

No poly(l:C)

1ug/ml poly(l:C)

B PHF11 siRNA

No poly(l:C)
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Fig. 9 Distribution of claudin-1 in siRNA transfected cells after 7 days in culture. Cells were transfected with control or PHF11-specific siRNA as
already described, treated with poly(l:C) and analyzed 3 days thereafter (a total of 7 days in culture; see Fig. 1). Enlarged images of the boxed
areas are shown on the right of the figure and nuclei showing claudin-1 immuno-reactivity are indicated by asterisks. Shown are representative
images of three independent experiments. Green: claudin-1; blue: nuclei. Scale bar 20 uM

transfected with control or PHF11-specific siRNA. The dis-
tribution of membrane-localized claudin-1 in cells trans-
fected with PHFI11-specific siRNA was discontinuous and
irregular and was highly reminiscent of the “zigzag” struc-
ture of tight junctions described at the junction of two mo-
tile cells by Matsuda and co-workers [42]. We also noted
the appearance of nuclear claudin-1, accompanied by a sig-
nificant decrease in both cell number and the proportion
of cells in G1, as well as an increase in nuclear and cyto-
plasmic volume that is a feature of the progression of cells
through the cell cycle [43]. Significantly, neither the change
in claudin-1 distribution, nor the decrease in cell number
seen in cells transfected with PHF11-specific siRNA was
dependent on prior treatment with poly(L:C).

Colon carcinoma cells show an increase in the cyto-
plasmic expression and nuclear localization of claudin-
1 in primary tumours and metastases and knock-down
of claudin-1 expression in cultured cell lines inhibits

cell migration [44]. Several other membrane and tight-
junction proteins also traffic between the membrane
and the nucleus; the protein Zona Occludens 2 (ZO-2)
interacts with several transcription factors and struc-
tural proteins in the nucleus to regulate cell growth
and proliferation (for review see [45]). The exact role of
claudin-1 in the nucleus is not known. We suggest that
the change in cellular distribution of claudin-1 in
HaCaT cells transfected with PHFI1-specific siRNA
might not be a direct effect of PHF11 knock-down, but
is instead a result of differences in cell proliferation be-
tween cells transfected with control or PHFI11-specific
siRNA.

A genome-wide screen using RNA-interference gene
knock-down was recently carried out in mice to identify
genes involved in normal and oncogenic growth during
skin development. This analysis identified PHFII as
one of 1800 genes considered essential for normal



Muscat et al. BMC Immunology (2015) 16:69

Page 11 of 13

A *
3-
] OsiCON +
E BsiPHF11 .
5 27
]
o
E
3
=
g 17
z
[
0 T .
con PHF11 con PHF11 con PHF11 con PHF11 siRNA
0 1 0 1 poly(l:C) (ng/ml)
4 7 days in culture
B
100 1--
8,0 -
c
=]
=]
£ 60 1 .
B 'G2/IM
2 Os
2
S 40 -
° M G0/G1
8
20 1
con PHF11 con PHF11 con PHF11 con PHF11 siRNA
0 1 0 1 poly(I:C) (ug/ml)
4 7 days in culture

Fig. 10 Knock-down of PHF11 expression decreases cell number and the proportion of cells in the G1 phase of the cell cycle on day 7 of culture.
a Cell number normalized to untreated cultures on day 4. b Cell cycle analysis of SiRNA transfected cells in the treated or untreated with poly(l:C)
on day 4 or 7 of culture. Con: control siRNA; PHF11: PHF11-specific siRNA. Results are from 3 independent experiments and show average + standard
deviation, asterisks indicate significant difference relative to control (p < 0.05, Mann-Whitney U-test)

growth [46]. It is interesting to note that an allele in
the 3’ untranslated region of PHFI1 that is associated
with asthma and dermatitis [5] reduces the expression
of PHFI1 [1, 7] and that this is correlated with re-
duced binding of the transcription factor Oct-1 [7],
which is highly expressed in epithelial cells. In experi-
ments described here, we suggest that siRNA knock-
down of PHFI11 expression led to a reduction in cell
viability [2] and/or a slowing of cell proliferation that
resulted in a sub-confluent monolayer at day 7 of cul-
ture, resulting in fewer cells arrested at G1 in the cell
cycle at his time point.

In T-cells, PHF11 is a transcriptional co-activator of NF-
kB, with knock-down of PHF11 associated with decreased
binding of NF-«kB to the IFNG promoter and decreased
NF-«kB-dependent transcription [1, 2]. Over-expression of
PHF11 increased class-switch recombination to IgE in ac-
tivated B-cells and this was correlated with increased

binding of NF-kB [3]. Epidermal inflammation is regulated
by NE-«kB-dependent cross-talk between keratinocytes and
infiltrating immune cells, while epidermal hyperplasia can
be induced by dysregulation of NF-kB in keratinocytes
alone [47]. It has been shown that NF-kB is constitu-
tively active in HaCaT keratinocytes, resulting in in-
creased apoptosis in response to ultraviolet light [48].
Despite the constitutive activation of NF-kB in HaCaTs,
the sensitivity of this cell line to apoptotic stimuli is
thought to reflect low NF-«B transcriptional activation
[49]. As PHF11 potentiates NF-kB regulated transcrip-
tion in lymphocytes [1, 2], the reason for the increase
in /L8 RNA associated with knock-down of PHF11 in
HaCaT cells is less clear, given that IL8 expression is in-
creased in HaCaT keratinocytes through an NF-xB-
dependent pathway [50]. Significantly, a microarray
analysis of poly(I:C)-stimulated THP-1 monocytes also
showed an increase in IL8 RNA following PHF11 knock-



Muscat et al. BMC Immunology (2015) 16:69

down (G. Jones, unpublished data), supporting the idea
that PHF11 may be a negative regulator of poly(I:C)-in-
duced IL8 expression.

In this regard it is interesting to note that PHFII is
adjacent to the gene SETDB2 that encodes a histone
methyltransferase that increases histone methylation on
lysine 9 of histone 3 [51], a histone modification involved
in gene repression. A co-transcript that may express a
PHFI11/SETDB2 fusion protein has been reported in
mouse [52] and human [53] cells. We are currently inves-
tigating whether epithelial cells express such a transcript
and whether this transcript would include a functional
histone methyltransferase domain.

Conclusions

This report describes the regulation of PHF11 by poly(I:C)
in the HaCaT keratinocyte cell line and is consistent with
other reports showing PHF11 is an interferon stimulated
gene that is induced by viral infection. Given that the
knock-down of PHF11 expression in HaCaT keratinocytes
led to an increase in IL-8 expression immediately after
poly(I:C) treatment whereas the change in cell number
and the cellular distribution of claudin-1 occurred later
and were independent of poly(I:C), PHFII may have sev-
eral roles in the epithelial response to infection and injury.
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