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Abstract. Hepatocellular carcinoma (HCC) remains one of the 
most lethal malignant tumors worldwide; however, the etiology 
of HCC still remains poorly understood. In the present study, 
cancer‑omics databases, including The Cancer Genome Atlas, 
GTEx and Gene Expression Omnibus, were systematically 
analyzed in order to investigate the role of the long non‑coding 
RNA (lncRNA) zinc finger protein, FOG family member 
2‑antisense  1 (ZFPM2‑AS1) and the zinc finger protein, 
FOG family member  2 (ZFPM2) gene in the occurrence 
and progression of HCC. It was identified that the expression 
levels of lncRNA ZFPM2‑AS1 were significantly increased in 
HCC tissues, whereas expression levels of the ZFPM2 gene 
were significantly decreased in HCC tissues compared with 
normal liver tissues. Higher expression levels of ZFPM2‑AS1 
were significantly associated with a less favorable prognosis 
of HCC, whereas higher expression levels of the ZFPM2 gene 
were associated with a more favorable prognosis of HCC. 
Genetic alterations in the ZFPM2 gene may contribute to a 
worse prognosis of HCC. Validation of the GSE14520 dataset 
also demon stared that ZFPM2 gene expression levels were 
significantly decreased in HCC tissues (P<0.001). The receiver 
operating characteristic (ROC) analysis of the ZFPM2 gene 
indicated high accuracy of this gene in distinguishing between 
HCC tissues and non‑tumor tissues. The areas under the ROC 
curves were >0.8. Using integrated strategies, the present study 

demonstrated that lncRNA ZFPM2‑AS1 and the ZFPM2 gene 
may contribute to the occurrence and prognosis of HCC. These 
findings may provide a novel understanding of the molecular 
mechanisms underlying the occurrence and prognosis of HCC.

Introduction

Hepatocellular carcinoma (HCC) is one of the most lethal 
malignant tumors worldwide, with an incidence rate of 
40.0% in men and 15.3% in women per 100,000 population 
in China (1,2). According to the Global Burden of Disease 
Study 2017, ~820,000  individuals succumbed to HCC 
worldwide (3). Among them, the number of HCC‑associated 
mortalities in China (~422,000) accounted for 51.5% of global 
HCC‑associated mortalities (4).

Long non‑coding RNAs (lncRNAs) are a class of 
non‑coding RNAs >200 nucleotides in length (5). Previous 
studies have shown that lncRNAs serve a regulatory role 
in tumor development and prognosis and can be potential 
tumor biomarkers and therapeutic targets (6,7). Meanwhile, 
lncRNAs have been found to serve a role in chromatin modi-
fication, transcription and post‑transcriptional processing in 
HCC (8‑11). Notably, overexpression of lncRNA HOTAIR, 
which was previously reported in breast cancer, was first 
identified to predict tumor recurrence in patients with 
HCC following liver transplantation  (12,13). Subsequent 
studies have reported that lncRNAs: MALAT1, HULC, 
GAS5, NEAT1, PCNA‑AS1, PVT1, TUG1 and HOTTIP 
are associated with the development of HCC  (11,14‑17). 
lncRNA zinc finger protein, FOG family member 2‑anti-
sense 1 (ZFPM2‑AS1), located on the 8q23 chromosome 
and next to the zinc finger protein, FOG family member 2 
(ZFPM2) gene, serves a role in carcinogenesis and tumor 
progression in HCC and gastric cancer (18,19). The ZFPM2 
gene modulates the activity of GATA family proteins and 
serves a role in heart morphogenesis and development of 
coronary vessels  (20,21). Previous studies also revealed 
that ZFPM2 could cooperate with GATA factors and 
contribute to the occurrence of ovarian tumors, neuro-
blastoma, testicular carcinoma, germ cell tumors, Wilms' 
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tumor, gliomas, glioblastoma, lung cancer, breast cancer 
and osteosarcoma (22‑31). The chromosome 8q23 region is 
a high susceptibility locus for several types of cancer and 
genome‑wide association studies (GWAS) have identified 
a number of cancer‑associated single nucleotide polymor-
phisms that are adjacent to the ZFPM2‑AS1 and ZFPM2 
gene in this region (32‑37).

Considering the promising role of the lncRNA 
ZFPM2‑AS1 and the ZFPM2 gene in carcinogenesis and 
prognosis of several types of cancer, it was hypothesized that 
lncRNA ZFPM2‑AS1 and the ZFPM2 gene also contribute 
to the development and prognosis of HCC. In present study, a 
series of bioinformatic and clinical analyses were performed 
to investigate the potential functions of lncRNA ZFPM2‑AS1 
and the ZFPM2 gene in the process of carcinogenesis and 
progression of HCC.

Materials and methods

Expression of ZFPM2‑AS1 and ZFPM2 gene in the cancer 
genome atlas (TCGA) and GTEx tissues. The comparison 
of the expression levels of ZFPM2‑AS1 and ZFPM2 genes 
in HCC and non‑tumor tissues was performed using GEPIA 
version 2.0 (37), during which TCGA (https://portal.gdc.cancer.
gov) HCC samples were compared with GETx (https://www.
gtexportal.org/home) samples, which were used as controls. 
The associations of expression levels of ZFPM2‑AS1 and the 
ZFPM2 gene with the prognosis of HCC and other digestive 
system tumors were evaluated using the Kaplan Meier plotter 
(http://kmplot.com/analysis), which presents overall survival, 
disease free survival, relapse free and progression free 
survival (38), and GEPIA.

Validation of expression of ZFPM2‑AS1 and ZFPM2 gene 
in clinical tissues. The present study was approved by the 
Ethics Committee of the Army Military Medical University 
(Chongqing, China) and written informed consent was 
provided by all participants prior to the study start. A total 
of 53 HCC and paired adjacent normal tissues (>2 cm from 
tumor tissues) 45 men and 8 women; age range, 30‑74 years; 
median age, 53 years) were collected from the Department of 
Hepatobiliary Surgery (Chongqing, China) between November 
2017 and May 2019, following surgical resection. All diag-
noses were blindly confirmed by at least two pathologists 
at The First Affiliated Hospital of Army Military Medical 
University, and patients who received radiofrequency ablation, 
chemoradiotherapy or other treatments prior to surgery were 
excluded from the present study. Samples were subsequently 
stored at ‑80˚C, prior to subsequent experimentation.

Reverse transcription‑quantative (RT‑q)PCR. Total RNA was 
extracted from HCC tissues using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.). cDNA was synthesized using 
the PrimeScript RT reagent kit with gDNA Eraser (Takara 
Bio, Inc.), and qPCR was performed using TB Green Premix 
Ex Taq Ⅱ (Takara Bio, Inc.). The following primer sequences 
were used for qPCR: ZFPM2‑AS1 forward, 5'‑GCT​TCT​ATG​
CCT​TCC​TTC​CCT​T‑3', and reverse, 5'‑CTC​CAT​ACT​CTC​
CCT​GGG​TT‑3'; ZFPM2 forward, 5'‑GCT​ACC​CTC​CCG​
TCA​TTT‑3', and reverse, 5'‑TTA​GCC​ATC​TGC​TGC​CAT‑3'; 

and β‑actin forward, 5'‑CCA​CGA​AAC​TAC​CTT​CAA​CTC​
C‑3; and reverse, 5'‑GTG​ATC​TCC​TTC​TGC​ATC​CTG​T‑3'. 
The following thermocycling conditions were used for qPCR: 
Initial denaturation at 95˚C for 30 sec; 40 cycles of dena-
turation at 95˚C for 5 sec, annealing and elongation at 60˚C 
for 30 sec; and a final extension at 72˚C for 30 sec. Relative 
ZFPM2‑AS1 and ZFPM2 mRNA levels were measured using 
the 2‑ΔΔCq method (39) and normalized to the internal reference 
gene β‑actin.

Interaction network and functional enrichment analyses. 
To investigate the biological functions and pathways 
of ZFPM2‑AS1 and the ZFPM2 gene, gene‑gene and 
protein‑protein interaction (PPI) network analysis of the 
ZFPM2 gene was conducted using the GeneMANIA 
(http://genemania.org) and Search Tool for the Retrieval 
of Interacting Genes/Proteins (STRING) database version 
11.0 (40). Genes associated with ZFPM2 and ZFPM2‑AS1 
were initially identified using the COXPRESdb database 
(version  7.3; https://coxpresdb.jp). Subsequently, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
and Gene Ontology (GO) analyses of ZFPM2‑AS1 and 
ZFPM2‑associated genes were performed using Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
version 6.8 (david.ncifcrf.gov/home.jsp).

Determination of genetic mutation status of the ZFPM2‑AS1 
lncRNA and ZFPM2 gene. To investigate the underlying 
mechanisms relevant to mutation status of ZFPM2‑AS1 
and ZFPM2 gene, the cBioPortal database (cbioportal.
org/) was utilized. Kaplan‑Meier survival estimates for 
overall survival of HCC patients, with or without mutations 
of the ZFPM2 gene was also analyzed, using the log‑rank 
test.

Validation of the GEO dataset. The validation of the expres-
sion levels of the ZFPM2 gene in HCC tissues and adjacent 
normal tissues was further conducted with the GEO dataset 
GSE14520 (41). The receiver operating curve (ROC) with the 
area under the curve (AUC) value for assessing the predictive 
accuracy and discriminative ability of ROC was drawn to 
identify the diagnostic significance of expression level of the 
ZFPM2 gene.

Statistical analysis. SPSS version 22.0 (IMB Corp.) and 
GraphPad Prism version 7.0 (GraphPad Software, Inc.) were 
used for statistical analyses. P<0.05 was considered to indicate 
a statistically significant difference. All results are presented 
as mean  ±  standard deviation (unless otherwise shown). 
One‑way ANOVA tests were used to evaluate the differences 
in ZFPM2‑AS1 and ZFPM2 expression in clinical stages of 
HCC, while Wilcoxon's test was used for paired continuous 
variables. The χ2 test was used to evaluate differences in cate-
gorical variables. All expression data were log transformed for 
differential analysis.

Results

Associations between expression levels of lncRNA 
ZFPM2‑AS1 and the ZFPM2 gene with clinical significance 
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of HCC. First the associations between the expression 
levels of ZFPM2‑AS1 and the ZFPM2 gene and the clinical 
characteristics of HCC in TCGA and GTEx samples were 
analyzed. Table  I presents the clinical characteristics 
of the patients from TCGA and GTEx databases (only 
sex available for GTEx), including sex, age at diagnosis, 
Child‑Pugh score (42), creatinine value, HCC risk factor, 
family cancer history (data for 326 samples available), 
neoplasm histological grade  (43) (data for 372 samples 
available) and metastasis status. The expression levels of 
lncRNA ZFPM2‑AS1 were higher in HCC tissues compared 
with normal liver tissues (Fig. 1A), whereas the expression 
levels of the ZFPM2 gene were significantly lower in HCC 
tissues compared with normal liver tissues (Fig. 1C). No 
significant difference between the clinical stages of HCC 
and ZFPM2‑AS1 (Fig. 1B; P=0.136) and ZFPM2 (Fig. 1D; 
P=0.935) expression levels were observed. For the survival 
of patients with HCC it was observed that higher expression 
levels of ZFPM2‑AS1 were significantly associated with a 
less favorable prognosis (Fig. 2A), whereas higher expres-
sion levels of the ZFPM2 gene were significantly associated 
with better prognosis of HCC (Fig. 3). These bioinformatic 
results were also verified using clinical samples. The 

expression levels of lncRNA ZFPM2‑AS1 were significantly 
higher in HCC tissues compared with adjacent normal 
tissues (Fig. 4B; P<0.001), whereas the expression levels of 
the ZFPM2 gene were significantly lower in HCC tissues 
compared with adjacent normal tissues (Fig. 4A; P<0.001).

Gene‑gene and PPI network of the lncRNA ZFPM2‑AS1 
and ZFPM2 gene. According to the results obtained from 
COXPRESdb, lncRNA ZFPM2‑AS1 was associated with the 
ZFPM2 gene. Thus, gene‑gene and PPI network analysis of 
the ZFPM2 gene were conducted using the GeneMANIA and 
STRING tools and it was demonstrated that ZFPM2 primarily 
associated with GATA factors, including GATA1, GATA3 and 
GATA4 (Figs. 5 and 6).

Clinical significance of genetic alterations of the lncRNA 
ZFPM2‑AS1 and ZFPM2 gene. Using the cBioPortal data-
base, 9% (93/1,052) of samples were identified as harboring a 
mutated ZFPM2 gene. From Kaplan‑Meier survival analysis, 
the overall survival rate demonstrated statistical differences, 
which means patients with HCC with ZFPM2 mutations had a 
less favorable prognosis compared with those without ZFPM2 
mutations (P=0.0331; Fig. 7).

Table I. Characteristics of patients with HCC from TCGA and GTEx datasets.

Variables	 HCC cases (TCGA), n	 Controls (GTEx), n	 P‑value

Sex			   0.799
  Male	 255	 123	
  Female	 122	 56	
Age at diagnosis, years (mean ± standard deviation) 	 59.5±13.5		
Child‑Pugh score			 
  A	 223		
  B	   21		
  C	     1		
  Unknown	 132		
Creatinine value, mg/dl	 2.76±11.7		
HCC risk factor			 
  Alcoholism	   76		
  Hepatitis B infection	   98		
  Hepatitis C infection	   52		
Family cancer history			 
  Yes	 114		
  No	 212		
Neoplasm histological grade			 
  G1	   55		
  G2	 180		
  G3	 124		
  G4	   13		
Metastasis			 
  No	 272		
  Yes 	 105		

The publicly available GTEX data only provided data on sex. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas.
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Figure 2. Kaplan‑Meier survival curves of patients with HCC based on lncRNA ZFPM2‑AS1 expression levels. (A) Overall survival rate of patients with 
HCC based on lncRNA ZFPM2‑AS1 expression levels. (B) Disease‑free survival rate of patients with HCC based on lncRNA ZFPM2‑AS1 expression levels. 
lncRNA, long non‑coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma; HR, hazard ratio.

Figure 1. Comparisons of expression levels of lncRNA ZFPM2‑AS1 and the ZFPM2 gene. Red represents HCC tissues, grey represents normal liver tissues 
and black dots represent individual cases. (A) Expression level of lncRNA ZFPM2‑AS1 in HCC (369) and normal liver (160) tissues. (B) Expression level of 
lncRNA ZFPM2‑AS1 in tissues of patients with HCC of different clinical stages. (C) Expression level of the ZFPM2 gene in HCC (n=369) and normal liver 
(n=160) tissues. (D) Expression levels of the ZFPM2 gene in patients with HCC of different clinical stages. lncRNA, long non‑coding RNA; AS1, antisense 
RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma; LIHC, liver hepatocellular carcinoma.
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Figure 4. Expression levels of lncRNA ZFPM2‑AS1 and the ZFPM2 gene. (A) Expression levels of ZFPM2 in HCC and adjacent tissues. (B) Expression levels 
of ZFPM2‑AS1 in HCC and adjacent tissues. lncRNA, long non‑coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; 
HCC, hepatocellular carcinoma.

Figure 3. Kaplan‑Meier survival curves of patients with HCC based on ZFPM2 gene expression levels. (A) Overall survival rate of patients with HCC based on 
ZFPM2 gene expression levels. (B) Relapse free survival rate of patients with HCC based on ZFPM2 gene expression levels. (C) Disease specific survival rate 
of patients with HCC based on ZFPM2 gene expression levels. (D) Progress free survival rate of patients with HCC based on ZFPM2 gene expression levels. 
lncRNA, long non‑coding RNA; AS1, antisense RNA 1; ZFPM2, zinc finger protein, FOG family member 2; HCC, hepatocellular carcinoma; HR, hazard ratio.



LUO et al:  ZFPM2-AS1 AND ZFPM2 GENE IN HCC3682

KEGG pathway and GO term analyses. The top 200 ZFPM2 
and ZFPM2‑AS1 associated genes are presented in Table SI, 
which were identified using the COXPRESdb database. 
KEGG pathway and GO term analysis of the ZFPM2 asso-
ciated genes were performed using DAVID. The GO term 
results demonstrated that these genes may be involved in the 
‘integral component of plasma membrane’, ‘protein binding’ 
and ‘plasma membrane’ (Fig. 8).

Validation of the ZFPM2 expression profiling in the GSE14520 
dataset. As shown in Fig. 9, the expression levels of the ZFPM2 
gene in HCC and non‑tumor tissues were consistent in the 
GSE14520 dataset, in stages I and II. Consistent with TCGA 
data, ZFPM2 gene expression were significantly decreased 
in HCC tissues compared with the non‑tumor tissues in both 
stage I and II (P<0.001; Fig. 9A and C). The ROC analysis 
of the ZFPM2 gene demonstrated a high accuracy of ZFPM2 
in distinguishing between HCC tissues and non‑tumor tissues 
(AUCs, >0.8; Fig. 9B and D)

Discussion

At present, the etiology of HCC remains poorly understood. 
In the present study, datasets from the cancer‑omics databases 
TCGA, GTEX and GEO were analyzed in order to confirm 
the role of lncRNA ZFPM2‑AS1 and the ZFPM2 gene in 
HCC, which are located at the cancer susceptibility locus 8q23 
implicated in the carcinogenesis and prognosis of HCC (44). In 
the present study, it was observed that the expression levels of 
lncRNA ZFPM2‑AS1 and the ZFPM2 gene were significantly 
different between HCC tissues and normal liver tissues and that 
these expression levels were also associated with prognosis of 
HCC. Patients with HCC with ZFPM2 gene alterations had a 
less favorable prognosis compared with those without ZFPM2 
gene alterations. Functional enrichment analysis demonstrated 
that the ZFPM2 associated genes were primarily involved in 
the formation of integral component of membrane, protein 
binding and plasma membrane. To the best of our knowledge, 
the present study is the first report that aimed to investigate the 
association between lncRNA ZFPM2‑AS1, the ZFPM2 gene 
and the occurrence and progression of HCC.

Both lncRNA ZFPM2‑AS1 and the ZFPM2 gene are 
located at 8q23 region, an aggregate of cancer susceptible 
loci (44‑49). Tomlinson et al (48) first identified rs16892766 
on chromosome 8q23.3 as a colorectal cancer suscepti-
bility locus. A previous study identified 41 variants that are 
associated with venous thromboembolism, and mapped 
to the ZFPM2‑AS1 and ZFPM2 gene region using GWAS 

Figure 5. Gene‑gene association network of the ZFPM2 gene drawn using 
GeneMANIA. The circles indicate the function of the gene. ZFPM2, zinc 
finger protein, FOG family member 2.

Figure 6. Protein‑protein interaction network of the ZFPM2 gene. A network 
diagram of interactions between proteins associated with the ZFPM2 protein 
drawn using STRING. ZFPM2, zinc finger protein, FOG family member 2.

Figure 7. Survival curves for genetic alternations of the zinc finger protein, 
FOG family member 2 gene.
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catalog (50). In the present study, expression levels of lncRNA 
ZFPM2‑AS1 and the ZFPM2 gene were associated with both 
the occurrence and prognosis of HCC and mutations of the 

ZFPM2 gene were associated with a less favorable prognosis 
of HCC. These results further confirmed the role of lncRNA 
ZFPM2‑AS1 and the ZFPM2 gene in HCC carcinogenesis.

Figure 8. Gene Ontology term enrichment plots of the zinc finger protein, FOG family member 2 associated genes.
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In the present study, gene‑gene and PPI analyses revealed 
that ZFPM2‑AS1 and ZFPM2 were primarily co‑expressed 
and interacted with the GATA factors, including GATA1, 
GATA3 and GATA4. The GATA family, which controls the 
development of diverse tissues by activating or repressing tran-
scription, widely participants in carcinogenesis, differentiation 
of several types of cancer (51,52). Furthermore, studies have 
shown that aberrant GATA‑3 expression contributes to the 
occurrence of breast, prostate and pancreatic cancer (53‑58). 
GATA1, GATA4 and GATA6 are also associated with different 
types of cancer, including colorectal and breast cancer (59,60). 
The results of the present study demonstrated that ZFPM2 
was significantly associated with GATA factors, suggesting its 
potential role in the development of different types of cancer.

Conclusively, the present study demonstrated that lncRNA 
ZFPM2‑AS1 and the ZFPM2 gene may contribute to the 
occurrence and progression of HCC. These findings may 
provide a novel perspective on the underlying molecular 
mechanisms of HCC and suggest valuable biomarkers and 

therapeutic targets for patients with HCC. However, further 
validations with experimental evidence and clinical research 
are needed to confirm the functions of lncRNA ZFPM2‑AS1 
and ZFPM2 gene in HCC carcinogenesis.
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