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Abstract: Computational prediction of ligand–target interactions is a crucial part of modern drug
discovery as it helps to bypass high costs and labor demands of in vitro and in vivo screening. As
the wealth of bioactivity data accumulates, it provides opportunities for the development of deep
learning (DL) models with increasing predictive powers. Conventionally, such models were either
limited to the use of very simplified representations of proteins or ineffective voxelization of their 3D
structures. Herein, we present the development of the PSG-BAR (Protein Structure Graph-Binding
Affinity Regression) approach that utilizes 3D structural information of the proteins along with
2D graph representations of ligands. The method also introduces attention scores to selectively
weight protein regions that are most important for ligand binding. Results: The developed approach
demonstrates the state-of-the-art performance on several binding affinity benchmarking datasets. The
attention-based pooling of protein graphs enables identification of surface residues as critical residues
for protein–ligand binding. Finally, we validate our model predictions against an experimental assay
on a viral main protease (Mpro)—the hallmark target of SARS-CoV-2 coronavirus.

Keywords: deep learning; drug–target interaction; graph attention network; computer-aided drug
discovery; protein–ligand binding; virtual screening; SARS-CoV-2

1. Introduction

The drug discovery field is constantly evolving to yield safe and potent drugs in the
most time-, cost- and labor-efficient way. Traditionally, wet-lab high-throughput screen-
ing (HTS) was performed with libraries of compounds tested against a target of interest
(typically a protein) to identify potential drug candidates [1]. The drawbacks of such an
approach are high cost and labor demand, further hindered by a modest (on average 0.03%)
hit rate [2–4]. Thus, effective computational methods are urgently needed to help accelerate
drug discovery [2,5].

For instance, virtual screening helps to narrow down the score of compounds for
experimental validation from large chemically diverse databases, thereby saving time and
resources [6,7]. The mostly used virtual screening tool, molecular docking, relies mainly on
physics-based or statistically derived scoring functions (SFs) to predict the binding affinity
of ligands. Docking has achieved impressive advances in refining the drug-discovery
pipeline and helped identify many potent and selective drug candidates [8,9]. Although
docking is significantly faster than other virtual screening tools such as quantum mechanics-
based approaches and free-energy perturbation simulations, its speed is limited and does
not allow covering the wealth of available chemical structures. For example, the new release
of the ZINC database [10]. containing over a billion molecules is impossible to screen with
conventional tools and thus large chemical space remains unexplored. To overcome this
issue, machine learning has been widely integrated into drug-discovery pipelines. As such,
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DeepDocking [7]. integrates quantitative structure–activity relationship deep models with
conventional docking software and achieves a 50-fold acceleration. Other machine learning
(ML) models designed to predict drug–target interactions were shown to be capable of
capturing the non-linear patterns and inferring complex binding rules [11,12]. In fact,
some of the traditional ML models and recently developed deep learning (DL) models
outperformed classical virtual high throughput screening (vHTS) approaches in terms of
speed and predictive performance [9].

Several previous studies have leveraged DL-based models to predict drug–target inter-
action (DTI) and interaction binding affinity [13]. An efficient model should integrate both
protein target and small molecule information and go beyond traditional pharmacophore
descriptors [14]; one-dimensional descriptors learned from protein sequences and ligand
atoms, respectively, have gained significant traction [15–17]. Thus, the DeepDTI approach
predicted DTI using a deep belief network model fed with extended-connectivity finger-
prints for drug representations and sequence composition descriptors for proteins [18].
DeepDTA [19] and DeepConv-DTI [20] exploit a CNN architecture with protein and ligand
sequences as inputs to predict binding affinity for kinases.

However, complex patterns of protein–ligand interactions can only be captured with
more realistic 3D structures and 3D and higher-order descriptors that have been in de-
velopment over several decades by many groups around the world [21], including our
own [22–24]. Importantly, databases of experimentally derived protein crystal structures
also grow by the day [25], while powerful predictive tools such as AlphaFold [26] further
supplement the wealth of available protein structural data. To this end, recent studies
more readily employ structural protein information alongside ligands. These methods de-
mand faithful representation of biological targets—such as proteins—and drug compounds.
Inspired by the advances in computer vision and 3D object recognition, researchers have ex-
plored 3DCNN for modeling protein structures [11,27,28]. As such, Jimenez et al. (2018) [27]
employed 3D convolutional neural networks (3D-CNN) to predict ligand-binding affinities.
Jones et al. (2021) [11] developed a model to predict ligand–protein binding affinity using a
fusion of 3D-CNN and spatial graph convolutional neural network.

While these approaches yield excellent predictive results, grids with atomic voids
within the structure makes them susceptible to sparsity, memory bottleneck, and inefficient
computations. Furthermore, CNNs are sensitive to rotation and orientation. While this
may be useful for different conformers of ligands, proteins are typically considered as fixed
rigid bodies for binding. To overcome this expensive computation of 3DCNN for large
protein structures, alternative rotation invariant representations, namely Graph Neural
Networks (GNN), have been investigated.

In contrast to CNNs, graphs provide efficient and succinct representations of 3D struc-
tures. Several studies have reported superior performance on binding affinity prediction
by representing proteins as a network of their amino acid residues [29–33]. These methods
model protein–ligand complexes as graphs and learn meaningful features from them. In
this spirit, GraphBAR [31] modelled protein–ligand complexes as adjacency matrices at
various spatial resolution of atoms of the binding site. Similarly, Lim et al. (2019) [29] pro-
posed a distance-aware representation of the protein–ligand complex using two adjacency
matrices. While the spatial features from the protein–ligand complex are certainly most
relevant to binding affinity prediction, long-range interactions between protein and the
ligand are also critical [34]. In their recent work, Li et al. proposed the Structure-aware
Interactive Graph Neural Network (SIGN). In addition to learning the complex’s spatial
features, SIGN also considered long-range protein–ligand interactions within a certain
cutoff distance by building an atom co-occurrence matrix.

These methods report exceptional results on the affinity prediction task on PDBBind or
CSAR-HiQ [35]. However, in these datasets, the active pocket structure of the protein and
the protein–ligand complex is known. Obtaining such information is expensive and limited
to relatively smaller datasets and hence the applicability of such methods is restricted to a
few carefully curated datasets. Our method does not explicitly take protein–ligand complex
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structures as input, thereby expanding its generalizability to many larger benchmarking
datasets. Inspired by Li et al.’s work on capturing long-range protein–ligand interactions,
we define an attention-based strategy to learn important residues for binding.

Similar to our work, GEFA [30] fuses two separate graphs (i) for protein using amino
acid sequence and contact map and (ii) for the drug molecules from their constituent atoms.
Their strategy of masking-out the predicted unimportant regions based on self-attention
scores is restrictive as it relies strongly on the accuracy of their method’s binding region pre-
diction. On the other hand, attention scores of our proposed method are used to soft-guide
the protein graph’s pooling in accordance with residues’ importance concerning binding.

To alleviate these limitations and challenges of classical docking as well as previous
deep-learning approaches, we introduce a graph-Siamese-like network with attention-based
graph pooling. Benefitting from the advantages of protein crystallographic structures, the
developed method applies a graph attention network to all the protein structures to predict
several measures of ligand–protein binding affinities [36]. The graph-Siamese-like network
facilitates concurrent feature extraction and fusion of the protein and ligand graphs by
the predictive model. The use of attention enables our model to locate the likely active
residues of the protein for ligand binding, hence reducing the overhead of time-consuming
manual preparation of protein structures necessary for docking. For the model evaluation,
we employed publicly accessible databases—PDBbind 18, BindingDB 19, KIBA [33], and
DAVIS [37].—containing affinity measures for 9777, 123,904, 23,732 and 41,142 complexes,
respectively (Table 1). We consequently retrieved protein structural information from
the PDB database and for the KIBA dataset supplemented missing structures with those
predicted by AlphaFold [26,38]. We demonstrate that the use of AlphaFold-predicted
structures enhances the performance of the model and that our approach effectively predicts
ligand–protein binding affinity and outperforms several existing baselines and circumvents
expensive target site preparation needed for docking.

Table 1. Data statistics for datasets used for evaluation of PSG-BAR.

Dataset Unique Targets Unavailable
PDBs Unique Ligands Unique

Interactions

PDBBind 9619 0 7981 9777

KIBA 467 181 2356 124,374

DAVIS 442 139 68 20,604

BindingDB 1038 100 13,222 41,142

AID 1706 1 0 290,765 290,765

Our main contributions in this paper are

(i) We propose an effective graph-Siamese-like network, PSG-BAR, to simultaneously
operate on structural graphs of proteins and molecular graphs of drugs for binding
affinity prediction.

(ii) We introduce an attention-based readout strategy to generate graph-level embedding
for proteins. These attention scores are shown to correlate with some known physical
properties of binding sites. We call this learning component the interaction attention
module.

This paper is organized as follows: In Section 2, we describe the datasets, their
statistics, and the details of our proposed method. Section 3 features predictive results of
our method on four benchmarking datasets and its application for several pertinent drug-
discovery tasks. Further in the same section, we present a multi-view analysis of results
and investigate the effect of architectural sub-components on the overall performance of
our method. Finally, Section 4 discusses future directions and implications of this work.
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2. Methods
2.1. Dataset

In this work, we used four publicly available datasets on protein–ligand binding
affinity including BindingDB [39], PDBBind v2016 [40], KIBA [33]., and DAVIS [37]. that
contain various binding affinity (Kd, Ki) datasets. First, we retrieved all protein–ligand
pairs with the associated dissociation constant (Kd) from the BindingDB database [39].
Following data curation procedures such as removing duplicates, inorganic compounds,
invalid SMILES, and Kds outside of typical range, and deriving associated structure files
for each protein (PDBs with lowest resolution per protein target), the dataset was reduced
to 41,142 protein–ligand pairs with 1038 unique proteins and 13,222 unique ligands. The
pKd values had a mean of 6 and a standard deviation of 1.57. Similarly, we derived
13,478 unique interactions from PDBBind [40]. The 2016 dataset version of the PDBBind
was used in this study in order to provide a consistent comparative analysis against a set of
aforementioned studies. This PDBBind dataset includes three subsets: a core, a general, and
a refined database totaling 10,790 unique protein–ligand complexes which were narrowed
down to 8000 unique complexes after filtering on entries associated with Kd values. The
Kd values were also transformed to pKd and had a mean STD of 6.35 and 1.89, respectively.

In addition to those values, we also retrieved data from the KIBA dataset [33] which
consists of a drug–target matrix with information on three major bioactivity types—IC50,
Ki, and Kd. Protein targets from the KIBA were labelled with UniProt IDs, which were
then mapped to their respective PDB IDs to derive crystal structure. KIBA scores were
transformed similarly to Shim et al. (2021) [41] and He et al. (2017) [42]. In particular,
drugs and targets with less than 10 interactions were filtered out; then, KIBA scores were
transformed to resemble pKd. Of the original 467 targets, after filtering and mapping to
available PDB IDs, 286 targets remained. Of the 52,498 drugs, after filtering, there remained
2356. This yielded 124,374 interaction pairs.

We also evaluated the proposed model on the DAVIS dataset [37]. containing 72 kinase
inhibitors tested over 442 kinases which represent over 80% of the human catalytic protein
kinome. The activity number distribution was similar to BindingDB and PDBBind with
a mean of 5.48 and STD of 0.928. Protein targets were labelled by name, so as to retrieve
corresponding PDB structures, the RCSB PDB [43] Search API was used to perform a
keyword search. Of the 442 proteins, 303 could be mapped to a PDB structure covering 68 of
the initial 72 kinase inhibitors. In total, this yielded 20,604 drug–target interaction pairs.

To further evaluate the applicability of our method for the SARS coronavirus (SARS-
CoV-2), we attempted to predict inhibitors of the SARS-CoV-2 3C-like protease (3CLpro),
also known as the main protease (Mpro). The bioassay record (AID 1706) [44] by Scripps
Research Institute provides a PubChem Activity Score normalized to 100% observed
primary inhibition. As suggested by the authors of AID 1706, a threshold for the activity
was at 15 to get 444 inhibitors for 3CLpro along with 290,321 inactive. The protein structure
corresponding to the crystal structure of SARS-CoV-2 Mpro in the complex with an inhibitor
N1 (1WOF [45]) was used.

For each of the datasets, certain targets and ligands were dropped on account of the
unavailability of the crystal structures and un-processability by RDKit, respectively. Table 1
lists the counts of eventually used protein–ligand interaction pairs for each dataset.

2.2. Protein and Ligand Graph Construction

The intricate 3D structure of proteins that develop as a result of complex folding largely
determine the functions and properties of protein molecules. Geometric deep learning pro-
vides an efficient way to represent such 3D structures as translation and rotation invariant
graphs. These protein graphs can be created at the residual or atomic level. We conduct all
our experiments on residual-level graphs where each amino acid corresponds to a unique
attributed node in the protein graph Gp. We choose residue-level graphs over atomic ones
because the latter require more expensive computational processing. Formally, these graphs
are constructed by connecting the five nearest neighbors for each residue from the protein’s
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contact map. The features utilized for the nodes of PSG are one-hot encoded amino acids,
3D coordinates of the alpha carbon atom of each residue, secondary structural features,
Meiler embeddings [46], and expasy embeddings [47]. Further, the edges of these mul-
tirelational graphs are defined by intermolecular interactions and attributed by Euclidean
distance between corresponding nodes. In particular, these interactions include peptide
bonds, hydrogen bonds, ionic interactions, aromatic sulphur interactions, hydrophobic
interactions, and cation–Π interactions as provided by Jamasb et al. (2020) [48].

To define molecular graphs for ligands Gl , we utilize the Pytorch-geometric approach
in which nodes represent atoms of a ligand, and edges denote molecular bonds. The 3D
graph for ligand conformers may be promising; however, the optimal ligand conformation
for the binders in most of the benchmarking datasets is unknown. To circumvent this
conformational challenge we used a simplified 2D graph representation. The adjacency
matrix indicates all node pairs whose corresponding atoms share a covalent bond between
the respective atoms in the ligand. Similar to the protein graphs, the nodes and edges of
the ligand graphs are attributed. We use the same atomic features for nodes as Kearnes
et al. (2016) [49]: atom type, formal charge, hybridization (‘sp’, ‘sp2’, ‘sp3’), hydrogen bond
acceptor/donor, membership to aromatic ring, degree, connected hydrogen count, chirality,
and partial charge. For the edges, bond type, bond conjugation, stereo configuration and
membership to a shared ring were used as attributes. The ligand molecular graph and the
PSGs are batched together similar to a graph matching or a Siamese network in order to
serve as input to our predictive model.

2.3. Model Architecture

PSG-BAR receives two attributed graphs Gp and Gl corresponding to the protein
3D structure and molecular graph of ligand’s 2D representation, respectively (Figure 1).
The construction of Gp:=

(
Vp, Ep,Ap

)
and Gl := (V`, E`,A`) is as defined in Section 2.2. The

model architecture follows an encoder–decoder paradigm with the encoder comprising of
(i) protein encoder Fp, (ii) cross attention head, and (iii) ligand encoder F`. We describe the
cross-attention mechanism in Section 2.4. The decoder is a multilayer feed forward neural
network with LeakyReLU activation.
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Gp and Gl are processed by independent and architecturally identical protein and
ligand encoders (Fp and F`, respectively) that stack several layers of GAT with skip
connection. For the ligand encoder (F`), the vector representations learned by GAT layers
are aggregated over all nodes of the graphs using a readout function r(.) that combines
global max and average pooling over all nodes of the graph to generate graph level
representations

(
x′l
)
. The readout function for the protein encoder performs global max

pooling over the node embeddings weighted by the attention map learned by the interaction
attention module. The encoded latent representations for protein are further enriched
with continuous dense embedding for the protein backbone, provided by a pretrained
language model trained on amino acid sequences [50]. x′p = [Fp (xp)||xp

seq] and x′l = F`(xl).
The protein and ligand representations interact with each other in a Siamese-like fusion
approach (Figure 2). The decoder comprises a multilayered perceptron with LeakyReLU
activation and forms the predictor function.

x =
[

x′p
∣∣∣∣∣∣x′l]

ŷ = LeakyReLU
(

WTx
)Molecules 2022, 27, x FOR PEER REVIEW 7 of 19 
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representation of the drug.

2.4. Interaction Attention Module

To further enhance the predictive capability of our model and to learn from the re-
lationship between protein and ligand interaction, we propose an interaction attention
module based on the cross attention mechanism (Figure 2). Cross attention learns to
selectively attend to the nodes of the protein structure graph and hence identify prin-
cipal nodes for a given protein–ligand interaction pair. We create the virtual edge set
V =

{
uv
∣∣u ∈ Vp, v = xl

}
to connect all nodes of the protein graphs to the drug representa-

tion out of the ligand encoder. Vi is calculated as

Vi = LeakyReLU
(

UT
1 x′l + UT

2 ui

)
where, U1, U2 are trainable model parameters and ui ∈ Vp.

2.5. Training and Hyperparameter Tuning

In all our experiments we employed a base model with three stacked GAT layers as
encoder (Figure 1). LeakyReLU activation was used throughout the model, except in the
interaction attention module where tanh was used. All GAT layers had a dropout rate of
10% and batch normalization to avoid overfitting. Further, early stopping conditioned
on validation loss was also adopted. The Adam optimizer with starting learning rate of
0.07 and a decaying learning rate scheduler was employed for all our experiments. A
minibatch size of 256 was found to be the most suitable on our Nvidia Tesla V100 GPUs.
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Mean squared error and cross entropy loss were used as objectives for regression and
classification, respectively. All hyperparameters were empirically chosen to maximize the
Pearson correlation metric on the validation set. Our methods were implemented using
Pytorch-geometric and Pytorch.

3. Results

Evaluation metrics: Our models were evaluated for regression using the Pearson
coefficient and mean squared error (MSE). Additionally, for activity classification on SARS-
CoV datasets, we report cross entropy loss and area under the curve of receiver operating
characteristic curve.

3.1. Binding Affinity Prediction Results

We benchmark PSG-BAR against several state-of-the-art methods (Table 2) that con-
sider spatial information or are based on GNNs. For KIBA, we compare against published
results with the lowest reported MSE. For BindingDB, we chose methods that reported
regression results for binding affinity on this dataset. Additionally, to test the robustness
and generalizability of our method, we test the performance under the following settings
for each benchmark dataset (Table 3). These settings are based on the different stratification
criteria of proteins and ligands for the train–test split.

Table 2. Comparison of PSG-BAR to other state-of-the-art methods on popular benchmark datasets.
For each of the 4 datasets, we compare PSG-BAR to the best reported performance on that dataset that
we find in the literature survey. For brevity, RSME data were consolidated into MSE when not directly
available from the authors. Since most works report their performance on warm setting, we present
our benchmarking results in the same setting. For GEFA and DeepPurpose, we were able to reproduce
respective implementations and report results on the same subset of the dataset as PSG-BAR. For other
works, we report the best reported performance metric in the literature for these methods.

Dataset Architecture MSE (↓) Pearson (↑)

DAVIS

GCNConvNet [51] 0.284 0.804

GINConvNet [51] 0.257 0.824

DGraphDTA [32] 0.241 0.837

GEFA [30] 0.228 0.846

PSG-BAR 0.237 0.856

KIBA

KronRLS [52] 0.261 0.752

GANsDTA [53] 0.387 0.662

SimCNN-DTA [41] 0.257 0.757

SimBoost [42] 0.204 -

PSG-BAR 0.200 0.850

PSG-BAR w/AF 0.177 0.865

BindingDB

DeepAffinity [54] 1.212 0.700

DeepPurpose [55] 0.765 0.836

PSG-BAR 0.651 0.864

PDBBind

GAT [56] 3.115 0.601

SGCN [57] 2.505 0.686

SIGN [56] 1.731 0.797

KDeep [27] 1.612 0.820

PSG-BAR 1.660 0.762
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Table 3. PSG-BAR performance on various dataset stratification schemes.

Dataset Architecture MSE (↓) Pearson (↑)

DAVIS

Warm 0.237 0.856

Cold Drug 0.902 0.456

Cold Protein 0.436 0.612

Cold Protein–Ligand 0.910 0.357

KIBA

Warm 0.200 0.850

Cold Drug 0.362 0.601

Cold Protein 0.298 0.756

Cold Protein–Ligand 0.415 0.360

BindingDB

Warm 0.651 0.864

Cold Drug 1.353 0.720

Cold Protein 1.811 0.540

Cold Protein–Ligand 2.102 0.515

PDBBind

Warm 1.660 0.762

Cold Drug 1.895 0.694

Cold Protein 2.011 0.602

Cold Protein–Ligand 2.100 0.599

Warm setting: No splitting restriction imposed on proteins and ligands. Any pro-
tein (or ligand) may be repeated in training and test split; however, interactions are not
duplicated across the two splits.

Cold protein setting: Each unique protein in the dataset has restricted membership
to either the training or the test set. No restrictions on ligands.

Cold ligand setting: Each unique drug in the dataset has restricted membership to
either the training or the test set. No restrictions on proteins.

Cold protein–ligand setting: Any protein or ligand seen during training is absent in
the test set. This is the most stringent measure for our model.

3.2. SARS Inhibitor Prediction

To perform a binary classification on the SARS-CoV Mpro inhibitor and to overcome
the problem of class imbalance between actives and inactives, we oversampled the actives
and randomly subsampled inactives to construct a class-balanced dataset of 26,400 interac-
tions. With a train–test split of 80–20% and five-fold CV, our method yielded 0.72 ROC-AUC
(Figure 3A). The sparsity of actives within an expansive and diverse chemical space war-
rants identification of even slightly probable hit compounds for further evaluation. As
such, we optimize for recall by using weighted binary cross entropy loss.

3.3. SARS CoV-2 MPro Experimental Validation

To validate the utility of PSGBAR method, we additionally perform testing on the
novel coronavirus, SARS-CoV-2, the causative agent of the ongoing COVID-19 global
pandemic. We rank PSG-BAR scores against docking screen results for the Mpro target.
This docking screen [58] was performed on the Mpro crystal structure (6W63 [59]) using the
DeepDocking [7] tool coupled with the commercial software Glide [60]. Importantly, after
the docking ranking, the final set of 1200 molecules was selected by expert chemists. These
selected compounds were then experimentally tested and 116 actives were confirmed. We
observe that our model highly ranks the compounds that the human expert decided are
worth purchasing. We show the normalized histograms of predicted scores for docking
screen compounds (blue) and decoys (orange). The details of our findings are as follows:
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The predicted score distribution for hits from docking is right skewed, meaning that
the model highly ranks most compounds in agreement with the docking program’s ranking.

The flat, near-zero left tail indicates that the tested set has almost no compounds which
are predicted to be extremely poor binders by our method. This aligns with our a priori
knowledge that these tested compounds are expert-selected following docking screen.

A set of decoys of a random sample of 20,000 poorly ranked compounds by docking
yields low score on our model too. Figure 4 illustrates that, on average, hit compounds
exhibit higher PSG-BAR scores than non-hits. This corroborates the utility of our method
as a standalone method to screen large virtual libraries. However, the most lucrative
positioning of our method would be as a filter succeeding docking and preceding hit
compound purchase.
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3.4. Attention Centrality

Thus far, we have evaluated the performance of our model as a whole on several
datasets and use cases. We are further interested in investigating the interpretability
of the method’s predictions and understanding the cause of its superior performance.
The relevance of the attention scores was evaluated on a randomly selected sample of
50 proteins from six protein families, namely, protease, kinase, polymerase, transferase,
phosphodiesterase, and hydrolase, from the PDBBind dataset. We focus on the amino acid
residues with the highest attention scores, which should be relevant for predicting binding.
Figure 5 illustrates the distributions of the average Solvent Accessible Area (SAA) for all
protein residues and the top-10 residues with the highest learned interaction attention
scores. Notably, residues with the highest attention scores displayed higher mean SAA
for all protein families. We also observed that, on average, surface residues have 22%
higher attention scores than core residues. This aligns with our domain knowledge on
protein–ligand binding that suggests the pocket residues are located on the protein surface
or are usually somehow accessible to the solvent.
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3.5. Drug Promiscuity

PSG-BAR operates as a protein target agnostic method for ligand binding prediction.
As such, it could be utilized to study the off-target effects of drug compounds on a multi-
tude of human proteins. To this end, we evaluate the promiscuity of the hit compounds
discovered in Section 3.3. To train a model that predicts activity across major off-target
proteins, we used a dataset presented by Ietswaart et al. (2020) [61] that contains in vitro ac-
tivity of 1866 marketed drugs across 35 protein targets (38,091 protein–ligand interactions).
These targets are adverse-drug reaction (ADR)-related and include well-known proteins
such as hERG (induces cardiotoxicity), nuclear receptors (carcinogenic effects), and COX
enzymes (intestinal bleeding). Thus, our model predicts whether a molecule is likely to
bind any of these off-target proteins. The modified PSG-BAR method used to perform
classification for activity on the ADR dataset yields an ROC-AUC value of 0.88 (Figure 6A).
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Figure 6. Evaluation of off-target effects of MPro hits on human proteins using PSG-BAR. (A) ROC-
AUC on ADR dataset (B) Histogram of average scores across 35 ADR-related proteins for 19 predicted
Mpro binders. The average score is a proxy for compound promiscuity. (C) Predicted likelihood of
binding to ADR proteins for the most promiscuous molecule (red) and least promiscuous molecule
(green). Lower values (closer to the center) indicate a high likelihood of binding.

To evaluate effects on ADR proteins, we chose 19 compounds ranked within the top
25th percentile by both PSG-BAR and docking screen. These compounds are predicted to
be the most likely binders to Mpro by our pipeline. We averaged scores across all proteins
to assess the general promiscuity of a molecule, i.e., the likelihood of binding to many
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proteins. The average score ranged from −3 to −7, where a higher score means a more
promiscuous compound (Figure 6B). We examined two molecules from both extremes.
The most promiscuous molecule was predicted to most likely bind alpha-1A adrenergic
receptor (Al1A), histamine H2 receptor (H2), COX-2, hERG, and 5-hydroxytryptamine
receptor 2A (5T2A) and 2B (5HT2B) (Figure 6C). Thus, if this molecule in the process of
drug development turned out to be problematic (e.g., exert toxicity in mice), our model can
hint at the possible underlying off-targets. Such information might be extremely useful for
structure-based optimization of the lead compound.

3.6. Ablation Studies

We critically analyze the contribution of key components of our model towards pre-
dictive performance. These studies were conducted on the PDBBind dataset under warm
setting, train/validation split of 0.8/0.2 ratio, and with a fixed random seed to impose fair
uniformity across experiments. We first study the effect of the skip connections in GATs.
The protein and ligand encoders are equipped with a varying number of GAT layers while
iteratively ablating the skip connections for each constituent layer.

We observe that stacking graph layers have diminishing returns (Figure 7A). This is
consistent with the observations made by previous works as most state-of-the-art GNNs
are shallower than four layers. Our experiments show similar peak performance for a
three-layered network. In each of the stacking modes, the GAT network equipped with
the skip connection performed better than the corresponding non-residual GAT version.
Further stacking layers reduce the overall efficacy of our model; however, it continues
to benefit from the addition of the skip connection. Furthermore, we noticed that over
the early epochs of model training, non-residual GAT yields slightly better performance
than the skip-connection variant and converges faster (Figure 7B). This may be attributed
to (i) the comparatively simpler architecture of the former and (ii) the averaging of node
representations to nearly the same vector to cause oversmoothing occurs over the due
course of passes over the data.
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Figure 7. Effect of skip connection on model performance on PDBBind dataset. (A) skip connection
on stacking GAT layers compared to GAT models of same complexity without skip connection.
(B) skip connection vs no skip connection on 3-layered GAT: the early success of the no-skip variant
is superseded by the skip connection variant over increasing epochs.

We further investigated the effect of the pre-trained amino acid embeddings on the
overall performance. In the model without amino acid embeddings, we observed a 3.47%
decrease in the Pearson correlation and 4.93% increase in the MSE on the PDBBind dataset.
This is attributed to the fact that protein homology is driven by sequence similarity and
a well-trained embedding on large amounts of amino acid sequences effectively captures
such protein similarity.
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3.6.1. Effect of Augmenting KIBA Dataset with AlphaFold Structures

As described in the dataset section, utilization of any protein–ligand interaction in the
training (or validation) process was contingent upon the availability of the crystallographic
structure of the corresponding protein target. For the KIBA dataset we supplemented the
proteins with missing PDB with their corresponding structures from AlphaFold. Conse-
quently, the additional interaction samples led to a 43.4% increase in available proteins in
the usable dataset and a 19.67% increase in total interactions. The model performance also
rose by 1.72% in terms of Pearson correlation and 11.1% for MSE (Table 2).

3.6.2. Effect of Secondary Structure Features of Proteins

We hypothesized that additional protein structure descriptors derived from the DSSP
module will help to ameliorate the definition of binding pockets. Indeed, Stank et al.
highlighted examples where secondary and tertiary features aided the classification of
various protein pockets [62]. Furthermore, topological, solvation, and hydrophobicity
descriptors may help determine the druggability of protein sites. For instance, it is known
that most druggable sites are highly hydrophobic and relatively deep [63]. As expected, the
aforementioned features boosted the performance of PSG-Bar with a Pearson correlation
increase in the range of 1.3–1.76% and an MSE decrease in the range of 4.00% to 4.81%
(Table 4). This could indicate the benefit of implicit learning of the connection between
properties of amino acid residues in the pocket and the binding free energy of ligands.

Table 4. Protein surface features improve PSG-BAR predictions across all 4 benchmarked datasets.

With Surface Features Without Surface Features

Dataset MSE Pearson MSE Pearson

BindingDB 0.651 0.864 0.678 0.851

PDBBind 1.660 0.762 1.744 0.749

KIBA 0.200 0.850 0.209 0.837

DAVIS 0.237 0.856 0.249 0.845

3.7. Error Analysis of Prediction of Effective Binders

It should be noted that drug discovery practitioners tend to care more for prediction
concerning good binders rather than for the overall performance of computational ap-
proaches. To this extend, we stratify the affinity score range into four intervals as ≤10,
10–12, 12–14, and >14 for the KIBA dataset (Figure 8). A significantly large majority (78.4%)
of interactions lie in the score 10–12 interval. These are weak binders, and the model per-
formance is at its peak for these interactions. The MSE for this stratum is 0.093 compared
to the population mean MSE of 0.2. Further, the moderate binders (score 12–14) and strong
binders (score > 14) span a much smaller proportion of total interactions at 18.4% and 2.7%,
respectively. For the poor binders, the predictive performance is considerably inferior to
any other strata.

It should be mentioned, however, that these interactions are of relatively low signif-
icance to the design and discovery of drugs. Strong binders (score > 14) are unarguably
the interval of highest interest and difficulty to predict. This, coupled with their sparsity
in the evaluated subset of the data, leads to a mediocre result for strong binders (MSE
1.2 compared to MSE 0.2 overall). However, further elaborating the KIBA dataset with
AlphaFold structures shows a marked improvement of 57.9% in MSE to bring MSE down
to 0.50. This is due to the presence of more structurally similar proteins that enable the
model to learn complex binding features, central to strong protein–ligand binding.
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4. Discussion and Conclusions

In this study we report the development of PSG-BAR, a ligand-binding affinity predic-
tion method leveraging protein 3D structures, 2D graph representations of a drug molecule,
and attention-based interaction scoring. The integration of protein structures helps to
achieve better predictive results on protein–ligand binding. This is mainly because 3D
structures contain relevant information on the actual configuration of the binding pockets,
which have immediate implications for the ligand binding. Many reported studies concern-
ing the protein–ligand interaction fail to consider the complex folded 3D structure of the
proteins and employ just the primary protein sequence. Yet others that consider protein
3D structure fall short of considering the relevance of active sites of the protein and view
all the protein residues as equally important. Some other studies utilizing protein–ligand
complex information rely on computationally expensive methods to determine binding
sites a priori and hence restrict their applicability to limited datasets.

In this work, we considered the residue-level graphs of the 3D structures of proteins in
conjunction with molecular topological graphs of the ligands. Our Siamese-like architecture
encodes both these graphs simultaneously. Additionally, we also proposed an interaction
attention module that learns attention scores between the ligand’s latent representation
and nodes (amino acids) of the protein structural graph. This enabled our model to ascribe
higher weights to residues critical concerning binding. Through a comparative analysis,
we demonstrate that the learning from the proposed interaction attention module concurs
with domain knowledge about SAA. The learned critical residues had higher SAA than
average SAA of the protein for most frequent protein families in the PDBBind dataset.

Unlike most previous studies, PSG-BAR does not rely on expensive precomputation
of binding sites and does not expect protein–ligand complex information explicitly. This
interaction inference is conducted implicitly through the attention mechanism. As a result,
it may be applied to many diverse and extensive binding datasets. Our experiments
yielded state-of-the-art results on BindingDB, KIBA, and DAVIS datasets and comparable
to state-of-the-art results on the PDBBind dataset.

This applicability of our method on diverse datasets enables its use as an “off-target
detection tool”. The training on the abundance of diverse proteins makes the model
highly generalizable across different protein families. Thus, the model could be applied for
predictions across a set of selected proteins such as ADR-relevant targets. We evaluated the
selected Mpro lead compounds using our model built for prediction across ADR-related
proteins. We found that the molecules range in their predicted promiscuity. Thus, these
predictions might help to guide future lead optimization of the drug candidates.
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We acknowledge other works with better-reported MSE, especially on the PDBBind
dataset (KDeep). This gain is largely attributed to the utilization of protein–ligand com-
plexes in their model, indicating that the binding pockets (active sites) of the proteins are
most critical towards this downstream prediction. However, obtaining such a protein–
ligand complex is expensive and hence limits the applicability of many of these methods to
smaller datasets with selective protein targets. Similarly, conventional docking approaches
depend on computationally expensive preparation of binding sites. Our attention-based
method learns surface residues without direct supervision while simultaneously predicting
binding affinity. This identification of key binding residues diminishes the need for expen-
sive binding site preparation and makes our model accessible to minimally preprocessed
protein structures.

In conclusion, our work represents a step in the direction of alleviating the problem of
a priori knowledge of a binding site which is an expensive prerequisite to all protein–ligand
interaction studies. The road to explainable AI, such as in attention-based visual question
answering, is expected to reform deep learning for DTI. We expect more protein–ligand
complexes to be experimentally resolved, so the next generation of deep models will be
able to learn such attention scores more accurately. In fact, with soft-supervision these
attention scores may even lead to reliable identification of binding sites. In this study, we
work under the rigidity assumption of protein and ligand (by using only 2D molecular
structures). Further research should investigate 3D ligand conformers in conjunction with
flexible protein 3D structures.
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36. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
37. Davis, M.I.; Hunt, J.P.; Herrgard, S.; Ciceri, P.; Wodicka, L.M.; Pallares, G.; Hocker, M.; Treiber, D.K.; Zarrinkar, P.P. Comprehensive

analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2011, 29, 1046–1051. [CrossRef]
38. Sussman, J.L.; Lin, D.; Jiang, J.; Manning, N.O.; Prilusky, J.; Ritter, O.; Abola, E.E. Protein Data Bank (PDB): Database of three-

dimensional structural information of biological macromolecules. Acta Crystallogr. Sect. D Biol. Crystallogr. 1998, 54, 1078–1084.
[CrossRef]

39. Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry,
computational chemistry and systems pharmacology. Nucleic Acids Res. 2016, 44, D1045–D1053. [CrossRef]

40. Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind database: Methodologies and updates. J. Med. Chem. 2005, 48,
4111–4119. [CrossRef]

41. Shim, J.; Hong, Z.-Y.; Sohn, I.; Hwang, C. Prediction of drug–target binding affinity using similarity-based convolutional neural
network. Sci. Rep. 2021, 11, 4416. [CrossRef]

42. He, T.; Heidemeyer, M.; Ban, F.; Cherkasov, A.; Ester, M. SimBoost: A read-across approach for predicting drug–target binding
affinities using gradient boosting machines. J. Cheminform. 2017, 9, 24. [CrossRef] [PubMed]

43. Kouranov, A.; Xie, L.; de la Cruz, J.; Chen, L.; Westbrook, J.; Bourne, P.E.; Berman, H.M. The RCSB PDB information portal for
structural genomics. Nucleic Acids Res. 2006, 34 (Suppl. 1), D302–D305. [CrossRef] [PubMed]

44. Tokars, V.; Mesecar, A. QFRET-Based Primary Biochemical High Throughput Screening Assay to Identify Inhibitors of the SARS
Coronavirus 3C-Like Protease (3CLPro). Available online: https://pubchem.ncbi.nlm.nih.gov/bioassay/1706 (accessed on 1
July 2022).

45. Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J. Design of wide-spectrum inhibitors
targeting coronavirus main proteases. PLoS Biol. 2005, 3, e324.

46. Yang, K.K.; Wu, Z.; Bedbrook, C.N.; Arnold, F.H. Learned protein embeddings for machine learning. Bioinformatics 2018, 34,
2642–2648. [CrossRef] [PubMed]

47. Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as
designed by its users. Nucleic Acids Res. 2021, 49, W216–W227. [CrossRef] [PubMed]

48. Jamasb, A.R.; Lió, P.; Blundell, T.L. Graphein-a python library for geometric deep learning and network analysis on protein
structures. bioRxiv 2020. [CrossRef]

49. Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular graph convolutions: Moving beyond fingerprints. J. Comput.
-Aided Mol. Des. 2016, 30, 595–608. [CrossRef]

50. Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118.
[CrossRef]

51. Nguyen, T.; Le, H.; Venkatesh, S. GraphDTA: Prediction of drug–target binding affinity using graph convolutional networks.
bioRxiv 2019, 684662. [CrossRef]

52. Nascimento, A.C.; Prudêncio, R.B.; Costa, I.G. A multiple kernel learning algorithm for drug-target interaction prediction. BMC
Bioinform. 2016, 17, 46. [CrossRef]

53. Zhao, L.; Wang, J.; Pang, L.; Liu, Y.; Zhang, J. GANsDTA: Predicting drug-target binding affinity using GANs. Front. Genet. 2020,
10, 1243. [CrossRef] [PubMed]

54. Karimi, M.; Wu, D.; Wang, Z.; Shen, Y. DeepAffinity: Interpretable deep learning of compound–protein affinity through unified
recurrent and convolutional neural networks. Bioinformatics 2019, 35, 3329–3338. [CrossRef] [PubMed]

55. Huang, K.; Fu, T.; Glass, L.M.; Zitnik, M.; Xiao, C.; Sun, J. DeepPurpose: A deep learning library for drug–target interaction
prediction. Bioinformatics 2020, 36, 5545–5547. [CrossRef] [PubMed]

56. Li, S.; Zhou, J.; Xu, T.; Huang, L.; Wang, F.; Xiong, H.; Huang, W.; Dou, D.; Xiong, H. Structure-aware interactive graph neural
networks for the prediction of protein-ligand binding affinity. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 975–985.
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