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Structure and density of basaltic melts at mantle
conditions from first-principles simulations
Suraj Bajgain1, Dipta B. Ghosh2 & Bijaya B. Karki1,2,3

The origin and stability of deep-mantle melts, and the magmatic processes at different times

of Earth’s history are controlled by the physical properties of constituent silicate liquids. Here

we report density functional theory-based simulations of model basalt, hydrous model basalt

and near-MORB to assess the effects of iron and water on the melt structure and density,

respectively. Our results suggest that as pressure increases, all types of coordination between

major cations and anions strongly increase, and the water speciation changes from isolated

species to extended forms. These structural changes are responsible for rapid initial melt

densification on compression thereby making these basaltic melts possibly buoyantly stable

at one or more depths. Our finding that the melt-water system is ideal (nearly zero volume of

mixing) and miscible (negative enthalpy of mixing) over most of the mantle conditions

strengthens the idea of potential water enrichment of deep-mantle melts and early magma

ocean.
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A
mong key melt properties of relevance for the chemical
and thermal evolution of the Earth1–3 are the structure
and density of molten silicates, which still remain

unknown or poorly constrained over most of the mantle
pressure and temperature conditions. Density contrasts between
silicate liquids and solid mantle essentially control the stability
and mobility of melt at depth4–6. Structural changes due to
pressure can dramatically influence the melt density, and other
properties including the melt viscosity and incompatible element
partitioning. Extant experimental measurements provide limited
information on these issues7–9. For instance, recent in-situ X-ray
diffraction9 at pressures up to 60 GPa has characterized the
structural changes in molten basalt only in terms of Si–O
coordination with some assumption made about Al–O
coordination, and perhaps with limited resolution due to broad,
overlapping diffraction peaks. No information about other
coordination environments could have been extracted. It is also
not clear how the pressure-induced changes in the melt density
are sensitive to composition at high pressure. In particular, iron
and water are among the most important components9–11.
Therefore, reliable quantitative estimates of their effects on the
structure and density of silicate liquids as a function of pressure
are essential.

Complementary to difficult experimentation at the conditions
of deep interior is first-principles computation12–14, which has
taken on an increased significance in the study of the silicate
liquids, yet limited to compositionally simple systems. However,
natural melts represent a multi-component CaO–MgO–FeO–
Fe2O3–Na2O–K2O–Al2O3–TiO2–SiO2 system with volatile
components including water15,16. Here, we study three basaltic
systems in the temperature range of 1,800–4,000 K at typical
mantle pressures by performing computationally intensive first-
principles molecular dynamics simulations (see Methods section
later). They include pure and hydrous phases of model basalt
(MB) – the eutectic composition of 36 wt% anorthite and 64 wt%
diopside, which differs from actual basalt in that it contains excess
Ca to compensate Fe. MB is widely considered as a good analogue
for natural basalt7,8,17. Our third melt composition is near-MORB
(mid-ocean-ridge basalt) containing 9.9 wt% FeO, similar to
experimentally studied molten basalts9,11. These simulations
allow us to investigate the role of Fe and H2O in magmatic
processes through accurate prediction of relevant bulk properties
and access to microscopic (atomistic) information12–14,17.

Key questions that need to be answered in a quantitative
manner are: how are various cations and anion coordinated at
different pressures? Can coordination changes be linked with
melt densification? Is water actually soluble in high-pressure
melt? Can the melt density exceed the mantle density? Our
simulations of three basaltic melts here suggest that all types of
coordination between major cations (Al, Ca, Fe, Mg, Na and Si)
and anion (O) increase strongly on compression with most
changes occurring at the pressures below 30 GPa. They also reveal
that the speciation of H2O component consists of mostly
hydroxyls and molecular water at low pressure, which change
to interpolyhedral (–O–H–O–) linkages and other extended
forms at high pressure. The effects of the Fe and H2O
components on density are such that the melts including hydrous
melt may be buoyantly stable at one or more depths. Our work
also represents direct (first principles) evidence for the possibility
that the water component shows ideal mixing of volume as well as
high solubility in high-pressure silicate melts.

Results
Atomic coordination in silicate melts. The melt structure is
largely controlled by cation–anion bonding so the structural

changes due to pressure, temperature and composition can be
better understood in terms of coordination environments con-
sisting of different cations and anion. As pressure rises, the cal-
culated mean Si–O coordination increases relatively rapidly
initially from fourfold (at zero pressure) and then gradually at
pressures above 30 GPa to sixfold (and eventually exceeding six)
at high pressure in a remarkably similar way for all three basaltic
compositions studied here (Fig. 1a). Other types of cation–anion
coordination (Al–O, Ca–O, Fe–O, Mg–O and Na–O coordina-
tion) also increase with pressure with most changes occurring
over narrower pressure intervals (Fig. 1b). For each case, the
mean coordination remains almost unchanged on isochoric
heating (Supplementary Fig. 1) though the distribution of coor-
dination species widens (Supplementary Fig. 2). When the liquid
is compressed, more high-coordination species appear at the
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Figure 1 | Mean cation–anion coordination. Their calculated values

(symbols) are for MB, hydrous MB (hyMB) and MORB liquids. (a) Silicon–

oxygen coordination (symbols and black line) compared with that for silica:

sil (ref. 19), enstatite: en (ref. 12) , forsterite: fo (ref. 22), diopside: di (ref.

14) and anorthite: an (ref. 13). The experimental Si–O data (asterisks) are

for molten basalt9. The inset shows the mean O–Si coordination for three

basaltic liquids (symbols with black lines) and other liquids (the silica value

shifted down by 0.6). (b) Coordination of Ca, Mg, Na, Fe and Al with

respect to oxygen (symbols and lines). The coordination and pressure

values are averaged over different temperatures at each volume for each

liquid. Error bars in pressure represent the range covered by temperature

1800–4000 K on a given isochore.
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expense of low-coordination species, and the overall coordination
continuously increases on compression unlike abrupt coordina-
tion changes that occur in crystalline silicates. Though the
calculated results are generally consistent with the experimental
data9, the four- to sixfold Si–O coordination increases in the
simulated liquids occur over wider pressure intervals than
experimentally inferred. The calculated Fe–O coordination-
pressure evolution is more gradual too, compared with the
measured trend for molten fayalite18.

Comparisons with the previous first-principles simulations of
several other liquids12–14,19 (Fig. 1a) suggest that local structural
features are selectively dependent on composition. The mean
Si–O coordination is, however, weakly sensitive to composition at
all pressures with its values lying within 10% for different liquids
including basaltic ones. This means that the corresponding
structural units (coordination polyhedra) serve as building blocks
of all silicate liquids with the abundances and stabilities of
different coordination species depending on composition
(Supplementary Fig. 2). The basalt melt contains 410% non-
tetrahedral species at 0 GPa and 3,000 K, compared with nearly
pure tetrahedral silica liquid19. On the other hand, the mean O–Si
coordination is highly dependent on composition (inset of
Fig. 1a), being sensitive to both water and Fe content. The
water component systematically lowers the O–Si coordination at
all conditions thereby depolymerizing the melt structure.

Water speciation of hydrous melt. How water (H2O) component
dissolves in the melt impacts the host structure and properties.
Our simulations of hydrous MB show that the speciation of water
component occurring through oxygen–hydrogen bonding con-
sists of various forms (Fig. 2a), whose proportions are sensitive to
both pressure and temperature (Fig. 2b). Hydroxyls, water
molecules and polyhedral bridging (–O–H–O–) together account
for 490% of the speciation at zero pressure and 3,000 K with
molecular water mostly bonded to Mg and Ca. This is consistent
with the mean H–O coordination number of nearly one (Fig. 2b,
inset). With increasing pressure, the abundances of polyhedral
linkages with the appearance of polyhedral edge decoration and
other extended forms (–O–H–O–H– chains, hydronium; Supple-
mentary Fig. 3) increase as more oxygen gets bonded with
hydrogen at the cost of isolated species. In compressed simulation
supercell, available free volume may not be enough to accom-
modate polar molecular species anymore. The increased bonding
activity is reflected in rapidly increasing mean H–O coordination,
which exceeds 2 at pressures above 80 GPa. Interestingly, H–O
coordination and H–O bond lengths for pure water are system-
atically lower than those for the hydrous melt (inset of Fig. 2b,
Supplementary Fig. 4). Experimental evidences exist for some of
the predicted speciation forms, in particular, hydroxyl, molecular
water and edge decoration20,21.

Thermal equation of state and density. The pressure–volume–
temperature (P–V–T) results obtained from a series of
liquid simulations (Supplementary Table 1) can be described
by the Mie–Grüneisen form of equation of state:
P V;Tð Þ ¼ P V ;T0ð ÞþBðVÞðT �T0Þ. A fourth order Birch–
Murnaghan equation is needed to accurately represent the
reference isotherm at T0¼ 3,000 K mainly because of initial high
compressibility of the liquid, perhaps arising from large coordi-
nation changes occurring in the low-pressure regime. Based on
the calculated coordination-pressure profiles (Fig. 1b), the oxygen
coordination of Ca, Fe, Mg and Na (that is, network modifiers)
apparently contributes to initial compression (up to 20 GPa)
more than the Si/Al–O coordination does. Such coordination
changes become gradual and all cation–anion bond distances

start to systematically decrease on compression thereby making
the liquid much stiffer at higher pressure. As shown in Table 1,
the calculated equation-of-state parameters are in excellent
agreement with those based on experiments for different melt
compositions9,11. For each melt, increasing thermal pressure on
compression is reflected by strongly volume dependent coefficient
B. This behaviour can be further linked to the Grüneisen
parameter, whose value increases nearly linearly from 0.2±0.1 to
over 1.5±0.2 upon twofold compression with no discernable
effects of Fe and water. This finding is generally consistent with the
previous simulations12–14,22 and experimental inferences23–25.

The melt density–pressure isotherms predicted by the above
Mie–Grüneisen equation diverge initially with increasing pres-
sure, and then tend to remain parallel at high pressure (Fig. 3).
Based on our simulation results, the MORB density is higher than
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Figure 2 | Speciation of water component in melt. (a) Visualization

snapshot showing hydroxyls, free water molecule, polyhedral bridging and

four-atom sequence (marked) in the melt at 3000 K and 7 GPa. The Si/

Al–O coordination polyhedra and O–H bonding (large sphere–small sphere)

are also displayed. (b) Abundances (expressed in terms of the number of H

atom, 30 in total) of different forms of water speciation at 4,000 K (blue

lines), 3000 K (black lines), 2,500 K (green lines), 2,200 K (magenta lines)

and 1,800 K (cyan lines). Species grouped under ‘other’ represent long

chains. The inset shows the mean H–O coordination numbers of hydrous

MB melt (hyMB) compared with that of pure water at 3,000 K (circles) and

4,000 K (diamonds) along with the results for hydrous silica (hySil) and

enstatite (hyEn) melts.
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the MB density, which is, in turn, higher than the hydrous basalt
density at all pressure–temperature conditions. The Fe-induced
increase in the melt density becomes bigger at higher pressure
unlike relatively uniform density decrease caused by the water
component. The near-MORB melt shows a higher densification
rate than the other two melts studied here. The calculated melt
densities compare favourably with the measured data from X-ray
diffraction9, sink-float26,27 and shock-wave experiments7,8 (Fig. 3,
Supplementary Fig. 5). It is interesting to note that the near-
MORB density values along 3,000 K isotherm tend to roughly lie
between the X-ray diffraction data at 2,200–3,273 K, and the sink-
float data at 1,673 K and 2,473–2,773 K for basalt/MORB melts.
Some systematic deviation shown by calculated results can be
attributed partly to the compositional and temperature
differences between the simulations and experiments.

Melt-water solution properties. It is important to check
whether the dissolved water behaves like other oxide
components by having a well-defined partial molar volume

in the melt. The apparent (partial) molar volume (VH2O) of
water in the basaltic melt obtained using the equation
VH2O ¼ VhyMB � VMB

� �
=n;where n ¼ 15, the number of water

molecules present in the simulated hydrous MB (Fig. 4) is sig-
nificantly smaller than the molar volume of pure water (VH2O) at
zero pressure. The two water volumes quickly approach each
other as pressure increases. The volume of the melt-water solu-
tion defined as DV ¼ VH2O�VH2O is thus large and negative
at low pressure, the zero-pressure value being around
� 20 cm3 mol� 1 over the temperature interval of 2,200 to
4,000 K. Its magnitude decreases rapidly initially with pressure to
about zero above 10 GPa (Fig. 4, inset) so the melt-water solution
becomes ideal within our computational uncertainty at high
pressures along each isotherm. The predicted pressure-induced
ideality can be rationalized as follows: The pure water perhaps is
in the gaseous state (as characterized by over 95% singly oxygen
coordinated H atoms and over 90% doubly hydrogen coordinated
O atoms) and diffuses fast as individual water molecules at
pressures below 5 GPa thereby covering relatively large distances
(Supplementary Fig. 4). Available space is, however, highly
squeezed within the melt so such molecular species cannot be
easily accommodated. The compressed pure water is also struc-
turally well connected and highly packed like the water is in the
melt. This is reflected by increased coordination between H and
O atoms consisting of over 30% twofold H–O and over 60%
threefold O–H species at pressures above 25 GPa (inset of
Fig. 2b).

Table 1 | Equation of state parameters.

MB hyMB Near MORB Dry basalt (experiment) Hydrous MORB (experiment)

r0 (g cm� 3) 2.61±0.02 2.38±0.02 2.70±0.03 2.48 2.46, 2.09
K0 (GPa) 27±2 18±1 23±1 24±2 13.9, 6.7

K
0

0 3.7±0.2 5.0±0.2 3.6±0.3 0.66±0.03 5.2, 5.7

K
00
0 GPa� 1
� �

0.06±0.01 �0.19±0.05 0.12±0.04 �0.06±0.06

The fourth order Birch-Murnaghan fit parameters for three basaltic melts (MB, hyMB and near-MORB) at 3,000 K, compared with their experiment-based values for dry basalt (MORB) melt9, and
hydrous MORB melts with 2 and 8 wt% water11.
For all three melts studied here, B(V)¼ 28.3(±0.3)–46.1(±1.0)uþ 18.6(±1.3)u2 (in the units of MPa/K), and g(V)¼ 3.2(±0.2)–3.0(±0.2)u, where u¼V/V0¼ r0/r.
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The calculated VH2O values are comparable with the experi-
mentally inferred values at low pressures10,11,28,29. Comparisons
with the refined values from previous simulations of hydrous
enstatite and silica liquids30,31 suggest that the solution properties
are weakly dependent on the composition (Fig. 5). In particular,
the partial molar volume of dissolved H2O for the hydrous
basaltic liquid appears to be somewhat larger than that for other
two liquids, with the hydrous silica liquid tending to be more
non-ideal. These subtle differences arise primarily because the
presence of the structure modifier cations in the basaltic melt
facilitates the accommodation of water, particularly as hydroxyl
groups and molecular water compared with that in the silica
liquid.

The thermodynamic condition of the melt-water solution is set
by the Gibbs free energy, DG ¼ DH�TDS, where the enthalpy of
mixing (DH) can be obtained from the first-principles molecular
dynamics simulations as DHH2O ¼ HH2O �HH2O;where HH2O ¼

HhyMB � HMB
� �

=n is the enthalpy per formula unit for the melt
water, and HH2O is that for the pure water. As shown in the inset
of Fig. 4, the calculated DH is positive and large at zero pressure
for all temperatures so the hydrous silicate liquid readily
devolatilizes at the ambient pressure. With increasing pressure,
DH decreases by different extents at different temperatures,
changing to negative above 10 GPa at 2,200 and 3,000 K. Such
small and/or negative values of the enthalpy of solution over wide
pressure range imply that the melt and water component are
mostly miscible. To strictly confirm such miscibility requires that
the entropy contributions be included, though a melt-water
solution has higher entropy than the mechanical mixture.

Discussion
The liquid–solid density crossover is possible in a multi-
component silicate mantle mainly because of high compressibility
and Fe enrichment of the liquid phase10,11,28. Our direct
comparisons with seismically derived density profile32 indicate
that the melt density can actually exceed the mantle density at
one or more depths as shown in Fig. 3. The MORB density along
the 3,000 K isotherm is higher than the mantle density around 14
and 23 GPa corresponding to the 410 and 670 km seismic
discontinuities, and also at all pressures above 70 GPa. To explore
this implication further, we estimated the melt density along the
1,800 K isotherm, which exceeds (for the MB and MORB) and
approaches (for the hydrous melt) the mantle density at the

410 km depth. Our analysis further strengthens the hypothesis
that dense melt could be buoyantly stable at those depths thereby
providing a plausible explanation for low-velocity regions,
consistent with several previous suggestions4,10,11,26.

Based on our calculations, the dissolved water being light
component systematically lowers the melt density10,11,28,33. The
calculated density contrast between the pure and hydrous melts is
nearly independent of pressure and temperature. The basaltic
melt density decrease per wt% water is 0.036 g cm� 3, comparable
to the estimated values of 0.035 and 0.030 g cm� 3 for the
enstatite and silica liquids30,31, respectively. It is thus remarkable
that the water component can significantly influence the melt
stability in the mantle irrespective of the composition. Based on
our simulations, the densities of anhydrous and hydrous (with
5 wt% H2O) basaltic melts are 3.67 and 3.51 g cm� 3, respectively,
at the 410 km depth conditions of 13.4 GPa and 1,800 K,
compared with the average mantle density32 of 3.54 g cm� 3 at
this depth (Fig. 3, inset). This means that a buoyantly stable melt
layer at the base of Earth’s upper mantle can be hydrous with a
few (B4) wt% dissolved H2O. The MORB density is larger than
the anhydrous MB so more water can be accommodated in
natural basalt melt so as to counter-balance the effects of Fe on
the melt density. This is important because the presence of both
the Fe and H2O components in substantial amounts usually
facilitates mantle partial melting.

With constraints only at pure water, 5 wt% H2O content, and
dry melt, it is not possible to establish ideal mixing of volume or
miscibility. It may be that, by coincidence, a composition-
dependent VH2O matches the pure water value (VH2O) when
evaluated over the range from 5 wt% H2O to 0 studied here. This
match is necessary, but not sufficient, to show constant partial
molar volume of H2O across the full range of water content. So is
the case of the predicted miscibility because arbitrarily high water
content may not easily penetrate the silicate network, which has
already been broken at lower water content like 5 wt% simulated
here. Nevertheless, our analysis of melt-water system provides
direct (first principles) evidence for the possibility that the water
component shows ideal mixing of volume as well as high
solubility (at least, up to 10 wt%, considering water contents of
previously simulated hydrous enstatite and silica liquids30,31), in
high-pressure silicate melts irrespective of the melt composition.
Potential existence of water-rich melts over most of the mantle
conditions in Earth’s early history (a possible hydrous magma
ocean) would have been a reservoir of water thereby making
substantial contribution to the origin of hydrosphere34.

In summary, our first-principles molecular dynamics simula-
tions of three basaltic melts (MB, hydrous MB and near-MORB
compositions) represent a major step towards sampling natural
magmas. The simulation results show that the effects of pressure,
temperature and composition (Fe and water) on the melt
structure and density are substantial. The simulated melt-water
system behaves ideally with increased solubility at high pressure.
Our analysis suggests that the silicate melts may be gravitationally
stable in deep-mantle and potentially water-rich, perhaps serving
as a water reservoir in Earth’s early stages and presently as a
hydrous melt layer at the 410 km depth.

Methods
Computational details. First-principles molecular dynamics simulations were
performed within density functional theory using local (spin) density approx-
imation (LDA) and projector augmented wave method using the Vienna ab initio
simulation package (VASP)35. Previous studies have found that LDA works better
than the generalized gradient approximation (GGA) for silicate and oxide
materials36,37 as we have also assessed here the LDA/GGA differences on
various melt properties (Supplementary Figs 1,4–6). Many simulations based on
the canonical (NVT) ensemble were performed to explore compression from
V/VX¼ 1.5–0.5 covering the entire mantle pressure regime at 1,800–4,000 K, where
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VX¼ 3422.5 Å3 is the reference volume. The numbers of atoms in the supercell
were 244 (8 CaAl2Si2O8 and 14 CaMgSi2O6) for MB, 289 (with 5 wt% of water, that
is, 15 H2O molecules) for hydrous MB and 234 atoms (with 9.9 wt% FeO and
2.4 wt% Na2O) for MORB (Supplementary Table 2).

For each composition, the initial structure was first melted at 6,000 K and then
quenched down to 4,000 K and subsequently to lower temperatures at each volume.
The simulations were performed for durations from 10 to 150 ps at different
volume–temperature conditions with a time step of 1 femtosecond for MB and
MORB, and 0.5 femtosecond for hydrous MB (Supplementary Fig. 7). The time
averages of energy and pressure were computed by the blocking method38. We
confirmed the liquid state of the simulated system by examining the mean-square
displacement plots (Supplementary Fig. 8) and radial distribution functions
(Supplementary Fig. 9). Fe-bearing basaltic liquid was simulated in low-spin
(non-magnetic) state at five volumes using spin LDA (no Hubbard U term used),
with the density differences with respect to the magnetic (high spin) state lying
within 1% for the Fe content studied here. The effects of the Hubbard term on
liquid density are anticipated to be very small based on our tests on (Mg,Fe)O
(Supplementary Fig. 10). Finally, the pure water was simulated as a function of
volume and temperature. The Pulay stresses arising from the use of a finite
cutoff of 400 eV at G point were added as usual. Further details can be found
elsewhere12–14,19,22. For the numbers of atoms used here, the finite system
size effects on the calculated properties are expected to be negligible based on
previous tests36.

Structural analysis. The atomic coordination, which is often used to characterize
the local structure, was calculated for a given species a with respect to another
species b using

Cab ¼ 4prb

Zrmin

0

r2gab rð Þdr

this nearest neighbour coordination is the number of contributing atoms (of
species b), which lie within a spherical region centred at atom of species a and of
radius defined by the corresponding rmin value (the minimum after the first peak in
the respective radial distribution functions, see Supplementary Fig. 9). The simu-
lated liquid phases show 25 (pure MB), 36 (hydrous MB) and 49 (MORB) types of
coordination.
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