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ABSTRACT
BACKGROUND: Immune mechanisms have been implicated in the pathogenesis of depression. Translocator protein
(TSPO)–targeted positron emission tomography (PET) has been used to assess neuroinflammation in major
depressive disorder. We aimed to 1) test the hypothesis of significant case-control differences in TSPO binding in
the anterior cingulate cortex, prefrontal cortex, and insula regions; and 2) explore the relationship between
cerebral TSPO binding and peripheral blood C-reactive protein (CRP) concentration.
METHODS: A total of 51 depressed subjects with Hamilton Depression Rating Scale score .13 (median 17; inter-
quartile range, 16–22) and 25 healthy control subjects underwent dynamic brain 11C-PK11195 PET and peripheral
blood immune marker characterization. Depressed subjects were divided into high CRP (.3 mg/L; n = 20) and low
CRP (,3 mg/L; n = 31).
RESULTS: Across the three regions, TSPO binding was significantly increased in depressed versus control subjects
(h2

p = .09; F1,71 = 6.97, p = .01), which was not influenced by body mass index. The case-control difference was
greatest in the anterior cingulate cortex (d = 0.49; t74 = 2.00, p = .03) and not significant in the prefrontal cortex or
insula (d = 0.27 and d = 0.36, respectively). Following CRP stratification, significantly higher TSPO binding was
observed in low-CRP depression compared with controls (d = 0.53; t54 = 1.96, p = .03). These effect sizes are
comparable to prior major depressive disorder case-control TSPO PET data. No significant correlations were
observed between TSPO and CRP measures.
CONCLUSIONS: Consistent with previous findings, there is a modest increase in TSPO binding in depressed patients
compared with healthy control subjects. The lack of a significant correlation between brain TSPO binding and blood
CRP concentration or body mass index poses questions about the interactions between central and peripheral im-
mune responses in the pathogenesis of depression.

https://doi.org/10.1016/j.bpsc.2020.12.017
There are a number of factors associated with major depres-
sive disorder (MDD), and much recent research has focused on
inflammation (1–6). Increases in markers of peripheral inflam-
mation have previously been observed in individuals with MDD
compared with healthy control subjects (HCs) (6–9). Further-
more, inflammation and depression often occur together—
comorbidly—in the experience of patients with inflammatory
diseases like rheumatoid arthritis or Crohn’s disease (10,11),
during treatment with proinflammatory cytokines (12,13), and
after experimental administration of a peripheral immune
challenge, like typhoid vaccination (14,15). An association has
also been observed between inflammation and treatment
resistance to antidepressants (16,17), and adjunctive anti-
inflammatory treatment has been shown to improve treat-
ment efficacy of monoaminergic antidepressant drugs (18).
ª 2021 Society of Biological Psychiatry. Published by Elsevier Inc.
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Previous studies in MDD have investigated the presence of
neuroinflammation using positron emission tomography (PET)
with radiotracers specific for 18-kDa translocator protein (TSPO)
(1–6). TSPO is an outer mitochondrial membrane protein, and
elevations of TSPO expression have been consistently observed
in microglial and macrophage populations during brain disease
(19–22). Despite historically being used as a marker for microglial
activity, TSPO is now known to be expressed in other cell types,
including reactive astrocytes and endothelial cells (23–25). These
cell types have also been shown to play a role in neuro-
inflammatory processes (26,27). The association between TSPO
expression in glial cell types involved in neuroinflammation en-
ables the use of TSPO-specific ligand measurements to assess
the presence and degree of neuroinflammation in neurological
and psychiatric disease.
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In studies of MDD cohorts, significantly higher TSPO bind-
ing compared with HCs has been observed in the anterior
cingulate cortex (ACC) by several groups (1–4), as well as
higher binding in the frontal cortex (1–4,6) and insula (INS) (2,4).
Relationships have also been observed between TSPO binding
and medication status (3), length of time treated and untreated
for MDD (2), and MDD duration (2). Holmes et al. (1) recently
found that TSPO binding was significantly greater in MDD
patients with suicidal thoughts compared with those without
suicidal thoughts. A significant correlation between TSPO
binding and depression severity scores in MDD has also been
observed (4), and a reduction in TSPO binding has been
observed in MDD patients undergoing cognitive behavioral
therapy (6). However, another previous analysis with a small
cohort of 10 MDD subjects showed no difference in brain
TSPO PET measures between MDD subjects and HCs (5).
Some previous analyses did not reveal links between TSPO
PET measures and clinical scores (1,5) or peripheral inflam-
matory markers (1,4–6).

Here, we collected clinical questionnaire data, TSPO PET
brain scans, and peripheral blood immune markers from 51
depressed subjects and 25 HCs to better establish the rela-
tionship between peripheral and central inflammation in
depression. 11C-PK11195, an isoquinoline carboxamide PET
tracer specific for TSPO, was used with a dynamic PET
acquisition to measure TSPO binding in the brain as a putative
biomarker of central immune status. We tested the hypotheses
1) that 11C-PK11195 binding measured in the three afore-
mentioned regions of interest (ROIs), namely the ACC, pre-
frontal cortex (PFC), and INS, is significantly increased in
depression; and 2) that 11C-PK11195 binding is associated
with blood concentration of C-reactive protein (CRP), as a
biomarker of peripheral immune status, or body mass index
(BMI). We also investigated whether TSPO binding is increased
in treatment-resistant or unmedicated depressed subjects, and
in depressed subjects with suicidal thoughts compared with
those without, in an attempt to replicate previous results.

METHODS AND MATERIALS

Participants

A total of 51 depressed subjects (36 women/15 men; mean
age: 36.2 6 7.4 years) and 25 age-matched HCs (14 women/
11 men; mean age: 37.3 6 7.8 years) were recruited from a
network of clinical research sites in the United Kingdom as part
of the BIODEP (Biomarkers in Depression) study (NIMA
consortium; https://www.neuroimmunology.org.uk/biodep/).
Depressed individuals 25 to 50 years of age (inclusive) with a
total Hamilton Depression Rating Scale (HDRS) (28) score .13
were included. Depressed subjects were recruited and strati-
fied into low/high CRP groups using a blood CRP concentra-
tion threshold of 3 mg/L, resulting in 31 low-CRP subjects and
20 high-CRP subjects. During post hoc analysis, depressed
subjects not on treatment for at least 6 weeks prior to
screening with HDRS score .17 were classified as untreated,
resulting in 9 untreated subjects. Depressed subjects who
were still moderately depressed with HDRS score .13 despite
more than 6 weeks treatment with one or more monoaminergic
antidepressant were classified as treatment resistant, resulting
in 33 treatment-resistant subjects. Nine subjects were not
Biological Psychiatry: Cognitive Neuroscience and
included in the treatment status groupings because their
treatment status or response was unknown. Depressed sub-
jects with a score of 2 or higher on the suicide item of the
HDRS were classified as having suicidal thoughts, and those
with a score of 0 on the suicide item were classified as having
no suicidal thoughts, resulting in 12 subjects with and 20
subjects without suicidal thoughts.

All depressed subjects and HCs passed the following
exclusion criteria: a lifetime history of other neurological dis-
orders, active drug and/or alcohol abuse, participation in
clinical drug trials within the previous year, concurrent medi-
cation or medical disorder that could compromise the inter-
pretation of results, and pregnancy or breastfeeding. HCs had
no personal history of clinical depression requiring treatment
and were mean age–matched with the depressed group.
Additional information about subject comorbidities can be
found in the Supplement. The study was approved by the
National Research Ethics Service Committee East of England –

Cambridge Central (REC reference:15/EE/0092) and the UK
Administration of Radioactive Substances Advisory Commit-
tee. All subjects gave written informed consent prior to data
collection.

Clinical Assessments

All subjects underwent an in-depth clinical evaluation that
included the following psychiatric assessments: the HDRS;
Structured Clinical Interview for DSM-5, Research Version;
Beck Depression Inventory; Spielberger State-Trait Anxiety
Inventory; Chalder Fatigue Scale; Snaith–Hamilton Pleasure
Scale; and Perceived Stress Scale. Medical and family history
was collected by a trained member of the research team. A
venous blood sample was collected for assessing CRP level,
as previously published (29). Venous blood was sampled from
an antecubital vein between 08:00 AM and 10:00 AM on the day
of clinical assessment. Participants had fasted for 8 hours, had
refrained from exercise for 72 hours, and had been lying supine
for 0.5 hour prior to venipuncture. Blood was collected into a
serum-separating tube, completely and gently inverted 10
times, allowed to coagulate for a minimum of 30 minutes and
maximum of 60 minutes, and centrifuged at 1600 relative
centrifugal force for 15 minutes. A total of 1 mL of serum was
then transferred with a pipette to a serum tube and sent on the
day of collection to a central lab for high-sensitivity CRP assay
via turbidimetric detection using a Beckman Coulter AU
analyzer (Beckman Coulter, Brea, CA), with rabbit anti-CRP-
antibodies coated on latex particles.

TSPO PET Data Acquisition and Analysis

Dynamic PET data acquisition was performed on a GE SIGNA
PET/MR (GE Healthcare, Waukesha, WI) for 60 minutes after
11C-PK11195 injection (mean = 361 6 53 MBq). Attenuation
correction included the use of a multisubject atlas method
(30,31) and improvements for the magnetic resonance imaging
(MRI) brain coil component (32). Other data corrections (dead
time, randoms, normalization, scatter, sensitivity, and decay)
were as implemented on the scanner. Dynamic sinograms
were reconstructed into 128 3 128 3 89 arrays (2.0 3 2.0 3

2.8 mm voxel size) using time-of-flight ordered subsets
expectation maximization, with 6 iterations, 16 subsets, and no
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smoothing. Examples of TSPO PET images from 10 to 60
minutes for 1 HC and 1 depressed subject are shown in
Figure S1. During PET data acquisition, all subjects also had a
volumetric, high-resolution T1-weighted brain MRI (BRAVO),
which was used for PET data processing.

Brain extraction, tissue segmentation, alignment of the MRI
and PET data, and motion correction were performed using
MIAKAT (version 4.2.6; http://www.miakat.org/MIAKAT2/
index.html) software. MIAKAT is implemented in MATLAB
(version R2015b; The MathWorks, Inc., Natick, MA) and uses
tools from SPM12 and FSL (version 5.0.9). Data quality control
was performed through visual inspection of the outputs of the
MRI and PET processing steps. Experimental variables
including injected activity, total motion during PET, and
maximum interframe motion during PET were recorded for all
subjects (Table 1). The CIC v2.0 neuroanatomical atlas (33)
was coregistered to the image space of each subject and used
to extract time-activity curves from a subset of 24 ROIs based
on their relevance to MDD. A simplified reference tissue model
using a supervised clustering reference region approach (34)
was used to quantify 11C-PK11195 binding as relative binding
potential (BPND) in three primary bilateral ROIs (ACC, PFC, and
INS), which are shown in Figure S1C. Global increases in TSPO
could induce an underestimation of BPND measures in the
target regions when using a reference tissue model. Blood
input functions still provide accurate quantification as long as
changes in tracer extraction or free plasma fractions (35) or
perfusion (36) are taken into account. Reference region ap-
proaches, once carefully validated for each tracer, can provide
reliable parameters while being robust to changes in plasma
Table 1. Demographic and Clinical Characteristics for Depress

Variable Depressed Sub

Age, Years, Mean (SD) 36.2 (7

Male, n (%) 15 (2

Weight, kg, Mean (SD) 80.3 (1

BMI, kg/m2, Mean (SD)

All 27.2 (4

High CRP 30.0 (3

Low CRP 26.2 (3

CRP, mg/L, n, Mean (SD)

All 51, 2.9 (2

High CRP 20, 5.6 (2

Low CRP 31, 1.1 (0

Medication Status, n (%)

Untreated 9 (1

Treatment resistant 33 (6

No grouping 9 (1

HDRS, Mean (SD) 18.5 (3

Dose of Radioactive Isotope Injected, MBq, Mean (SD) 360.3 (5

Injected Mass, mg, Mean (SD) 3.0 (1

Specific Activity, GBq/mmol, Mean (SD) 50.80 (2

Total Motion, mm, Mean (SD) 7.76 (3

Max Interframe Motion, mm, Mean (SD) 1.62 (0

Scan Start Time, hh:mm:ss 15:14

BMI, body mass index; CRP, C-reactive protein; HDRS, Hamilton Depre
ap , .05.
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radioactivity and the changes in immune status that charac-
terize this cohort [see (37) for an example]. Example time-
activity curves for ACC of 1 HC and 1 depressed subject are
shown in Figures S2A and S2B, respectively. The supervised
approach uses a predetermined set of kinetic tissue classes to
identify voxels with kinetic behavior closest to that of healthy
gray matter. The time course of the activity averaged over the
identified voxels, weighted by the gray matter kinetic class
scaling coefficient per voxel, is used as the reference input
function. Use of a supervised cluster analysis technique for
extracting reference tissue has previously been cross-
validated and shown to be a reliable method for quantifying
brain 11C-PK11195 (38). The three ROIs were selected based
on previous findings (1,4), which were originally motivated by
their role in mood regulation (39,40), together with previous
suggestions of the involvement of the ACC in the link between
inflammation and depression (14,41–45). The PFC region used
in this analysis is the aggregate of the medial and dorsolateral
frontal cortex regions, and the ACC region is the aggregate of
the ventral cingulate subcallosal gyrus, anterior cingulate gy-
rus, and dorsal anterior cingulate regions from the CIC v2.0
neuroanatomical atlas.
Statistical Analysis

SPSS (version 24.0; IBM, Armonk, NY) was used to perform all
statistical analyses. Normality of the data was tested using
Shapiro-Wilk’s W test. The difference in BPND between
depressed and HC groups across the ACC, PFC, and INS
regions was investigated using analysis of variance by
ed and Healthy Control Subjects

jects (n = 51) Healthy Control Subjects (n = 25) p Value

.3) 37.3 (7.8) .561

9%) 11 (44%) .208

4.4) 73.7 (15.1) .102

.0) 24.2 (4.8) .001a

.8) NA NA

.4) NA NA

.8) 25, 1.1 (0.9) ,.001a

.6) 1, 3.9 (NA) NA

.7) 24, 1.0 (0.8) NA

7.5%) NA NA

5%) NA NA

7.5%) NA NA

.7) 0.6 (0.9) ,.001a

3.2) 376.2 (44.8) .138

.6) 3.4 (1.8) .486

1.33) 50.56 (25.94) .711

.75) 7.27 (3.39) .562

.90) 1.45 (0.68) .532

:44 14:58:05 .761

ssion Rating Scale; NA, not applicable.
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performing a repeated-measures general linear model analysis
to test for case-control differences, while covarying for age,
sex, and BMI. Current and past tobacco use was also inves-
tigated as a covariate. Group differences in experimental var-
iables (subject age, body weight, injected activity, total motion,
maximum interframe motion) and BPND in individual ROIs were
further investigated using the independent-samples Mann-
Whitney U test and 1-tailed independent-samples t test,
respectively. The relationship between sex and depression
diagnosis was assessed using a c2 test. Group differences
were evaluated with 5% probability of type I error (a = .05). The
relationships between CRP concentration and BPND, and be-
tween psychiatric assessment scores and BPND in the three
primary ROIs, were assessed using Spearman’s correlation.
Estimated sample sizes required to achieve significant group
differences in the PFC and INS regions were calculated given
the observed effect sizes, with a = .10 and b = .20. Nominal p
values are reported without correction for multiple compari-
sons. The ACC, PFC, and INS regions were selected based on
previous positive findings, so a global null hypothesis and
ensuing multiple correction is not appropriate (46).
RESULTS

Demographic and Clinical Characteristics

Demographic, clinical, and PET scan details for HCs and
depressed subjects are given in Table 1. There are significant
differences in BMI (p = .001), serum CRP concentration (p ,

.001), and HDRS (p , .001) between depressed subjects and
HCs. No other significant differences between HCs and
depressed subjects were observed for PET imaging
parameters.
TSPO Tracer Binding Comparisons Between HCs
and Subjects With Depression

The analysis of variance revealed a significant case-control
difference in BPND across the three primary ROIs (h2

p = .09;
F1,71 = 6.97, p = .01) (Figure 1A). Increased BPND across the
three primary ROIs in depressed subjects compared with HCs
remained significant with the addition of tobacco use as a
covariate (F1,69 = 5.57, p = .02), which was not found to be a
significant contributor to the statistical model (F1,69 = 0.34, p =
.56). A significantly higher average BPND was observed in the
ACC in depressed subjects (mean = 0.17, SD = 0.04)
compared with HCs (mean = 0.15, SD = 0.05 [d = 0.49; t74 =
2.00, p = .03]), which remained significant when covaried for
age, sex, and BMI (h2

p = .11; F1,71 = 9.07, p = .004). There were
no other significant differences in BPND between groups in the
PFC (d = 0.27; t74 = 1.11, p = .13) or INS (d = 0.36; t74 = 1.48,
p = .07) regions, at nominal 5% probability of type I error.
These results are shown in the context of previously reported
case-control differences in 11C-PK11195 binding in a forest
plot in Figure 1B. Estimated sample sizes required to achieve
significant differences with the observed effect sizes are n =
252 for the PFC and n = 116 for the INS, assuming an equal
number of subjects in the case and control groups.
Biological Psychiatry: Cognitive Neuroscience and
Relationships Between TSPO Tracer Binding and
CRP

A significantly higher average BPND was observed in the ACC
in low-CRP depressed subjects compared with HCs (d = 0.53;
t54 = 1.96, p = .03) before correcting for age, sex, and BMI.
Significantly higher average BPND was observed in the ACC in
high-CRP depressed subjects compared with HCs (h2

p = .13;
F1,40 = 5.74, p = .02), in the ACC in low-CRP depressed pa-
tients compared with HCs (h2

p = .15; F1,51 = 8.82, p = .01), and
in the INS in high-CRP depressed subjects compared with
HCs (h2

p = .14; F1,40 = 6.68, p = .01) after correcting for age,
sex, and BMI (Figure 2). No other significant differences were
observed when the depressed group was stratified by CRP
concentration. No significant correlations were observed be-
tween the ACC, PFC, or INS BPND and the CRP (Table 2),
HDRS, or BMI (Figure 3).

Post Hoc Investigations of TSPO Tracer Binding and
Clinical Variables

No significant correlations were observed between BPND and
HDRS scores, as the primary score to investigate disease
severity in depression (Figure 3B). Further exploratory analysis
showed no significant correlations between BPND and other
psychiatric assessment scores including the Beck Depression
Inventory, Spielberger State-Trait Anxiety Rating Scale,
Chalder Fatigue Scale, Snaith–Hamilton Pleasure Scale, and
Perceived Stress Scale. Differently from previous studies, no
significant differences were observed between HCs and pa-
tients with treatment-resistant depression, between HCs and
subjects with untreated depression (Figure S3A), between HCs
and depressed subjects with suicidal thoughts, or between
depressed subjects with and without suicidal thoughts
(Figure S3B).

A complete report of the primary statistical analysis results
is included in Tables S1 to S3. Correlation matrices showing
the relationship between regional BPND, CRP, HDRS, and BMI
in depressed subjects and HCs are included in Tables S4 and
S5, respectively.

DISCUSSION

This study successfully replicates previous results of increased
TSPO binding in depressed subjects, irrespective of depres-
sion severity or medication status, compared with HCs in one
of the largest-to-date samples of TSPO PET data collected
together with peripheral inflammatory markers in depression
(47). Consistent with the study hypothesis, we observed an
increase in TSPO binding in depressed subjects compared
with HCs across the three primary ROIs (ACC, PFC, and INS).
However, we did not observe any significant correlation be-
tween brain TSPO PET measures and serum CRP concentra-
tion, BMI, or clinical scores. We did not replicate previous
findings of increased TSPO binding in untreated subjects
compared with HCs (3) or in subjects with suicidal thoughts
compared with subjects without suicidal ideation (1). We
observed greater variability in BPND values in all three primary
ROIs in the HCs compared with depressed subjects.

TSPO PET studies may be difficult to compare owing to use
of different radiotracers and quantification measures (35). Even
so, recent studies (1–4) along with ours indicate that there is
Neuroimaging July 2021; 6:716–724 www.sobp.org/BPCNNI 719
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Figure 1. (A) Case-control differences in mean
11C-PK11195 binding potential measurements in
anterior cingulate cortex (ACC), prefrontal cortex
(PFC), and insula (INS) regions between healthy
control and depressed subjects. Error bars represent
SE. The analyses are corrected for age, sex, and
body mass index. Significant differences (p , .05)
are indicated by an asterisk. (B) Forest plot sum-
marizing the current results in the context of previous
translocator protein positron emission tomography
results from case-control studies of depression in
the ACC, frontal lobe regions, and INS regions.
BPND, relative binding potential.

Figure 2. Case-control differences in mean 11C-PK11195 binding po-
tential measurements in the anterior cingulate cortex (ACC), prefrontal cor-
tex (PFC), and insula (INS) regions between healthy control subjects (HC),
low C-reactive protein (CRP) depression, high-CRP depression, and all
depressed subjects (DS). Error bars represent SE. Analyses are corrected for
age, sex, and body mass index. Significant differences (p , .05) are indi-
cated by an asterisk. BPND, relative binding potential.
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increased TSPO binding in depressed subjects compared with
HCs, in which the meta-analytic effect size is medium on
average over all studies (overall Hedges’ g for the ACC = 0.60,
for the PFC = 0.41, for the INS = 0.57). Generally, these results
provide robust support for the presence of somewhat greater
central nervous system inflammation in depressed subjects
compared with HCs. Our result of no association between CRP
and TSPO binding is also consistent with recent literature
(1,3,4,6) and suggests that, although an association has been
observed between increased peripheral inflammation and MDD
(48), CRP as a marker for peripheral inflammation is not asso-
ciated with central inflammation putatively measured with TSPO
PET. BMI is one of the main contributing factors to chronic low-
grade inflammation (49) and has been identified as a con-
founding factor in TSPO PET studies (50). However, depression
is associated with peripheral inflammation even after adjusting
for BMI (29,51,52). The lack of association between BMI and PET
signal further confirms that peripherally produced inflammation
does not translate directly into central inflammation. Consistent
findings of weak central inflammation in depressed subjects
compared with HCs, and the lack of a direct association be-
tween measures of central and peripheral inflammation, do not
seem to match the associations between peripheral and central
inflammation observed in animal models (53). Previous findings
have posed the model of depression involving direct induction of
central immune activation by peripheral cytokines, which in turn
could lead to a biochemical cascade that eventually leads to
depressive symptoms (54,55). However, if this model were to
apply in our cohort, we would expect less variability in the TSPO
720 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
result of the depressed group and would expect to observe an
association between central (TSPO PET) and peripheral (CRP)
inflammatory measures, which we do not. In fact, most animal
models of inflammation-induced sickness behavior are
uly 2021; 6:716–724 www.sobp.org/BPCNNI

http://www.sobp.org/BPCNNI


Table 2. Correlation Between Regional TSPO Binding
Potential and CRP in Depressed Patients and Healthy
Controls

Region

CRP

Depressed Subjects Healthy Control Subjects

ACC r = 2.047
p = .745

r = 2.162
p = .438

PFC r = 2.073
p = .610

r = .271
p = .190

INS r = .053
p = .710

r = .243
p = .241

ACC, anterior cingulate cortex; CRP, C-reactive protein; INS, insula;
PFC, prefrontal cortex; TSPO, translocator protein.
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characterized by a leaky blood-brain barrier (53), and MDD has
only been observed to exhibit a leaky blood-brain barrier in a few
cases (56), suggesting that these animal models may be inap-
propriate for representing the general relationship between the
Figure 3. Scatterplots of 11C-PK11195 binding potential measurements (y-axi
(INS) regions vs. (A) serum C-reactive protein (CRP) concentration (mg/L), (B) Ham
in depressed subjects.

Biological Psychiatry: Cognitive Neuroscience and
central nervous system and the periphery in MDD. TSPO PET
results investigating the link between central and peripheral
inflammation by peripheral immune challenge in humans are also
contradictory. One study showed that injection of Escherichia
coli lipopolysaccharide significantly increased measures of brain
TSPO (57). Another showed that immune challenge with inter-
feron alpha exhibited no change in brain TSPO (58), and both
studies showed no link between peripheral inflammation,
measured by serum CRP, and brain TSPO (57,58).

This does not imply that peripheral inflammation and
depression are otherwise unrelated. Increased peripheral
(51,59) and central (1,3,4,6) inflammatory markers have been
separately observed in MDD subjects that do not present with
inflammatory comorbidities, which suggests that both periph-
eral and central inflammation may play a part in the develop-
ment or progression of MDD. However, the mechanism linking
peripheral cytokine activity and central immunity is still unclear;
our results, along with those from previous groups, suggest
s) for the anterior cingulate cortex (ACC), prefrontal cortex (PFC), and insula
ilton Depression Rating Scale (HDRS) and (C) body mass index (BMI, kg/m2)
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that this complex relationship warrants further investigation in
more realistic settings. Interestingly, some of our findings
became more significant or apparent when controlling the sta-
tistical analyses for BMI. It is well acknowledged that the
metabolic and immune systems are strongly integrated and
that higher BMI is associated with higher levels of peripheral
inflammation, including higher CRP levels (60). The finding of
significantly higher TSPO binding in depressed subjects even
after correcting for BMI again suggests that a peripheral
metabolic–immune dysfunction per se is not sufficient to induce
increase in TSPO expression or development of depression,
and other factors, such as blood-brain barrier permeability,
may be relevant for a better understanding of the link between
peripheral metabolic–immune dysfunction and depression.
Limitations

This study has some limitations. The greater variability of the
BPND values for all regions in the HC group compared with
depressed group presented here is surprising. A possible
explanation for this is the higher proportion of males in the
HC group, who have previously shown to have higher vari-
ance in BPND. Recruitment of a truly healthy control group is
challenging, and questionnaires about current and past
medical problems were analyzed for all subjects to attempt
to exclude depressed subjects and HCs with potentially
confounding medical comorbidities. However, some subjects
had a history of medical conditions that could be associated
with increased inflammation, such as recovery from influenza
within the month before data collection or ongoing mild
asthma. Full details about subject comorbidities are included
in the Supplement. No drug testing was performed prior to
data collection, which could have resulted in inclusion of
subjects exhibiting confounding drug effects. The TSPO PET
signal may be difficult to interpret at the cellular level
because TSPO is not specific to microglia. TSPO is also
upregulated in other cell types during disease (22,24,61).
Other cell types that express TSPO include macrophages,
astrocytes, epithelial cells, and vascular endothelial cells,
and they all have a role in central nervous system immunity
(61,62). More recent evidence has also shown that microglial
expansion does correspond to TSPO binding in tissue during
disease (24). The future availability of more specific markers
for microglial activation and neuroinflammation (63–70), to be
used in place of or in parallel to TSPO ligands, will sub-
stantially help the interpretation of future results in the area
of neuroinflammation and depression. 11C-PK11195 has a
lower sensitivity to TSPO compared with second-generation
TSPO tracers, which could explain why we did not replicate
previous findings of increased TSPO binding in untreated
depressed subjects compared with controls (3). However,
the primary result of greater TSPO binding in depressed
compared with healthy subjects does not appear to be
tracer specific, as previous significant results using 11C-
PK11195 in MDD have also been reported (1). Depressed
subjects included here are moderately depressed, as char-
acterized by an HDRS score .13, although not all fulfill the
diagnostic criteria for MDD or for an ongoing major
depressive episode, which could also contribute to differing
results compared with findings from previous studies.
722 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
Conclusions

We have contributed to the growing body of work (1–4,6) that
continues to support a relationship between neuro-
inflammation and depression. However, the effect size of case-
control differences in the TSPO PET signal is small and not
correlated with peripheral CRP concentrations, suggesting the
scope for future, more mechanistic studies that will require
novel PET radioligands with specific brain immune targets.
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