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Abstract: Two-dimensional (2D) metal dichalcogenides have attracted considerable attention for
use in photoelectric devices due to their unique layer structure and strong light-matter interaction.
In this paper, vertically grown SnS2 nanosheets array film was synthesized by a facile chemical
bath deposition (CBD). The effects of deposition time and annealing temperature on the quality of
SnS2 films was investigated in detail. By optimizing the preparation conditions, the SnS2 array film
exhibited efficient photoelectric detection performance under sunlight. Furthermore, in order to
improve the performance of the photodetector based on SnS2 nanosheets film, a transparent graphene
film was introduced as the hole-transport layer by wet-chemical method directly transferring
techniques. Graphene/SnS2 nanosheets array film heterojunction photodetectors exhibit enhanced
photoresponsivity. The light on/off ratio of the photodetector based on graphene/SnS2 was 1.53, about
1.4 times higher than that of the pristine SnS2 array films. The improved photoresponse performance
suggested that the effective heterojunction between vertical SnS2 nanosheets array film and graphene
suppresses the recombination of photogenerated carriers. The results indicate that the graphene/SnS2

heterojunction photodetectors have great potential in photodetection devices.

Keywords: graphene/SnS2 heterojunction; charge separation; photodetectors

1. Introduction

The unique physical and chemical properties of graphene has inspired the exploration of
two-dimensional (2D) materials [1]. Graphene has a huge electrical mobility that approaches
200,000 cm2 V−1 s−1 and is used for electrons and hole free sheets [2]. Moreover, the absorption of a
single-layer graphene is ~2.3% over a broad wavelength range [3]. As a result, graphene has been used
in many electronic and optoelectronic fields, including mode-locked lasers [4,5], photodetectors [6–8],
transistors [9,10], batteries [11], photovoltaics [12], photocatalysis [13,14], and so forth. Among these
applications, photodetectors are critical optoelectronic components that convert optical radiation
into electrical signal [15,16] and they have been widely used in medical analysis, astronomy [17],
environmental sensing [18], and optical communication [19,20], However, single-layer graphene
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itself is a band-free Dirac semi-metal, which limits its application in optoelectronic devices where
semiconducting properties are required [21].

Recently, the combination of graphene with various two-dimensional (2D) layered materials has
proven to be an effective strategy to achieve the unique electronic and optoelectronic applications of
2D materials [22–24]. Among the various kinds of 2D layered metal dichalcogenides, SnS2 is an n-type
semiconductor with a layered cadmium iodide (CdI2) structure. Each layer is covalently bonded by three
atomic planes and separated by weak van der Waals interaction. SnS2 exhibits a high optical absorption
coefficient and strong photoconductive properties in visible regions and this has given rise to increased
interest due to its particular structure, suitable band gap (~2.2 eV), good chemical stability, low-cost
and environmental friendliness [25]. Therefore, it has been widely used in many fields, such as lithium
(sodium) ion batteries [26,27], solar cells [28,29], photocatalysis [30,31], field effect transistors [32,33],
photodetectors [34–36], etc. Su et al. [37] used chemical vapor deposition (CVD) to introduce metal
seeds on the substrate to achieve high-quality SnS2 thin film for location-selective synthesis, and
the response time and quantum efficiency of the fabricated photodetector was ~5 microseconds and
11.3%, respectively. Tao et al. [38] studied a transparent polypropylene (PP) film flexible photodetector
based on SnS2 self-assembled microsphere film by double-sided tape. The device shows a good
photoresponse in the region of UV (300 nm) though to NIR (830 nm) light. However, vertical SnS2

nanosheets array film combined with transparent graphene film for photodetector application has
rarely been investigated.

In this work, SnS2 film vertically grown on conductive fluorine-doped tin oxide (FTO) glass
substrate was fabricated by the low-temperature CBD method. The optimal fabrication conditions for
pure SnS2 array film was investigated. After annealing treatment at 300 ◦C in nitrogen atmosphere, the
crystalline of SnS2 showed an obvious improvement. A highly transparent graphene thin film was
deposited onto n-type SnS2 array film to form a Schottky junction. The graphene/SnS2 heterojunction
was constructed by the direct wet-chemical transfer method. Graphene, as a hole-transport layer,
promotes the charge transfer at the interface of the heterojunction. The corresponding photodetector
based on graphene/SnS2 composite film shows enhanced and stable photoelectric performance.

2. Experimental Methods

2.1. Synthesis of SnS2 Nanosheets Array Film

All chemicals in the experiment were of the highest purity available and were used without further
purification. In this experiment, the resistivity of distilled water was 18.0 M Ω cm. FTO substrates
were ultrasonically cleaned successively with acetone, isopropanol, and ethanol, followed by rinsing
with deionized water and drying in the flow of N2. The cleaned substrates were further treated by
plasma for 5 min. SnS2 nanosheets array film was synthesized by the CBD method, similar to that
previously reported in [39]. The synthesized process of the SnS2 film is shown in Figure 1a. Briefly,
10 mol of SnCl4·5H2O (Aladdin, 99.995% metals basis, Shanghai, China) was dissolved in 240 mL
anhydrous ethanol. The mixture was stirred for 15 min under ambient conditions before 0.15 mol
thioacetamide (CH3CSNH2, Aladdin, Shanghai, China) was added. Then, the mixture was placed in a
beaker of 50 mL volume. Finally, a piece of cleaned FTO substrate was placed at an angle against the
wall of the beaker with the conductive side facing down. The CBD process was carried out at 60 ◦C in
a water bath kettle for 0.5 h, 1 h and 1.5 h, respectively. When the kettle was cooled down to room
temperature, the FTO substrates were removed and thoroughly rinsed with deionized water. Finally,
the samples were dried in an oven at 80 ◦C for 6 h. To further remove any impurities on the sample
surface and improve the crystallinity, the samples were annealed at 250 ◦C, 300 ◦C and 350 ◦C for
1 h in nitrogen (N2) atmosphere [40,41]. The prepared samples were dried and cleaned in ambient
conditions for further characterization.
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Figure 1. Schematic of (a) chemical bath deposition (CBD) process for SnS2 nanosheets film;
(b) preparation of the floating graphene film; (c) preparation of the graphene/SnS2 heterojunction.

2.2. Preparation of Graphene/SnS2 Heterojunction

Graphene/SnS2 heterojunction was constructed by the wet-chemical transfer method [42,43],
where the graphene layer was directly transferred onto SnS2 film. The large area of graphene films
on Cu foil substrates were purchased from the Graphene Technology Corporation, China. Firstly,
graphene film was delaminated from the Cu foil by the conventional polymethyl methacrylate (PMMA,
Aladdin, ACS, Shanghai, China) assisted transfer method (as shown in Figure 1b) [44]. PMMA was
spin-coated onto the graphene film at 2000 r/min. The PMMA/graphene/Cu foils was dried at 100 ◦C
for 3 min, then the samples were placed in 3 M FeCl3 ((Aladdin, ACS, Shanghai, China) solution for 6 h
to etch the Cu foil completely. The floating PMMA/graphene films were fished out and rinsed several
times in deionized water. Finally, the PMMA/graphene film was picked up by FTO substrates with
SnS2 nanosheets grown and dried in a flow of N2, as shown in Figure 1c. Subsequently, the whole
sample was treated by acetone vapors to dissolve the PMMA by heating the acetone solution to 90 ◦C.
The obtained graphene/SnS2 heterojunction films were then used for photodetector fabrication.

2.3. Characterization

The morphology and microstructure of the samples were characterized by field emission scanning
electron microscope (SEM) (Hitachi, Tokyo, Japan, SU8010 (MDTC-EQ-M18-01)). The composition
of the crystal structure was identified by X-ray diffractometer (Rigaku, Ultima IV, Tokyo, Japan)
using Cu Kα radiation (λ = 1.5418Å). UV-vis absorption was recorded with Cary 5000 UV-Vis-NIR
spectrophotometer (Agilent Technologies, CA, USA) in the range of 350 nm to 800 nm. In order
to investigate the photoelectric performance of the samples, Au electrodes were deposited on the
samples with a shadow mask by a thermal evaporation method. The photoelectric performance
of the photodetector based on the pristine SnS2 and graphene/SnS2 thin films was investigated by
an electrochemical workstation (CH Instruments, model CHI 760E, Austin, TX, USA). The CHI
electrochemical workstation was used to measure dark and illuminated current at a scan rate of 10 mV/s.
The bias voltage was 3 V. The active area of samples was kept at 1 cm2 by a mask. A 500W xenon lamp
was used to simulate sunlight. (Spectra Physics, CA, USA).
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3. Results and Discussion

The vertically grown SnS2 array films on FTO substrate were prepared by a simple CBD method
(see Experimental Methods). We investigated the density change of SnS2 nanosheets by changing the
reaction time to obtain the optimal condition. The reaction temperature of all the samples was 60 ◦C.
Altering the reaction time from 1 h to 1.5 h barely changed the morphology of the nanocrystalline,
but the thickness of the single SnS2 nanosheets film increased from 534 nm to 1120 nm, as shown in
Figure 2a,b. The SnS2 nanocrystals with non-overlapping structures were interlaced and interconnected
with each other. With the extension of the reaction time, the density of ordered SnS2 gradually increased
when the CBD time was between 0.5 h and 1 h. The top-view SEM image of pristine SnS2 film on
FTO prepared at 60 ◦C for 0.5 h is shown in Figure S1 (Supplementary Materials). However, when the
CBD time exceeds 1 h, the film density decreased due to the curing mechanism of the reaction (the
corresponding top-view SEM images are shown in Figure 2c,d). Therefore, the optimal condition for
CBD is 1 h. The effect of annealing conditions on the film density will be further explored in future
work. We also measured the surface roughness of the pristine SnS2 and graphene/ SnS2 thin film on
FTO prepared at 60 ◦C for 1 h and the AFM results are presented in Figure S2a,b (Supplementary
Materials). According to the AFM results, compared with pristine SnS2, the average surface roughness
of graphene/SnS2 thin film decreased from 70 nm to 45.7 nm. The results show that the sample with
lower surface roughness and better compactness is prepared under this condition. In our experiment,
an orange film started to peel off from the FTO substrate when the reaction time was longer than
1.5 h. The reason for the dissolution/partial peel-off might be explained by considering the reaction
kinetics [45]. As the reaction time increases, the concentration of reactants in the solution decreases.
When the concentration of reactants near the FTO substrate is lower than the concentration allowed by
the chemical equilibrium, an opposite reaction will occur to dissociate the membrane to make up for
the deficiency, which accounts for the film peel-off.
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Figure 2. Cross-sectional view of field-emission scanning electron microscopy (FESEM) image of
pristine SnS2 film on FTO prepared at 60 ◦C for (a) 1 h, and (b) 1.5 h, (c,d) are the corresponding
top-view SEM images.
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The crystallinity of SnS2 array films was characterized by X-ray diffraction. Figure 3 displays the
XRD patterns of prepared samples fabricated at 60 ◦C and annealed at 250, 300 and 350 ◦C for 1 h
in N2 atmosphere. The red curves in Figure 3 are the diffraction peaks of FTO substrate (JCPDS No.
46-1088). All of the diffraction peaks can be indexed according to the standard hexagonal structure
of SnS2 (JPCDS No. 83-1705; space group: P/3ml (no.164); a = 0.3638 nm, c = 0.588 nm). The XRD
diffraction peaks at 14.83◦, 28.45◦, 32.14◦ correspond to the (001), (100), (002) planes of the samples.
No other peaks were observed in the XRD spectra at other angles, which suggests the high purity of
the SnS2 films. The investigation also showed that no phase transition occurs during the calcining
process. In addition, we used the Scherrer equation to estimate the thickness of the individual sheets
that are standing up perpendicular to the substrate in the XRD data. For example, the full width at half
maximum (FHWM) of the prepared samples fabricated at 60 ◦C for a CBD time of 1 h are 0.6217, 0.6827,
0.7382 degrees, which correspond to the XRD diffraction peaks at 14.83◦, 28.45◦, 32.14◦, respectively.
According to the Scherrer equation, the average grain thickness is 12.89 nm. Similarly, the average grain
thickness of samples for 1.5 h is 14.13 nm. The data shows that the average thickness increases with
the increasing reaction time. By increasing annealed temperature (Figure 3a–c), it is interesting to note
that the intensity of the (100) and (002) diffraction peaks of the SnS2 was significantly enhanced as the
annealing temperature increased, except for the sample annealed at 350 ◦C (Figure 3d), which indicates
that the higher temperature is beneficial to obtain high crystalline samples. When the temperature
of the annealing treatment increased to 350 ◦C, the relative intensity of the (002) diffraction peak
decreased. Figure 3e shows the UV–vis absorption spectrum of pure SnS2 array film. The maximum
peak intensity occurs at around 350 nm and the absorption edge is ~650 nm. The optical energy gap of
the as-prepared SnS2 array film after annealing at 300 ◦C in N2 atmosphere is about 2.01 eV, as shown
in Figure 3f. We further investigated the photoelectric performance of photodetectors based on pure
SnS2 films prepared under different reaction time and annealed at different temperatures, as shown in
Figure 4. The samples were illuminated under white light and the power intensity was 60 mW/cm2.
Figure 4a is the I-V curves of the photodetector device (as shown in Figure 1a) based on the pristine
SnS2 films annealed at different temperatures. The photocurrent shows an obvious improvement with
the increased annealing temperature. However, with further increases in the annealing temperature to
350 ◦C, the photocurrent exhibits a decreasing tendency. This may be attributed to the deterioration in
the crystallinity according to the XRD patterns shown in Figure 2d. Figure 4b shows the photoelectric
performance based on the SnS2 films annealed at 300 ◦C but prepared for a different time span. The
photocurrent of the sample prepared with a reaction time of 1 h is about 60 µA, higher than those of
samples prepared with a reaction time of 0.5 h and 1.5 h. Based on the results, the samples used for
photodetector fabrication were all prepared at 60 ◦C for 1 h and annealed at 300 ◦C in N2 atmosphere.
Figure 4c is the corresponding photoresponse of photodetectors based on pristine SnS2 film prepared
at optimal reaction conditions. The I-t curve was measured at a bias voltage of 3 V and the light
illumination density of was 60 mW/cm2. Obviously, when the light is turned on (off), the photocurrent
increases (decreases) sharply. It was also observed that under illumination of multiple cycles, the
photocurrent and dark current did not change significantly, indicating that the performance was stable.
The time response was also used to calculate the rise and decay time, which is closely related to
the charge trapping/detrapping and recombination processes. The dark current of the device was
large, which is probably due to the large free charge caused by the defects [46,47]. According to the
individual cycle, as shown in Figure 4d, the ratio of on-off currents (Ion/Ioff) is 1.1 and the response
time (rise time/decay time) are 5.4 s and 5.1 s, respectively. This efficient photoresponse indicates
that the photogenerated electrons are easily transferred from the SnS2 film electrodes to FTO and the
as-prepared SnS2 film has potential application in photodetector.
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Figure 3. XRD pattern of pristine SnS2 films (a) unannealed, and annealed at different temperatures
(b) 250 ◦C, (c) 300 ◦C and (d) 350 ◦C. (e,f) are UV–vis absorption spectra and the corresponding plots of
(α hν)2 vs. hν of the pure SnS2 array film annealing at 300 ◦C in N2 atmosphere.
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intensity of 60 mW/cm2. (b) I-V curves of photodetectors with different CBD time. (c) I-t curves of
photodetector with an on–off period of 20 s. (d) I-t curve of a single cycle of photodetector.

Wet chemical transfer techniques were used to deposit the highly transparent graphene film on
the n-type SnS2 array film (as shown in Figure 1, to further improve the photoelectric performance
of the device. The top-view SEM image of graphene/SnS2 heterostructure film is shown in Figure S3
(Supplementary Materials). The composition and microstructure of the samples were further analyzed
by Raman (WITec Alpha 300R). As shown in Figure 5a, the intense peak at 315 cm−1 is assigned to the A1g

mode of SnS2 array film. The presence of the peaks at 1352 cm−1, 1585 cm−1 and 2720 cm−1 corresponds to
the D, G and 2D bands of graphene, respectively. The results show that the graphene/SnS2 composites
were successfully fabricated. Figure 5c shows the I-V curves of a graphene/SnS2 heterostructure
photodetector in the dark and at a light illumination intensity of 20 mW/cm2, 40 mW/cm2, 60 mW/cm2

and 80 mW/cm2, respectively. The asymmetry and nonlinearity of the curves indicates the non-ohmic
contact between the graphene/SnS2 heterostructure [48,49]. As the light power density increases, the
photocurrent intensity increases, indicating an effective photoresponse property. Figure 5d shows the
I-t curves of the pure SnS2 array film and the graphene/SnS2 composites film under the same light
illumination conditions. The graphene/SnS2 composites film has stable photoresponse characteristics
and good reproducibility. The device based on graphene/SnS2 heterojunction has an increase in
photocurrent of approximately 13.7 µA/cm2 compared with that of pure SnS2-based photodetectors.
The on-off currents ratio (Ion/Ioff) of graphene/SnS2 heterojunction is 1.53, higher than that of pure
SnS2 film with 1.1. The results show that the high off current and low on-off current ratio may be
due to the low contact resistance between graphene and SnS2 layers; further improvement could
be made by modifying the device configuration in the future. Furthermore, the response time
(rise time/decay time) of the hybrid graphene/SnS2 film is 5 s/4.9 s, which is superior to that of the
pure SnS2 array film (5.4 s/5.1 s). Under a high power light illumination, due to the abundance of
photogenerated electron-hole pairs, the photogenerated carriers pass through the electrode for a long
time, the current slowly rises to the optimal value, and the response time is long. The enhanced
photoelectric performance is because graphene as a hole transporting layer was introduced by a simple



Nanomaterials 2019, 9, 1122 8 of 11

transfer method to form a Schottky junction photodetector with vertical SnS2 array film. As already
known, graphene has a zero-band gap characteristic resulting from its valence bands exhibiting linear
dispersion degeneration near Dirac point energy. Nevertheless, under a built-in electric field formed
at the interface between graphene and SnS2 array film, graphene can be tuned to display p-type
behavior, as shown in Figure 5b [50]. Once incident photons are absorbed by SnS2 nanosheets array
film, electron–hole pairs are predominantly produced in the depletion layer. The photo-generated holes
transfer swiftly to the graphene and are collected by Au electrodes. The Schottky junction is beneficial
for effective charge carrier separation. Consequently, the recombination of the photogenerated electrons
and holes are effectively inhibited, leading to improved photoresponse performance. Moreover, since
the graphene/SnS2 interface has charge trap states in ambient conditions, it reduces the dark current.
We repeated the measurement in the vacuum environment (INSTEC, LTS420E-PB4, CO, USA), and the
current was measured by Keithley 2636B (Tektronix, OH, USA). The results are shown in Figure S4
(Supplementary Materials), which shows that the dark current in the vacuum is lower than that in
the ambient, thus the photoelectric response is improved. In addition, there are many methods [51]
to improve the performance of photodetectors based on 2D materials, including surface plasma
enhancement, charge transfer assistance, optical waveguide integration, graphene sandwich structure
and heterogeneous structure directly grown by CVD. A high concentration of defects can reduce the
mobility of carriers, [52] which is an important reason for the slow response of photodetectors. Further
research will focus on reducing defects in the sample and improving device fabrication processes.

Nanomaterials 2019, 9, x FOR PEER REVIEW 8 of 11 

 

junction photodetector with vertical SnS2 array film. As already known, graphene has a zero-band 

gap characteristic resulting from its valence bands exhibiting linear dispersion degeneration near 

Dirac point energy. Nevertheless, under a built-in electric field formed at the interface between 

graphene and SnS2 array film, graphene can be tuned to display p-type behavior, as shown in Figure 

5b [50]. Once incident photons are absorbed by SnS2 nanosheets array film, electron–hole pairs are 

predominantly produced in the depletion layer. The photo-generated holes transfer swiftly to the 

graphene and are collected by Au electrodes. The Schottky junction is beneficial for effective charge 

carrier separation. Consequently, the recombination of the photogenerated electrons and holes are 

effectively inhibited, leading to improved photoresponse performance. Moreover, since the 

graphene/SnS2 interface has charge trap states in ambient conditions, it reduces the dark current. We 

repeated the measurement in the vacuum environment (INSTEC, LTS420E-PB4, CO, USA), and the 

current was measured by Keithley 2636B (Tektronix, OH, USA). The results are shown in Figure S4 

(Supplementary Materials), which shows that the dark current in the vacuum is lower than that in 

the ambient, thus the photoelectric response is improved. In addition, there are many methods [51] 

to improve the performance of photodetectors based on 2D materials, including surface plasma 

enhancement, charge transfer assistance, optical waveguide integration, graphene sandwich 

structure and heterogeneous structure directly grown by CVD. A high concentration of defects can 

reduce the mobility of carriers, [52] which is an important reason for the slow response of 

photodetectors. Further research will focus on reducing defects in the sample and improving device 

fabrication processes. 

 

Figure 5. (a) Raman spectrum of SnS2/graphene composite films, (b) Schottky junction formed 

between graphene and SnS2 array film, (c) I-V curves of SnS2/graphene photodetector under different 

optical power density illumination conditions, (d) I-t curves of photodetectors with and without 

graphene under the optical power density of 60 mW/cm2. 

4. Conclusions 

In summary, 2D SnS2/graphene composites film has been fabricated in situ on FTO by using low-

temperature CBD and then the direct wet-chemical transfer method. The hybrid graphene/SnS2 film 

Figure 5. (a) Raman spectrum of SnS2/graphene composite films, (b) Schottky junction formed between
graphene and SnS2 array film, (c) I-V curves of SnS2/graphene photodetector under different optical
power density illumination conditions, (d) I-t curves of photodetectors with and without graphene
under the optical power density of 60 mW/cm2.



Nanomaterials 2019, 9, 1122 9 of 11

4. Conclusions

In summary, 2D SnS2/graphene composites film has been fabricated in situ on FTO by using
low-temperature CBD and then the direct wet-chemical transfer method. The hybrid graphene/SnS2

film exhibits superior photoelectric performance compared to pristine SnS2 nanosheets array film. The
light on/off ratio for SnS2 nanosheets is 1.1, whereas for the graphene/SnS2 composite, it is 1.53. The
successful demonstration of the photoelectric enhancement based on 2D graphene/SnS2 array film
opens up new opportunities for the application of other low-temperature soluble transition metal
sulfide combined with graphene in photodetectors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/8/1122/s1,
Figure S1: top-view SEM image of pristine SnS2 film on FTO prepared at 60 ◦C for 0.5 h, Figure S2: AFM height
image of (a) pristine SnS2 film and (b) SnS2/ graphene heterostructure film on FTO prepared at 60 ◦C for 1 h,
Figure S3: top-view SEM image of SnS2/ graphene heterostructure film, Figure S4: I-V curves of SnS2/ graphene
photodetector under vacuum and ambient condition.
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