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Purpose: Intravoxel incoherent motion (IVIM) modeling for estimation of the 
diffusion coefficient (D) and perfusion fraction (f) is increasingly popular, but 
no consensus on standard protocols exists. This study provides a framework for  
optimization of b‐value schemes for reduced estimation uncertainty of D and f from 
segmented model fitting.
Theory: Analytical expressions for uncertainties of D and f from segmented model 
fitting were derived as Cramer‐Rao lower bounds (CRLBs).
Methods: Optimized b‐value schemes were obtained for 3 to 12 acquisitions and 
in the limit of infinitely many acquisitions through constrained minimization of the 
CRLBs, with b‐values constrained to be 0 or 200 to 800 s/mm2. The optimized b‐value 
scheme with eight acquisitions was compared with b‐values linearly distributed in the 
allowed range using simulations and in vivo liver data from seven healthy volunteers.
Results: All optimized b‐value schemes contained exactly three unique b‐values  
regardless of the total number of acquisitions (0, 200, and 800 s/mm2) with repeated 
acquisitions distributed approximately as 1:2:2. Compared with linearly distributed 
b‐values, the variability of estimates of D and f was reduced by approximately 30% 
as seen both in simulations and in repeated in vivo measurements.
Conclusion: The uncertainty of IVIM D and f estimates can be reduced by the use of 
optimized b‐value schemes.
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1 |  INTRODUCTION

The concept of intravoxel incoherent motion (IVIM) aims to 
describe the effect of both diffusion and microcirculation on 
the MR signal in a diffusion‐weighted imaging experiment.1 

The mathematical model commonly used to describe the dif-
fusion‐weighted signal is given by:

(1)S (b)=S0

(

(1− f ) e−bD+ fe−bD∗)
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where D is the diffusion coefficient, D* is the pseudo‐diffusion 
coefficient, f is the perfusion fraction, and S0 is the signal with 
no diffusion weighting.1

Because of the flexibility of a biexponential model and 
typical values of the IVIM parameters, IVIM parameter esti-
mation is inherently difficult.2,3 To deal with the problematic 
estimation, several methods have been proposed including 
a number of least‐squares approaches and some Bayesian 
ones.3-6 One of the most commonly used approaches is the 
segmented model fitting, also called stepwise, asymptotic or 
oversegmented.3,7,8 It has multiple times shown superiority in 
terms of estimation accuracy, precision, and repeatability to 
full least‐squares fitting; has a relatively low computational 
cost; and is simple to implement.7,9 It proceeds in three steps: 
1) estimate D using b‐values above a certain threshold where 
the magnitude of the second exponential in Equation 1 is neg-
ligible, 2) use the model parameters estimated in step 1 to  
extrapolate the signal to b = 0 and compare with the mea-
sured signal at b = 0 to estimate f, and 3) fix the values of  
D and f obtained in step 1 and 2 and estimate D* and S0 using 
nonlinear least squares.3 The main benefits of this approach 
are that a robust estimate of D is obtained and that f is esti-
mated without explicit estimation of D*. It has even been pro-
posed to limit the analysis to the first two steps, i.e. to use a 
simplified approach including estimation of only D and f.1,10 
By avoiding the estimation of D*, the number of b‐values and 
demands on data quality are reduced. This enables extraction 
of both diffusion and perfusion information in a clinically 
feasible scan time.11,12

Optimization of acquisition parameters has the potential 
to reduce the parameter estimation error13 and thereby either 
reduce scan time or improve quality of parametric maps. 
Optimization techniques have been used to find optimal 
measurement parameters in several aspects of quantitative 
MRI, for example, diffusion MRI,14 magnetization‐transfer  
imaging,15 and DIXON imaging.16 Optimal choices of  
b‐values and the number of repeated acquisitions of each 
b‐value have been studied extensively for the monoexpo-
nential diffusion model, mainly using error propagation or 
similar techniques.17-19 Some studies have performed simi-
lar work with the IVIM model.9,20-24 However, these studies 
on the IVIM model have focused on minimizing the error 
of parameters estimated simultaneously from the biexpo-
nential model and not the segmented procedure nor for esti-
mation of only D and f. Optimization of acquisition of data 
for segmented model fitting is to our knowledge hitherto 
limited to choice of intermediate b‐value in three‐b‐value 
protocols.11,25

The aim of this work was to develop a framework for 
optimization of b‐value schemes for diffusion‐weighted  
imaging data used to estimate IVIM parameters D and f with 
segmented model fitting. The proposed framework includes 
optimization of number of b‐values and their magnitude 

as well as the number of acquisitions of each b‐value. An  
optimized b‐value scheme was generated for typical diffu-
sion and perfusion values in healthy liver and the impact on  
parameter estimation error was studied through simulations 
and in vivo measurements.

2 |  THEORY

Assuming D* >> D and using b‐values either equal to zero 
or large enough to regard the signal fraction from the perfu-
sion compartment as negligible, the IVIM model (Equation 1)  
may be simplified to:

where δ is the discrete delta function. This exact formu-
lation was introduced by Sénégas et al.,10 but the concept 
was given already by le Bihan et al. in the seminal IVIM 
paper.1 The simplified IVIM model may equivalently be 
formulated as:

where bthr is the threshold b‐value where the signal fraction 
from the perfusion compartment is considered negligible. 
The important observation to make here is that the least‐
squares estimate of D based on Equation 2 is determined 
only from b ≥ bthr, i.e. a monoexponential model fit using 
only b‐values that are high enough not to include signal 
from the perfusion compartment. This corresponds to the 
first step in the segmented procedure.3 The least‐squares 
estimate of f based on Equation 2 is uniquely defined and 
equals the result from the second step in the segmented 
procedure. The signal extrapolated to b = 0 [A = S0(1 – f)] 
as is estimated in step 1 is used to calculate the estimate of 
f as f = 1 – A/S0, where S0 is given directly by the measure-
ments with b = 0. Parameter estimation based on Equation 2  
is thus equivalent to the first two steps of the segmented 
procedure.25 Since D* is omitted in Equation 2, the final 
step of the segmented procedure has no analog. If only D 
and f are of interest, one can thus potentially find an opti-
mal b‐value scheme for Equation 2 and use it for the seg-
mented model fitting procedure.

In the case of only three unique b‐values, i.e. b0 = 0 and 
b1, b2 > 0, closed form solutions for D and f exist26:

(2)S (b)=S0

(

(1− f ) e−bD+ f � (b)
)

(3)S (b)=

{

S0 b=0

S0 (1− f ) e−bD b≥bthr

(4)Dest =
1

b2−b1

ln
S
(

b1

)

S
(

b2

) .



   | 1543JALNEFJORD Et AL.

In this case, the variability of parameter estimates can be 
calculated through error propagation resulting in:

where ni is the number of acquisitions of the ith b‐value 
and SNR equals S0/σ, where σ is the standard deviation of 
the noise. Derivations of Equations 6 and 7 are found in the 
Supporting Information.

If more than three unique b‐values are used, the model 
parameters instead have to be estimated using a nonlinear 
least‐squares method and the standard methods for error 
propagation cannot be used. A popular alternative in these 
cases is the CRLB, which is a lower limit of the variance 
of the parameter estimate.14 These bounds are given by the 
diagonal elements of the inverse of the Fisher matrix for the 
particular model (here Equation 2). For a Gaussian noise dis-
tribution the elements of the Fisher matrix are given by:

with p ∈ {D, f, S0} and N + 1 is the number of unique  
b‐values.14 The partial derivatives found in Equation 8 are given 
in the Supporting Information. The Fisher matrix is thus a  
3 × 3 matrix, which can be inverted analytically. The diagonal 
elements of interest are:

If N = 2, i.e. if three b‐values are used, Equations 9 and 
10 simplify to the results given by error propagation (i.e. 
Equations 6 and 7) as noted for D previously by Brihuega‐
Moreno et al.19

3 |  METHODS

In this paper, optimization of b‐value schemes refers to  
finding b‐values and the proportion of acquisitions with these 
b‐values such that the variability of IVIM parameter estimates 
is minimized. The optimization was conditioned by lower and 
upper limits on the b‐values and a fixed number of total sig-
nal acquisitions. The presented optimization framework is in 
principle general; however, its potential was demonstrated by 
optimization for the specific situation of a liver examination.

3.1 | Optimization of b‐value schemes
The presented optimization framework assumes that  
Equation 2 is a proper model of the diffusion‐weighted sig-
nal at the chosen b‐values. This assumption was justified by 
setting a lower and upper limit on the nonzero b‐values. The 
lower limit should be set high enough that the signal contri-
bution from the perfusion compartment is negligible. In this 
study it was set to 200 s/mm2, which essentially removes all 
signal from the perfusion compartment in typical liver tissue 
(D* = 70 µm2/ms).27 This threshold is also commonly seen 
in literature3,28-30 although other choices occur as well.7,9 The 
upper limit should be set low enough to ensure that the signal 
decay due to diffusion weighting in the diffusion compart-
ment is well approximated by a monoexponential model. In 
this study it was set to 800 s/mm2, which is a standard choice 
of the highest b‐value in clinical liver studies. Given an SNR 
of 15 in the b = 0 image, which is typical in abdominal dif-
fusion‐weighted imaging, the chosen upper limit also ensures 
that the noise is well approximated by a Gaussian distribution 
since the SNR at all b‐values is at least 5, as predicted by 
inserting typical liver IVIM parameters into Equation 2.31 An 
approximately Gaussian noise distribution makes the expres-
sions for the CLRBs and methods for model fitting substan-
tially less complicated14,32 and is assumed for model fitting 
in most studies.

Because of the finite diffusion encoding gradient strength, 
increasing the highest b‐value results in a longer echo time and 
thereby a decreased SNR. To account for this, an echo‐time‐ 
dependent expression for SNR was defined; it was inserted 
into Equations 9 and 10:
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where SNR0 is the SNR at TE = 0, and Td
2
 = 40 ms and Tp

2
 = 80 

ms are the T2‐relaxation times in the diffusion and perfusion 
compartments, respectively.33 A derivation of the expression 
is found in the Supporting Information. On the basis of the 
use of an SE‐EPI sequence, which was utilized in this study, 
the echo time that was inserted into Equation 11 was calcu-
lated as TE=2 ⋅ �

(

Gmax, bmax

)

+ tnodiff. Given the maximum 
available gradient strength Gmax, δ (Gmax, bmax) is the shortest 
possible gradient duration needed to generate the maximum 
b‐value. tnodiff is the time from excitation to the main echo 
in the EPI readout when diffusion encoding is not applied. 
On the basis of the MR scanner and pulse sequence used in 
the subsequent examinations the fixed parameters were set to 
Gmax = 41.6 mT/m, tnodiff = 19.6 ms.

Optimization of b‐values and number of acquisitions for 
a finite total number of acquisitions was based on CRLB 
(Equation 9 and 10). The objective function used in the  
optimization was the average error over a range of values of 
D and f (D ∊ [1.0 1.2] µm2/ms, f ∊ [0.15 0.30]), with error 
defined as the sum of the coefficients of variation as follows:

where (F−1)DD and (F−1)ff are obtained from Equations 9 and 
10, respectively. The average error was calculated by sum-
ming CVtot over 100 × 100 linearly distributed values of D 
and f on the specified range, which were based on previously 
reported parameter values in healthy liver.27

Optimal sets of b‐values were found through constrained 
minimization using the MATLAB function fmincon. The 
adjustable parameters in the optimization were the b‐value 
of each signal acquisition, bi. To avoid local minima, 10 
random initializations were used. The optimization proce-
dure was performed for 3 to 12 signal acquisitions, with the  
requirements of at least one acquisition with b = 0 and at least 
two acquisitions in the interval 200 to 800 s/mm2. Note that 
the number of acquisitions of each b‐value was not explicitly  
included in the optimization, i.e. ni = 1 in Equations 9 and 10.  
Instead, it was obtained as the number of times the same  
b‐value repeated in the solution. Since SNR0 in Equation 11 
is a positive constant, which can be chosen arbitrarily without 

affecting the SNR dependence in the optimization, it was 
omitted in the expression used in the optimization.

To study the behavior of the optimization at a large num-
ber of acquisitions, a similar optimization procedure was set 
up in the limit of infinitely many acquisitions. Since the total 
number of acquisitions (ntot = Σi ni) can be considered a con-
stant in the optimization, Equation 8 can be divided by ntot 
without affecting the solution. The resulting ratios ai = ni/ntot 
are the proportion of acquisitions acquired at each b‐value. 
These were added as adjustable parameters in the optimiza-
tion with the constraints that ai was allowed to vary between 
0 and 1 and that they summed up to 1.

The MATLAB code for optimization of b‐value schemes 
is available at http://mathw orks.com/matla bcent ral/profi le/
autho rs/36808 85-oscar-jalne fjord .

3.2 | Simulations
Two b‐value schemes with eight acquisitions were compared 
to study the usefulness of the optimization procedure; the  
optimized scheme (bopt; 2 × 0, 3 × 200, 3 × 800 s/mm2; see 
Table 1) was compared with b‐values linearly distributed in 
the available range (blin; 1 × 0, 1 × 200, 1 × 300, 1 × 400,  
1 × 500, 1 × 600, 1 × 700, 1 × 800 s/mm2).

A set of Monte Carlo simulations with accompanying 
analyses was used 1) to validate the use of CRLB minimiza-
tion for optimization of b‐value schemes for segmented IVIM 
model fitting and 2) to compare the b‐value schemes in terms 
of estimation variability.

The simulations were performed on a grid of 20 × 20 val-
ues of D and f linearly distributed in the ranges D ∊ [0.5 1.5] 
µm2/ms and f ∊ [0.05 0.40]. The ranges were somewhat wider 
than what was used in the optimization to enable study of the 
effect of optimization on parameter estimation error also out-
side the parameter ranges typically found in healthy liver. For 
each combination of D and f, and for each of the two b‐value 
schemes 20 000 data series were generated using the IVIM 
model (Equation 1) with Rician noise at an SNR of 15. Three 
sets of simulations were run with D* = 10, 20, or 50 µm2/ms 
to study the impact of the size of D*, i.e. the size of the sig-
nal contribution from the perfusion compartment for b > 0. 
The parameters D and f were estimated using the segmented 
fitting procedure where D was first estimated using nonlin-
ear least squares and f was estimated from extrapolation as 

(12)
CVtot =CVD+CVf =

√

(

F−1
)

DD

D
+

√

(

F−1
)

ff

f

T A B L E  1  Optimal number of acquisitions of each optimal b‐value for different total number of acquisitions (ntot) and the proportions for the 
limiting case of an infinite total number of acquisitions

ntot 3 4 5 6 7 8 9 10 11 12 ∞

n0 1 1 1 1 1 2 2 2 2 2 19%

n1 1 2 2 3 3 3 4 4 5 5 43%

n2 1 1 2 2 3 3 3 4 4 5 38%

Note: The optimal b‐values were b0 = 0, b1 = 200, and b2 = 800 s/mm2 regardless of the value of ntot. Corresponding results from optimization when omitting the upper 
b‐value limit or the echo‐time dependence are provided as supporting material (Supporting Information Tables S1 to S3).

http://mathworks.com/matlabcentral/profile/authors/3680885-oscar-jalnefjord
http://mathworks.com/matlabcentral/profile/authors/3680885-oscar-jalnefjord
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described in the Theory section. The estimated parameters 
were constrained to the ranges D ∊ [0 3] µm2/ms, f ∊ [0 1] and 
S0 ∊ [0 2Smax], where Smax is the maximum measured signal 
value.

The CRLB gives a lower limit rather than an actual level 
of parameter variability. Minimization of the CRLB is there-
fore not guaranteed to reduce the actual parameter estima-
tion variability. To validate the use of CRLB minimization 
for optimization of b‐value schemes for segmented IVIM 
model fitting, the error based on CRLB was compared with 
that obtained from fitting simulated data. Specifically, the 
sum of coefficients of variation for the estimates of D and f 
from simulated data was obtained (equivalent to Equation 12) 
and compared with the total relative error based on CRLB 
(Equation 12). This was done for each combination of D, f, 
D*, and b‐value scheme.

The two b‐value schemes were compared by calculating 
the standard deviation of the estimated parameter values 
from each b‐value scheme and combination of D, f, and D*. 
Although not part of the b‐value optimization, the estima-
tion bias was also calculated for comparison between b‐value 
schemes for each combination of D, f, and D* as the mean 
difference between estimated and simulated parameter value.

3.3 | In vivo measurements
To assess the impact of b‐value optimization on in vivo 
data, diffusion‐weighted MR images of the upper part of the  
abdomen were acquired in eight healthy subjects (median 
age 27 years, range 22–43 years, four males). The study was  
approved by the regional ethical review board in Gothenburg, 
Sweden. The MR images were acquired on a 3T Philips 
Achieva dStream (Best, the Netherlands) with software  
release 5.1.7. A respiratory triggered single shot SE‐EPI  
sequence was used to acquire images with the same b‐values  
as were used in the simulations (Δ = 26.5 ms, δ = 17.7 ms), 
with the exception that b = 1 s/mm2 was used instead of  
b = 0. This change was applied because of practical diffi-
culties in acquiring an odd number of acquisitions experi-
mentally for b = 0 and should have had a minimal effect on 
the final parameter estimates. In the subsequent analysis the 
measurements at b = 1 s/mm2 were treated as being measured 
at b = 0. Other imaging parameters were TE = 55 ms, TR = 
3000 ms, half‐scan factor = 0.7, acquisition pixel size = 3 ×  
3 mm2, slice thickness = 6 mm, slice gap = 0.6 mm, 32 slices, 
SENSE factor = 2 (anterior‐posterior direction), slice‐selective  
gradient reversal and spectral presaturation with inversion 
recovery for fat suppression. To enable a study on the repeat-
ability of parameter estimates, the examination was repeated 
four times with the same planning without moving the sub-
ject. One subject was excluded because of incorrect trigger-
ing, which resulted in images heavily corrupted by motion 
artifacts. A region of interest (ROI) was drawn that comprised 

of a major part of the right liver lobe and model fitting was 
performed on a voxel level. The SNR was estimated in each 
voxel by calculating the mean and standard deviation of the 
signal in the repeated acquisitions of b = 1 s/mm2 used for 
the optimal scheme. The median SNR in each subject was 11 
± 3 (mean ± SD).

Parameter estimation variability was quantified by calcu-
lating the standard deviation of parameter estimates obtained 
from the four repetitions of the examination. Specifically, the 
mean and standard deviation over the four repetitions were 
calculated for each voxel separately. Then, for each subject 
the median standard deviation within the ROI was calculated 
and compared for the two b‐value schemes.

4 |  RESULTS

4.1 | Optimization
No more than three unique b‐values were found in the  
optimized b‐value schemes regardless of the total number 
of acquisitions. These b‐values were always 0 (preset) and 
the lower and upper limits set in the optimization, i.e. 200 
and 800 s/mm2. The optimal number of acquisitions of each  
b‐value was approximately twice as many for the middle and 
high b‐values (200 and 800 s/mm2) as for b = 0 (Table 1), 
although the exact results depended on the total number of 
acquisitions. As the number of acquisitions was increased, 
the distribution of acquisitions over b‐values approximately 
matched the distribution over b‐values for infinite numbers 
of acquisitions (Table 1).

Optimized b‐value schemes were also generated without 
an upper b‐value limit and without adjusting for the echo‐time 
dependence on SNR. Omitting either the upper b‐value limit 
or the TE‐related SNR penalty had no effect on the solution 
other than a slightly higher value of the high b‐value (b2 ≈ 850 
s/mm2) (Supporting Information Tables S1 and S2). Omitting 
both the upper b‐value limit and the TE‐related SNR penalty 
resulted in minor effects on the proportions of acquisitions at 
each b‐value, but resulted in a substantially higher value of 
the high b‐value (b2 ≈ 1300 s/mm2) (Supporting Information 
Table S3).

4.2 | Simulations
An approximately monotonically increasing relationship 
was seen between total relative error derived from CRLB 
(Equation 12) and from segmented model fitting of simulated 
data (Figure 1). This relationship justifies the use of CRLB 
in the optimization procedure since it indicates that a lower 
CRLB implies a lower estimation error from segmented 
model fitting. The relationship was mainly unaffected by 
the magnitude of D* (Figure 1 and Supporting Information 
Figures S1 and S2).
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The optimized b‐value scheme produced parameter  
estimates with smaller estimation variability for all simulated 
combinations of D and f. The standard deviation of D was 
18% to 40% smaller with the larger differences for smaller 
values of D, while the standard deviation of f was 25% to 
45% smaller with the larger differences for larger values of f 
(Figure 2). The same level of reduction in estimation variabil-
ity was seen for all simulated magnitudes of D* (Figure 2 and 
Supporting Information Figures S3 to S5).

The estimation bias was only weakly affected by the size of 
D (Supporting Information Figures S6 to S8). A positive bias on 
D and a negative bias on f could be seen for parameters estimated 
from data generated with D* = 10 µm2/ms (Figure 3). The bias 
increased in magnitude with increasing size of f used for data 
generation. Larger values of D* were in general not associated 
with any noticeable biases, except for a small negative bias on 
D, which was caused by the Rician noise distribution. The bias 
could only be seen for data generated with D* = 50 µm2/ms,  
but was presumably present for all values of D*.

4.3 | In vivo measurements
The b‐value schemes produced similar estimates of D and f 
on a group level, but the estimation uncertainty was lower 

with the optimized scheme (Figure 4). On the individual level 
there were variations between schemes due to interscan vari-
ability (Figures 4-6 and Supporting Information Figures S9 
to S15). Nevertheless, the median parameter uncertainty was 
lower with the optimized b‐value scheme for all subjects. The 
median relative difference for D and f was 36% and 22%, 
respectively (Figure 4).

5 |  DISCUSSION

This work presents a framework for optimization of b‐value 
schemes for segmented IVIM model fitting. Analytical  
expressions are given for estimation of D and f along with 
their errors from error propagation based on a three‐b‐value 
protocol. The CRLB‐based analogs are given for general pro-
tocols, thus enabling error analysis in the cases of four or 
more b‐values. Application of the optimized b‐value schemes 
shows improved estimation performance for both D and f 
in simulations as well as in in vivo measurements, as dem-
onstrated by reduced parameter estimation uncertainty and  
improved parameter repeatability.

5.1 | The optimized b‐value schemes
Previous studies on optimal b‐values for segmented model 
fitting for estimation of D and f have focused on the choice 
of the intermediate b‐value in a protocol containing three 
unique b‐values.11,25 The current study provides comple-
mentary results regarding choice and number of b‐values 
including repeated acquisitions of b‐values. Most impor-
tantly, the optimal number of unique b‐values was always 
found to be three, regardless of the total number of acqui-
sitions. This is in agreement with previous similar stud-
ies regarding the monoexponential model17-19 and the full 
IVIM model,20,21 where the optimal number of unique  
b‐values also equaled the number of parameters in the model. 
Larger optimal numbers of unique b‐values have been  
reported for the monoexponential model, but only when the 
range of D values was very large and no upper limit on the 
b‐values was applied.19 In the case of the monoexponen-
tial model, acquisition of the high b‐value is emphasized 
with an approximate 1:3 ratio.17 In contrast, the results in 
the current work place less weight on the highest b‐value 
with an approximate 1:2:2 relationship. This is reasonable 
since the information on f is mainly contained in the low and  
intermediate b‐values. It is also in concordance with results 
reported for the full IVIM model,20 although those results 
emphasized the intermediate b‐values even more since D* 
also was to be estimated.

A distinctly reduced parameter uncertainty was observed 
for all subjects when using the optimized b‐value scheme. 
Also, the median improvement closely resembled what was 

F I G U R E  1  Comparison between estimation variability based 
on CRLB and segmented model fitting based on simulated data 
with D* = 50 µm2/ms. The red and blue markers show results based 
on the linear and optimized b‐value schemes, respectively. Each 
data point represents the total relative error (Equation 12 and its 
equivalent measure derived from segmented model fitting) for a given 
combination of D and f. Note the monotonic behavior of the data 
points. The line of unity is shown in black. Supporting Information 
Figures S1 and S2 show the corresponding plots based on data with D* 
= 20 µm2/ms and D* = 10 µm2/ms respectively. CRLB, Cramer‐Rao 
lower bound
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predicted by simulations for the particular tissue type and 
corresponding parameter values used in this study. Although 
the general trend agreed well with what was predicted, a 
substantial spread in improvement was seen between sub-
jects. This is likely due to the inherent difficulty of diffusion  
imaging of the upper abdomen where respiratory and car-
diac motion often result in image artifacts. Improvements on 

motion compensation and imaging robustness are therefore 
important.34,35

While the repeatability of IVIM parameters estimates was 
improved by the use of an optimized b‐value scheme, the 
estimated parameter values were similar for the two b‐value 
schemes on the group level and agreed well with previous 
results on healthy liver.27

F I G U R E  2  Relative difference between estimate standard deviation observed with the linear and the optimized b‐values schemes. The 
relative difference for estimation of D (left column) and f (right column) from simulated data is plotted for each combination of D, f, and D*. 
Negative values imply less variability with the optimized b‐value scheme. Contours are superimposed on the color maps for improved visualization. 
Plots showing the estimation variability of each b‐value scheme separately are shown in Supporting Information Figures S3 to S5
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5.2 | Optimization based on CRLB
The simulation results justify the optimization approach 
since a lower CRLB was associated with a lower estima-
tion error from segmented model fitting. Although the error 
from segmented model fitting was lower than the CRLB, 
likely because of the constraint f ≥ 0, thus contradicting the 
theory that CRLB is the lower limit of the estimation error, 
CRLB could be seen still to serve as a useful indicator of 
the actual error. Furthermore, the deviations from a fully 
monotonically increasing relationship between estimation  
errors derived from CRLB and segmented fitting were small 
and should therefore have minimal effects on the resulting 
b‐value schemes. Furthermore, the agreement between the 
results from simulations and in vivo measurements also sug-
gests that the optimization provides important improvements 
in in vivo measurements.

However, the optimization of b‐value schemes was per-
formed under the assumption that Equation 2 is a proper 
model for the signal behavior. If the signal contribution from 
the perfusion compartment is nonnegligible for the b‐values 
larger than zero, the parameter estimates will be biased.11,25 

Similarly, if too‐high b‐values are used, a bias due to diffu-
sional variance36 or low SNR, which results in a non‐Gaussian 
noise distribution,31 may be introduced. For the liver sce-
nario that was studied in this paper, the chosen b‐value limits 
had minimal impact on the results other than a bias seen for 
very low values of D*. The decreased estimation variability  
obtained when using the optimized b‐value scheme was  
essentially unaffected by the value of D* and the upper  
b‐value limit only played a marginal role when the TE‐related 
SNR penalty was included in the optimization. When applied 
to other tissue types or scan situations, the lower and upper 
limits of the b‐values used in the optimization should be cho-
sen carefully on the basis of expected IVIM parameter values 
and SNR to ensure a bias of acceptably low magnitude and  
ensure that a Gaussian noise approximation is appropriate. 
The Gaussian noise distribution was assumed in the optimi-
zation and model fitting in this study while simulated and 
in vivo data have non‐Gaussian noise characteristics at low 
SNR. However, the desired reduction in parameter estimation 
variability was still achieved while only a minimal bias was 
introduced as seen in the simulation results (see Figure 3).

F I G U R E  3  Estimation bias for estimation of D (left column) and f (right column) from simulated data based on the two studied b‐value 
schemes plotted versus true values of f for different values of D*. The top row shows bias in absolute units, while the bottom row shows relative 
bias. The plotted bias is an average across the simulated values of D. Plots showing the joint dependence on D and f are found in Supporting 
Information Figures S6 to S8



   | 1549JALNEFJORD Et AL.

5.3 | The objective function
An important step when setting up the optimization for  
obtaining an optimal set of b‐values is the choice of objective 
function. Several aspects must be taken into account when the 

objective function is formulated. Some of the most important 
aspects are whether the estimation error should be minimized 
directly or indirectly by use of for example CRLB, whether 
estimation bias or just variability should be minimized, and 
how errors of different parameters are combined into a single 
measure. Since the specific choices related to many of this 
kind of aspects make the objective function different rather 
than better or worse, choosing a preferable objective function 
is more or less a subjective choice. It is instead important to 

F I G U R E  4  Comparison of b‐value schemes for in vivo data 
with respect to standard deviation of parameter estimates (top plot) and 
with respect to the estimated diffusion coefficient (middle plot) and 
the estimated perfusion fraction (bottom plot). The box plots show the 
distribution across subjects of ROI median of either parameter estimate 
variability or parameter estimate, depending on the context. The 
whiskers show the minimum and maximum values. Note that negative 
values in the top plot imply less variability with the optimized b‐value 
scheme. ROI, region of interest

F I G U R E  5  Diffusion‐coefficient (D) parameter maps (color) 
of the right part of the liver superimposed on the b = 1 s/mm2 image 
(gray scale) from an example subject. The figure shows parameter 
maps from repeated scans as well as the mean and the standard 
deviation of these maps. Corresponding figures for the remaining 
subjects are found in Supporting Information Figures S9 to S14
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know the implications of these methodological choices when 
setting up the optimization or analyzing the results.

Direct minimization of the estimation error can be per-
formed by running Monte Carlo simulations and model fit-
ting in each iteration as suggested by Lemke et al.2 Such 
an approach can easily incorporate e.g. complex character-
istics of the model‐fitting method and noise distribution, 
but is associated with a high computational cost, which 
may necessitate simplifications such as an incremental 
build of the b‐value scheme that may result in a suboptimal 

solution. Indirect minimization of the estimation error 
based on e.g. CRLB or some other closed form approxi-
mation of the parameter estimation error is computation-
ally cheaper, but often builds on several assumptions. If the 
specific assumptions do not hold for a particular experi-
ment setup, the effects on the obtained b‐value scheme may 
be nontrivial to predict. Nevertheless, optimization based 
on CRLB has been successfully applied to diffusion MRI 
for several methods.14,19,20,37 However, as available compu-
tational power increases, Monte Carlo‐based methods may 
become more tractable.

It is typically preferable to minimize not only the esti-
mation variability but also the bias. To accomplish this, the 
bias may be included as part of the objective function or the  
optimization can be constrained to avoid solutions that cause 
substantial bias. However, if the bias is to be included in the 
objective function, it is necessary to define a way of combin-
ing it with the estimation variability into a single measure, 
where the weights of the two factors are not necessarily equal. 
Furthermore, expressions related to the bias may be difficult 
to obtain depending on the error measure that is used. On 
the other hand, explicit constraints are easier to apply to the 
optimization, but it may be harder to relate them to the actual 
bias of the model parameters. In addition, the importance of 
minimization of variability relative to bias may vary depend-
ing on application.

To enable optimization for multiparametric models, a 
method must be chosen for combining errors of multiple  
parameters. In the current study, the errors of parameters were 
combined as a sum of the relative errors similar to previous 
studies.2,20 However, there are several other possible alterna-
tives such as a sum of squared relative errors,14 a weighted 
sum of relative errors,21 or a weighted sum of absolute errors. 
While the use of squared errors provides cleaner analytical 
expressions, it also places a strong weight on minimizing the 
largest parameter error. Similarly, the use of relative errors 
may place a stronger emphasis on minimization of errors of 
small parameter values. This is especially important if the 
presented optimization framework is used for low‐perfused 
tissue, where the errors of small value of f would be given a 
comparatively strong impact.11

5.4 | Limitations
A limitation of this work is that even if the presented 
framework is general in principle, the in vivo verification 
in this study was limited to a single tissue type, the liver. 
Confirmation of the results in other tissue types is thus needed 
and should include careful evaluation regarding the choice 
of b‐value limits. Another limitation is that the optimized  
b‐value scheme was only compared with a scheme with linearly 
distributed b‐values. The reduction in estimation uncertainty 

F I G U R E  6  Perfusion‐fraction (f) parameter maps (color) of the 
right part of the liver superimposed on the b = 1 s/mm2 image (gray 
scale) from an example subject. The figure shows parameter maps 
from repeated scans as well as the mean and the standard deviation of 
these maps. Corresponding figures for the remaining subjects are found 
in Supporting Information Figures S9 to S14
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will depend on the reference b‐value scheme, and the linear 
b‐value scheme is not common among studies limited to D and 
f. However, the linear b‐value scheme serves as a contrast to 
a b‐value scheme based on repeated acquisition of a few key 
b‐values, such as the scheme found to be optimal in this study.

6 |  CONCLUSIONS

A substantially reduced estimation uncertainty of the IVIM  
parameters D and f, derived from segmented model fitting, can 
be achieved by the use of optimal b‐value schemes. The opti-
mal b‐value schemes, as obtained from CRLB optimization, 
were always composed of three unique b‐values, with approx-
imately twice as many acquisitions for the middle and high  
b‐value as for b = 0. The improved estimation certainty was 
seen in results from simulations as well as from in vivo data.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURES S1‐S2 Comparison of CRLB‐derived estimation 
error and the corresponding measure obtained from simula-
tions. Equivalent to Figure 1, but with simulated D* = 10 
µm2/ms or D* = 20 µm2/ms. CRLB, Cramer‐Rao lower 
bound
FIGURES S3‐S5 Estimation variability obtained from sim-
ulations with different combinations of D, f, and D* for each 
of the two b‐value schemes, showing data that underlie what 
is shown in Figure 2
FIGURES S6‐S8 Estimation bias obtained from simulations 
with different combinations of D, f, and D* for each of the 
two b‐value schemes, showing data that underlie what is 
shown in Figure 3
FIGURES S9‐S14 IVIM parameter maps from repeated 
scans as well as the mean and the standard deviation of those 
maps. Equivalent to Figures 5 and 6, but showing the remain-
ing six subjects and both D and f shown in the same figure 
IVIM, intravoxel incoherent motion
FIGURES S15 Median standard deviation of parameter  
estimates over repeated measurements for each subject and 
b‐value scheme
TABLES S1‐S3 Optimized b‐value schemes as in Table 1, 
but without the upper b‐value limit, without the SNR penalty 
or without any of the two SNR, signal‐to‐noise ratio
 

How to cite this article: Jalnefjord O, Montelius M, 
Starck G, Ljungberg M. Optimization of b‐value 
schemes for estimation of the diffusion coefficient and 
the perfusion fraction with segmented intravoxel 
incoherent motion model fitting. Magn Reson Med. 
2019;82:1541–1552. https ://doi.org/10.1002/mrm.27826 

https://doi.org/10.1002/mrm.27826

