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A B S T R A C T

In previous phase I/II oncology trials for drug combinations, a number of methods have been studied to de-
termine the dose combination for the next cohort. However, there is a risk that trial durations will be unfeasibly
long if methods for evaluating safety and efficacy are based on the best overall response and toxicity during trial
design. In this study, we propose an approach to shorten the duration of drug trials in oncology. In this method,
the dose combination to be allocated to the next cohort is decided before all data for patients in the current
cohort is known and best overall response is determined. The efficacy of drug combinations in patients for whom
the best overall response has not been determined is treated as missing data. The missing data mechanism is
modeled by nonparametric prior processes. The probabilities of efficacy and toxicity are estimated after applying
data augmentation to missing data, and the dose combination to be allocated to the next cohort is decided using
these probabilities. Simulation studies from the present study show that this proposed approach would shorten
trial durations without the low-performing of the trial design in comparison to existing approaches. Shortening
trial durations would enable patients with the targeted disease to receive effective therapy at an earlier stage.
This also enables clinical trial sponsors to use fewer patients in drug trials, which would lead to a reduction in
the costs associated with clinical development.

1. Introduction

The primary objective of phase I trials in oncology is to investigate
the safety of dose-dependent therapies and to recommend dosages for
subsequent phase II trials. The safety endpoint of each patient is where
dose limiting toxicity (DLT) is experienced. The DLT shall hereafter be
referred to as “toxicity”. The primary objective of phase II trials in
oncology is to assess the therapeutic efficacy of the phase I trial and to
select the optimal dose for efficacy. Tumor response is often used as an
efficacy endpoint [1]. Tumor response is assessed by the use of Re-
sponse Evaluation Criteria in Solid Tumors (RECIST) [2]. The efficacy
probability is defined as the proportion of patients who had the best
overall response, designated as either complete response (CR) or partial
response (PR), and could be analyzed for therapeutic efficacy.

In clinical trials, there has been an increasing tendency to combine
phase I and phase II trials and implement them as one trial in order to
drive drug development and reduce associated costs [3]. To date, a
variety of research has been conducted on phase I/II oncology trials for
drug combinations [4–8]. However, when applying these methods
using the best overall response as the efficacy endpoint and toxicity as

the safety endpoint, trial duration is substantially lengthened.
Generally, treatments using anticancer drugs have an administra-

tion period of 3–4 weeks, which are administered in a single cycle
(cycle 1), repeated a number of times (cycles 2, 3, 4, etc.). Safety is
usually based on toxicity during cycle 1, although this depends on the
type of tumor being treated or on the trial drug being administered. On
the other hand, the efficacy is determined at each protocol-specified
time point as the overall response, which integrates the evaluation of
target lesions, non-target lesions, and the presence or absence of new
lesions. The best overall response is determined at the point at which
the overall response has been established for all time points. Thus, in
trial designs that evaluate both safety and efficacy in selecting the ap-
propriate dose combination for the next cohort, it is not possible to
determine the dose combination to be allocated to the next cohort until
efficacy outcomes have been determined for all time points in the
current cohort. As a result, trial durations become unfeasibly long.

To address these issues, Chen et al. [9] proposed a method that
treated unobserved data as missing data in phase I/II oncology trials. A
phase I/II oncology trial was designed to evaluate the safety and effi-
cacy of BKM120 in patients with advanced solid malignancies. In this
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trial design, where safety is evaluated based on toxicity in cycle 1 and
efficacy is evaluated in cycle 2, assignment to the next cohort is con-
ducted at the time when the current cohort has completed cycle 1.
Efficacy data is treated as missing data at any instances where efficacy
is not experienced by the time that patients are assigned to the next
cohort, and missing data is imputed.

In treating cancer, the use of a combination of drugs is thought to
provide a greater therapeutic efficacy in comparison to monotherapy.
In this study, we expanded upon the method advocated by Chen et al.
[9] in phase I/II oncology trials for drug combinations. We estimated
the efficacy probability for each dose combination using a hierarchal
model to enable the flexible application of this method to a variety of
cases. The use of the gamma process model enables the selection of a
missing data mechanism to explain the accumulated data. We propose a
novel trial design using this method, and demonstrate the operating
characteristics of our proposed approach through simulation studies.
The proposed trial design would both shorten the duration of clinical
trials and respond to the grave need to improve the development of new
anticancer drugs.

2. Methods

2.1. Probability model

2.1.1. Phase I
The model assumes the use of two drugs (A and B), and J combi-

nations of drug A and drug B. The random value of toxicity for ith
patients with the jth dose combination (i = 1,…, nj; j = 1,2,…, J) is YT

(YT = 1: toxicity, YT = 0: no toxicity). A copula-type model [10,11] is
applied to toxicity probability πj for jth dose combinations.

⎜ ⎟ ⎜ ⎟= − ⎧
⎨⎩

⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

− ⎫
⎬⎭

− − −

π p q1 1 1 1j j
α

γ

j
β

γ γ1/

(1)

where, pj and qj are the initial guesses of drug A and drug B for jth dose
combination, and α, β, and γ are the model parameters. We conveyed
gamma distribution using the location parameter a and scale parameter
1/b (hereinafter written as Ga(a, b)) as the prior distribution for the
model parameters [10,11], and the toxicity probability of the jth dose
combination is estimated using the posterior distribution.

2.1.2. Phase II
The efficacy probability of the jth dose combination (j = 1, 2,…, J),

pj, is as follows using a Bayesian hierarchal model [12,13]:
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where μθ has prior mean mθ and variance σθ2, and τθ has prior mean αθ/
βθ and variance αθ/βθ2. θ = (θ1, θ2,…, θJ), y is the observed data for
efficacy, f(φ) is the prior distribution for the hyper-parameter φ = (μθ,
τθ), f(θ|φ) is the prior distribution for θ given φ, and f(y|p) is the
conditional probability for y given efficacy probability p = (p1,p2,
…,pJ). The posterior distribution for p given y is given by
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The efficacy probability of each dose combinations is estimated
using the posterior distribution (3), and the dose combination to be
allocated to the next cohort of patients is determined from this model.

We assume that there are patients for whom the best overall re-
sponse has not been determined at the time when the dose combination
is allocated to next cohort. A patient is considered to be a person ex-
periencing efficacy if his/her best overall response is either Complete
Response (CR) or Partial Response (PR). If ith patient has not yet

experienced efficacy and has not yet finished the assessment period, the
efficacy outcome for ith patient (Yi

E) is missing. Let ti be denoted as the
time to efficacy for ith patient. If ith patient has not reached efficacy
during the assessment period [0, T], we set ti = ∞. The missingness
indicator Mi is assigned using the following equation:
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where ui is the accrual follow-up time for ith patient. The efficacy
outcome for ith patient is set as:
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The efficacy outcome is missing (Mi = 1) if ith patient has not yet
experienced efficacy (ti > ui) and has not finished the assessment
period (ui < T). The efficacy outcome is observed (Mi = 0, Yi

E = 1) if
ith patient has experienced efficacy (ti ≦ ui ≦T). The efficacy outcome is
observed (Mi = 0, Yi

E = 0) if ith patient has not yet experienced effi-
cacy (ti > ui) and has completed the entire assessment period (ui = T).

As stated by Yin [3], “Based on the missing data theory, a natural
approach to dealing with unobserved outcomes is to impute the missing
data so that the standard complete-data method can be applied”. We
propose that a data augmentation algorithm [14] in the Bayesian
context can be used to handle missing efficacy data to estimate efficacy
probability. However, incorporating a missing mechanism is a necessity
owing to non-ignorable missing data. Under the missing data me-
chanism (4), the probability of missingness for Yi

E depends on the time
to efficacy, thus the missingness for Yi

E is non-ignorable. Based on this
feature, incorporating the missing mechanism using a piecewise ex-
ponential model has been proposed [9,15,16]. In this study, a more
flexible method is implemented by modeling the missing mechanism
using a gamma process and incorporating a data augmentation algo-
rithm as described below.

We assume the time to efficacy for ith patient as follows:

ωi = I (ti ≦ T)

Ni (t) = I (ti ≦ t, ωi = 1)

Yi (t) = I (ti ≧ t)

where I(・) is the indicator function that takes a value of 1 when
equality holds within the parentheses, and is 0 in all other cases. Let
D = {Ni (t), Yi (t)}i represent a dataset of n patients. The posterior
distribution for the cumulative hazard function Λ(t) is given by

≦ ×p D p D t p( (t) | )· ( | ( )) ( (t)),   (6)

where p(Λ(t)) is the prior distribution for Λ(t), and p(D|Λ(t)) is the
likelihood for the given data D. The cumulative hazard function, re-
presenting death or disease progression, is often used in oncology trials.
In the present study, the cumulative hazard function representing ef-
ficacy is used. The likelihood is
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where dNi (t) is the increment of Ni over the smallness interval dt, and Ii
(t) is the increment of intensity function over the smallness interval dt.
We write Ii (t)dt = Yi (t)dΛ(t), where dΛ(t) is the increment of hazard
function Λ(t) over the smallness interval dt [17].

We assign gamma process GP(cΛ*(t), c) as the prior process for the
cumulative hazard function Λ(t), where c > 0 and Λ*(t) is a left con-
tinuous function on [0,∞) with Λ*(0) = 0. Based on the definition for
gamma process [18], an increment of Λ(t) at time interval [t, t + dt],
dΛ(t), follows an independent and identical Ga(cdΛ*(t), c), where dΛ*(t)
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is the increment of Λ*(t) over the smallness interval dt. The posterior for
Λ(t) is a gamma process. The increment of Λ(t) over the smallness in-
terval dt is an independent and identical gamma distribution Ga
(cdΛ*(t) + N+(t), c + R+(t)) [19], where N+(t) is the sum of Ni(t) over
i, and R+(t) is the sum of Yi(t) over i. In this study, let dΛ*(t) = rdt,
where r > 0 is an efficacy expression rate [17]. Suppose that the time
to efficacy for patients is 0 = τ0 < τ1 < τ2<…< τK < τK+1 = T,
and assume a cumulative hazard function. The prior for Λ(t) is the in-
dependent increments gamma process using

− ∼ − =τ τ Ga cr τ τ k K( ) ( ) ( ( ),c) ( 1,2,..., ),k k−1 k k−1 

and the posterior for Λ(t) is the other independent increments gamma
process using

− ∼ − + + =+ +τ τ Ga cr τ τ N τ c R τ k K( ) ( ) ( ( ) ( ), ( )) ( 1,2,..., ).k k−1 k k−1 k k 

For the estimation of efficacy, let yful be all the observation data
(hereinafter referred to as the “full data”), the yobs observed data, and
ymis the missing data. In the presence of missing data, we denote yful as
(yobs, ymis). At the rth iteration process of data augmentation [14],
given the posterior distribution of p, based on the data including
missing data p(r) (p|yobs):

• Imputation step; I step

The plausible values of ymis are obtained using the observed data
yobs and the estimated parameters. That is:

1) p(r) is drawn from p(r) (p|yobs).
2) ymis is generated from f(ymis|yobs, p(r)).

• Posterior step; P step

The model parameters are estimated from the posterior distribution
(3) using y = (yobs, ymis), where ymis are obtained in 2) of the I step.

Steps I and P are repeated until the Markov Chain convergences. At
the rth iteration process in I, step 2), given observed data yobs and
parameter p(r), the plausible values of ymis are obtained by drawing
samples from the Bernoulli distribution with a success probability of
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where pj(i)(r) is the efficacy probability of the dose combination assigned
to the ith patient in (2). Because (8) includes the unknown probability
Pr(ti > ui | yiE = 1), it is necessary to model ti to impute the missing
data. In the previous studies, a piecewise exponential model was used
[9,15,16]. Under the gamma model, the probability of success (8) is
given by
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where dΛ(t) follows the independent and identical gamma distribution
Ga(cΛ*(t) +N+(t), c + R+(t)). Thus, the plausible values of ymis are
obtained by drawing samples from the Bernoulli distribution with a
success probability of (9).

The toxicity probability is estimated using the posterior distribution
in the same way as in phase I (Section 2.1.1).

2.2. Trial design

2.2.1. Phase I
The trial progressed in accordance with the following algorithm

proposed by Yin and Yuan [10,11]. According to this method, l doses
were set for drug A with dose levels starting at 1 as the lowest value,
followed by dose level 2, and finally dose level l; and m doses were set
for drug B with dose levels starting at 1 as the lowest value, followed by

dose level 2, and finally dose level m. Supposing that ϕT is the target
toxicity probability, ce is the fixed probability threshold for dose esca-
lation, and cd is the fixed probability threshold for dose de-escalation.
The algorithm is as follows:

Step 1: For the first cohort, the lowest dose combination (A1, B1) is
administered.

Step 2: The probability model is updated using accumulated patient
data, and the toxicity probability is estimated. Let πT denote the toxicity
probability of the current dose combination (Al, Bm).

• If Pr(πT< ϕT)> ce, the dose combination is escalated to the next
combination for which the toxicity probability is higher than πT and
closest to ϕT. If the current dose combination is the highest dose
combination, the current dose combination is used to treat the next
cohort.

• If Pr(πT < ϕT) < cd, the dose combination is de-escalated to the
next combination for which the toxicity probability is lower than πT

and closest to ϕT. If the current dose combination is the lowest dose
combination, the trial is terminated.

• Otherwise, the current dose combination is used to treat the next
cohort.

Step 3: Once the maximum sample size n1 in phase I has been
reached, the jth dose combinations that satisfy Pr(πj< ϕT)> ca are
determined to be admissible dose combinations, and used as the dose
combination in phase II. ca is the fixed probability threshold for dose
admissibility.

When conducting a trial, the design parameters ϕT, ce, cd, and ca
must be specified before starting the trial. ϕT is provided by the clinical
physician. ce, cd, and ca can be calibrated through simulation studies
such that the trial has desirable operating characteristics.

2.2.2. Phase II
In phase II, trials progress in accordance with the following rules

targeting dose combinations that were determined to be admissible at
the end of the phase I.

Step 1: For the first cohort, the dose combination with a toxicity
probability closest to ϕT is administered.

Step 2: The toxicity probability and efficacy probability of each dose
combination are estimated using the accumulated data.

Step 3: The dose combination to be allocated to the next cohort is
decided in accordance with the Bayesian moving-reference adaptive
randomization (hereinafter referred to as “MAR”) [6] using the efficacy
probability.

Step 4: If dose combinations satisfy either Pr(πT < ϕT) < ca or Pr
(πE < ϕE) < cf for toxicity probability (πT) and efficacy probability
(πE), the dose combinations are determined to be not admissible for the
toxicity or futility (hereinafter referred to as “unacceptable dose com-
binations”). No patient assignments are made for dose combinations
determined to be not admissible. ϕE is the expected efficacy probability
lower limit and cf is the fixed probability for trial futility.

Step 5: Once the maximum sample size n2 in phase II has been
reached, the acceptable dose combination with the highest efficacy
probability is selected as the optimal dose combination.

The most important feature of the method proposed in this study
(hereinafter referred to as the “proposed approach”) is that the dose
combination allocated to the next cohort is decided before all the data
for each patient are known in the current cohort in phase II. Fig. 1 il-
lustrates trial progression in phase II using the proposed approach. As a
comparison, Fig. 2 shows that the existing method, where the dose
combination allocated to the next cohort is decided after all the data for
each patient is known in the current cohort in phase II (hereinafter
referred to as the “completed-data approach”). The horizontal axis in
both figures is the actual time from the start of the trial (weeks), on
which the time point of safety and efficacy in each cohort are plotted. In
Figs. 1 and 2, a cycle is defined as a 4-week period. The trial is
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conducted with the safety based on toxicity at cycle 1, and the efficacy
based on the overall response at cycle 2 (4–8 weeks from the start of the
treatment), cycle 4 (12–16 weeks from the start of the treatment), and
cycle 5 (16–20 weeks from the start of the treatment).

Fig. 1 depicts the trial design, where the dose combination allocated
to the next cohort is decided at the end of cycle 2 for the current cohort.
The dose combination allocated to cohort 2 is decided at the end of
cycle 2 for cohort 1. The best overall response for cohort 1 is not yet
determined at the time when the dose combination allocated to the
cohort 2 is decided. Thus, the efficacy data for the cohort 1 is treated as
missing data. The efficacy probability for each dose combination is
estimated, and the dose combination to be allocated to the cohort 2 is
decided. In this way, the efficacy data for the cohort, for which the best
overall response is not yet determined, is treated as missing data when
the dose combination allocated to the next cohort is decided. The ef-
ficacy probability for each dose combination is estimated after im-
putation for the missing data using data augmentation, and the dose
combination allocated to the next cohort is decided.

These approaches require that ϕE and cf are set before starting the
trial. ϕE is specified by the clinical physician, while cf can be calibrated
through simulation studies such that the trial has desirable operating
characteristics.

3. Simulation studies

3.1. Simulation settings

The performance of the proposed approach was examined using
simulation studies. In the simulation studies, we conducted phase I/II
trials for drug combinations, where a cycle is defined as a 4-week
period with a maximum of 5 cycles. The assessment of safety is con-
ducted based on the toxicity in cycle 1. The assessment of efficacy was
conducted based on the overall responses in cycles 2, 4, and 5. The trial
design for the proposed approach is as described below.

In phase I, treatment for the next cohort commences when the as-
sessment of safety is conducted in cycle 1 for the current cohort. The

Fig. 1. Patient enrollment, toxicity, and response in phase II using the proposed approach. Using the proposed approach, the dose combination allocated to the next cohort is decided
before all the data for each patient is known in the current cohort in Phase II. A cycle is defined as a 4-week period. The trial is conducted with the safety based on toxicity at cycle 1, and
the efficacy based on the overall response at cycles 2, 4, and 5.

Fig. 2. Patient enrollment, toxicity, and response in phase II using the completed-data approach. Using the completed-data approach, the dose combination allocated to the next cohort is
decided after all the data for each patient is known in the current cohort in Phase II. A cycle is defined as a 4-week period. The trial is conducted with the safety based on toxicity at cycle
1, and the efficacy based on the overall response at cycles 2, 4, and 5.
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toxicity probability for each dose combination is estimated with a co-
pula-type model (1) using the toxicity in cycle 1. The drug combination
in the next cohort is determined in accordance with the algorithm
shown in 3.1. Once the trial is completed up to the maximum sample
size in phase I, the admissible dose combination is identified, and phase
II is subsequently started. Therefore, if phase I is conducted with a
maximum sample size of n1 = 20, and a cohort size of 1, the trial
duration of phase I would be 96 weeks, providing that the trial is not
discontinued early. In phase II, the dose combination allocated to the
next cohort is decided after the assessment at cycle 2 for the current
cohort. When the dose combination allocated to the next cohort is
decided, the efficacy data for any cases where the assessment at cycle 5
has not been completed and the best overall response has not been
determined, will be treated as missing data. The efficacy probability of
each dose combination is estimated using full data with the imputation
for missing data using the method shown in Section 2.1.2. The dose
combination allocated to the next cohort is determined in accordance
with MAR [6], using the estimated efficacy probability. This is repeated
until the maximum sample size in phase II is reached. No patient as-
signments were made for any dose combinations determined to be not
admissible. If, for example, phase II is conducted with a maximum
sample size of n2 = 30, and a cohort size of 3, the trial duration of
phase II would be 92 weeks (providing the trial is not discontinued
early) as a result of starting treatment with the next cohort after cycle 2
of the current cohort.

We compared the proposed approach with the following two ap-
proaches. One approach is the completed-data approach, in which the
dose combination allocated to the next cohort is decided after all the
data for each patient is known in the current cohort. In the second
approach, the dose combination allocated to the next cohort is decided
while excluding patients who have not finished the assessment period
(hereinafter referred to as the “completer-only approach”).

The trial design for the completed-data approach is described as
follows. Phase I progresses in a similar way to the proposed approach.
As with the proposed approach, phase II begins by targeting the dose
combination determined to be admissible in phase I. Once the current
cohort has completed up to cycle 5 of the treatment, the best overall
response for the current cohort is determined, and then the efficacy
probability for each dose combination is estimated based on (3), using
the efficacy data accumulated. No patient assignments are made for any
dose combinations that are determined to be not admissible, as is the
case when using the proposed approach. If, for example, phase II is
conducted with a maximum sample size of n2 = 30, and a cohort size of
3, the trial duration of phase II would be 200 weeks (providing the trial
is not discontinued early).

The trial design for the completer-only approach is described as
follows. Phase I progresses in a similar way to the proposed approach.
As with the proposed approach, phase II begins by targeting the dose
combination determined to be admissible in phase I. In phase II, the
dose combination allocated to the next cohort is decided after the as-
sessment at cycle 2 for the current cohort. When the dose combination
allocated to the next cohort is decided, the efficacy data for any cases
where the assessment at cycle 5 has not been completed, and the best
overall response has not been determined, will be excluded from the
analysis. No patient assignments are made for any dose combinations
that are determined to be not admissible, as is the case when using the
proposed approach. If, for example, phase II is conducted with a max-
imum sample size of n2 = 30, and a cohort size of 3, the trial duration
of phase II would be 92 weeks (providing the trial is not discontinued
early).

We conducted simulation studies based on the 8 scenarios shown in
Table 1, to compare the operating features of all three approaches. The
true efficacy and toxicity probabilities for each scenario were set by
referencing existing research [7,8], and were not set based on a specific
model.

In scenario 1, the efficacy probability increases with increasing

dosage levels, and the maximum dose combination (dose combination
(A4, B4)) is determined to be the optimal dose combination. In scenario
2, the efficacy probability increases with increasing dosage levels, as
seen in scenario 1; however, the optimal dose combination here is (A3,
B4). In scenario 3, the efficacy probability plateaus at the high dose
level combinations (A4, B3) and (A4, B4). In scenario 4, the efficacy
probability increases with increasing dosage levels for drug A, but the
efficacy probability decreases after exceeding a fixed level with drug B.
In scenario 5, the efficacy probability increases initially for drugs A and
B, whereas the efficacy probability decreases when a fixed level is ex-
ceeded for drugs A and B. In scenario 6, the efficacy probability de-
creases with increasing dosage levels of drug A, and the efficacy
probability decreases after exceeding a fixed level with drug B. In
scenario 7, the efficacy probability increases with increasing dosage
levels, and there are some dose combinations that cannot be admissible
in terms of safety. The dose combinations (A3, B2) and (A4, B1) are the
optimal drug combinations. In scenario 8, the efficacy probability is
lower than the expected efficacy probability in all other dose combi-
nation scenarios; in this case, it would be preferable to discontinue the
trial early.

In the simulation studies, we simulated the time to efficacy from a
truncated Weibull distribution. In trials where conformation is re-
quired, the best overall response is determined to be CR or PR only
when the criteria are met at the subsequent time point [2]. In this
circumstance, the time to efficacy is measured as the time measurement
criterion necessary for each response to be met. Therefore, when
evaluating efficacy in cycles 2, 4, and 5, the time to efficacy ranges to
cycle 4 (16 weeks). In the simulation studies, we assigned the para-
meters of the truncated Weibull distribution G(t) with a supporting
range t∈[0, 16] to ensure that the cumulative distribution function of
the time to efficacy at cycle 4 would be equal to the true efficacy
probability. We simulated three different types of hazards: decreasing
hazard of efficacy, constant hazard of efficacy, and increasing hazard of
efficacy. The initial guesses of toxicity probability were 0.07, 0.15,
0.22, and 0.30 for drug A, while the initial guesses of toxicity prob-
ability were 0.12, 0.18, 0.24, and 0.30 for drug B. The target toxicity
probability was set as ϕT = 0.35, the fixed probability threshold for
dose escalation was set as ce = 0.85, the fixed probability threshold for
dose de-escalation was set as cd = 0.45, and the fixed probability
threshold for dose admissibility was set as ca = 0.45. The expected
efficacy lower limit was set as ϕE = 0.20, and the fixed probability for
trial futility was set as cf = 0.10. In the copula-type model (1), we used
Ga(0.5,0.5) as the prior distribution for α, β, and Ga(0.1,0.1) as the
prior distribution for γ. We took 5000 posterior samples of the model
parameters after 2000 burn-in iterations for the toxicity probability
inference. In the hierarchal model (2), we used N(0,10) as the prior
distribution for τθ. We took 10,000 posterior samples of the model
parameters after 2000 burn-in iterations for the efficacy probability
inference. We used independent Ga(0.0001 dt, 0.001) as the prior dis-
tribution for increments in Λ(t) over the small time interval dt. We
conducted 1000 simulations for each condition.

3.2. Simulation results

The simulation results are summarized in Table 2. We defined a
dose combination with a toxicity probability that is equal to or less than
the target toxicity probability and the highest efficacy probability as an
“optimal dose combination”. We defined a dose combination with a
toxicity probability that is equal to or less than the target toxicity
probability and an efficacy probability that is equal to or higher than
0.40 as a “target dose combination”. Table 2 shows the selection per-
centages of the optimal dose combinations, the selection percentages of
the target dose combinations, the percentage of discontinued trials, the
numbers of patients enrolled, and the trial duration (weeks) of phase II.

In all scenarios, the selection percentages of the optimal dose
combinations and the selection percentages of the target dose
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combinations using the proposed approach were the same as, or slightly
lower than those of the completed-data approach. The percentage of
discontinued trials using the proposed approach was equivalent to or
greater than that of the completed-data approach. The trial duration
was shorter with the proposed approach than with the completed-data
approach.

A comparison of the completer-only approach with the proposed
approach revealed that the selection percentages of the optimal dose
combinations and the selection percentages of target dose combinations
were either similar to or lower than those of the completer-only ap-
proach. For the trial duration, excluding the scenario in which is pre-
ferable to discontinue the trial early, the completer-only approach and
the proposed approach were similar. In the scenario in which is pre-
ferable to discontinue the trial early, the trial duration of the completer-
only approach was longer than that of the proposed approach, and the
percentage of discontinued trials in the completer-only approach was
lower than that of the proposed approach.

4. Discussion

In the proposed approach, the follow-up period for all patients en-
rolled in the trial is not considered complete at the point where the dose
combination allocated to the next cohort is decided. In the completed-
data approach, the dose combination allocated to the next cohort is
only decided once the follow-up period is completed for all the patients
enrolled. Thus, in the completed-data approach, the efficacy of a given
treatment is evaluated to the fullest extent possible. It is worth noting

that much more information on which to base the dose combination
allocated to the next cohort is available using the completed-data ap-
proach in comparison to the proposed approach. Therefore, there is a
concern that the proposed approach underperforms the completed-data
approach in the selection percentages of the optimal and target dose
combinations. However, the results of the simulations in the present
study suggest that the selection percentages for the optimal and target
dose combinations using the proposed approach are similar to the se-
lection percentages of the completed-data approach, and that the
shortened trial duration of the proposed approach is sufficient to offset
the decreases in the selection percentages of dose combinations.

In both the proposed approach and completer-only approach, the
dose combination assigned to patients in the next cohort was decided
after the assessment at cycle 2 in the current cohort. However, in the
completer-only approach, information on the patients currently un-
dergoing treatment was excluded from the analysis when determining
the dose combination assigned to patients in the next cohort. The si-
mulation results showed that in some scenarios, the selection percen-
tages for the optimal dose combination and the target dose combination
were lower in the completer-only approach than in the proposed ap-
proach. Moreover, in the scenario with early trial discontinuation, the
trial duration was longer in the completer-only approach than in the
proposed approach.

Shortening the trial duration and moving to the next phase of drug
development at an earlier time means that it may be possible for pa-
tients with the target disease to receive promising treatment at an
earlier stage. For the sponsors of clinical trials, this would prevent the

Table 1
True probabilities of efficacy and toxicity for each dose combination in each scenario.

Scenario Drug B True efficacy probabilities True toxicity probabilities

Drug A Drug A

1 2 3 4 1 2 3 4

1 4 0.22 0.28 0.35 0.60 0.12 0.15 0.16 0.23
3 0.20 0.25 0.32 0.45 0.10 0.12 0.15 0.19
2 0.18 0.22 0.28 0.40 0.07 0.11 0.14 0.17
1 0.16 0.18 0.25 0.35 0.05 0.10 0.12 0.14

2 4 0.18 0.35 0.60 0.40 0.16 0.18 0.20 0.30
3 0.12 0.25 0.40 0.35 0.14 0.16 0.18 0.20
2 0.10 0.20 0.35 0.30 0.12 0.14 0.16 0.18
1 0.05 0.15 0.20 0.25 0.10 0.12 0.14 0.16

3 4 0.20 0.30 0.40 0.55 0.20 0.24 0.26 0.33
3 0.18 0.25 0.36 0.55 0.16 0.20 0.24 0.28
2 0.12 0.20 0.30 0.40 0.12 0.18 0.22 0.26
1 0.10 0.15 0.25 0.35 0.10 0.14 0.20 0.24

4 4 0.15 0.20 0.25 0.30 0.18 0.22 0.24 0.28
3 0.20 0.30 0.40 0.60 0.15 0.18 0.21 0.25
2 0.15 0.20 0.30 0.35 0.11 0.16 0.18 0.22
1 0.10 0.15 0.20 0.25 0.10 0.12 0.15 0.20

5 4 0.20 0.32 0.30 0.26 0.16 0.21 0.30 0.35
3 0.15 0.30 0.36 0.30 0.13 0.17 0.24 0.32
2 0.12 0.25 0.40 0.35 0.09 0.13 0.20 0.26
1 0.10 0.20 0.50 0.40 0.06 0.11 0.15 0.24

6 4 0.40 0.30 0.25 0.20 0.15 0.18 0.22 0.26
3 0.60 0.40 0.35 0.32 0.14 0.15 0.19 0.23
2 0.40 0.35 0.30 0.25 0.10 0.12 0.17 0.21
1 0.30 0.28 0.25 0.20 0.08 0.10 0.14 0.18

7 4 0.20 0.33 0.55 0.60 0.28 0.35 0.40 0.45
3 0.18 0.28 0.48 0.55 0.24 0.30 0.35 0.40
2 0.16 0.24 0.45 0.50 0.16 0.24 0.32 0.36
1 0.15 0.20 0.40 0.45 0.12 0.18 0.24 0.33

8 4 0.10 0.10 0.10 0.10 0.27 0.33 0.36 0.40
3 0.10 0.10 0.10 0.10 0.24 0.28 0.32 0.35
2 0.10 0.10 0.10 0.10 0.21 0.22 0.27 0.33
1 0.10 0.10 0.10 0.10 0.18 0.20 0.24 0.28

*Optimal dose combination: a dose combination with the highest efficacy probability with the toxicity probability ≦ 0.35; target dose combination: a dose combination with the toxicity
probability ≦ 0.35 and the efficacy probability ≧ 0.40. The dose combination in boldface and underline represents the optimal dose combination for each scenario/dose combination,
when identified. The dose combination in boldface represents the target dose combination for each scenario/dose combination, when identified.
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enrollment of more patients into a trial than is necessary, thereby re-
sulting in a reduction in the cost associated with the clinical trial.

In practice, the completer-only approach is commonly used. As with
the proposed approach, the trial duration of the completer-only ap-
proach can be shorter than that of the completed-data approach.
However, because only the data for patients who finished the assess-
ment period are analyzed, some information is lost, resulting in a lower
estimation efficiency. An alternative approach for shortening trial
duration would be to use the data for patients for whom the best overall
response has been determined at the time point where the assignment
to the next cohort is conducted, without the imputation for the missing
data. However, if efficacy probability is estimated using the data for
patients for whom the best overall response has been determined at the
time point where the assignment to the next cohort is conducted
without the imputation for the missing data, a selection bias may occur.
There is a high risk that the efficacy data for patients with low ther-
apeutic effects would be missing in comparison to the efficacy data for
patients with high therapeutic effects. Thus, the proportion of data at
the dose combinations with high therapeutic effects used for analysis
would be larger by using only the observed data, without imputation
for the missing data. Thus, a bias would occur in the analysis by ig-
noring the missing data mechanism. The proposed approach used in the
present study is a method of analysis that considers the missing data
mechanism, by reducing possible biases.

The missing data mechanism (5) is missing not at random (MNAR),
where the probability of missingness for the efficacy data depends on
the efficacy data that should have been obtained when the follow-up
period was completed. In the presence of missing data, valid statistical
inferences cannot be provided unless using an approach that takes into
account the missing data mechanism. Here, we consider that the
missing data is a special case of MNAR, where the missing data me-
chanism is defined by (5) [15]. Chen et al. [9] specified a piecewise

exponential model for the time to efficacy, followed by Liu et al. [16] to
model the missing data mechanism. The method followed by Chen et al.
[9] requires a finite number of time intervals. In the proposed ap-
proach, we use a gamma process for the cumulative hazard function of
the time to efficacy to model the missing data mechanism. Although the
proposed approach has an infinite number of time intervals, only a fi-
nite number of time intervals can be used to explain the obtained data,
which enables estimations of the posterior distribution from the ob-
tained data.

In phase I/II oncology trials for drug combinations, it may be pos-
sible to assign patients to a more desirable dose combination based on
both toxicity and efficacy from the start of the trial. However, in the
initial stages of the trial, during which information regarding combi-
nation therapy is limited, the accuracy of the estimates is low, which
may adversely affect the performance of the trial design. Therefore, in
this study, the trial was divided into two parts. In the initial part (phase
I), toxicity was assessed, while in the subsequent part (phase II), pa-
tients were assigned admissible dose combinations with high efficacies.
Thus, the main purpose of phase I is to identify admissible dose com-
binations based on toxicity probability. In phase II, the purpose is to
identify promising dose combinations by assessing efficacy. In simula-
tion studies, the maximum sample sizes in phase I and phase II were 20
and 30, respectively. Extensive discussion and simulation based on
practical considerations will be necessary to determine the maximum
sample size to increase the probability of selecting a dose combination
with a good treatment response from the admissible dose combinations.

The probability models for toxicity and efficacy are set separately.
Thus, the relationship between toxicity and efficacy is not reflected in
the probability model. Additionally, patient toxicity outcomes are used
only for determining the admissibility of each dose combination, and
are not used for allocation in phase II. As patients desire both a sup-
pression of toxicity and an improvement in symptoms, it is essential to

Table 2
Summary of the simulation studies for the eight scenarios of the efficacy probabilities and the toxicity probabilities of dose combinations.

Method Scenario

1 2 3 4 5 6 7 8

Selection percentage of optimal dose combinations
Proposed∗1 52.3 21.4 29.3 34.9 31.2 17.6 17.2 n/a
Proposed∗2 50.9 20.3 28.3 35.2 30.6 17.8 17.7 n/a
Proposed∗3 51.3 20.7 27.7 33.5 32.1 16.8 17.5 n/a
Completer-only 50.8 15.9 30.0 30.3 30.7 13.6 16.1 n/a
Completed-data 51.7 19.9 28.3 34.3 30.7 19.7 17.6 n/a

Selection percentage of target dose combinations
Proposed∗1 72.1 44.7 42.1 43.9 54.1 37.1 32.4 n/a
Proposed∗2 70.1 43.9 41.9 42.9 52.2 36.8 33.3 n/a
Proposed∗3 70.9 43.8 40.7 42.7 53.8 36.6 32.8 n/a
Completer-only 70.2 38.9 42.2 37.7 51.5 31.7 32.6 n/a
Completed-data 71.2 44.3 41.9 42.3 52.5 40.1 35.6 n/a

Percentage of discontinued trials
Proposed∗1 0.9 8.8 6.8 6.4 2.1 1.6 7.0 50.3
Proposed∗2 0.9 9.2 7.7 6.9 2.4 1.6 7.4 53.8
Proposed∗3 0.9 9.4 7.6 7.5 2.2 2.1 7.7 53.9
Completer-only 0.5 6.5 4.3 4.6 1.6 1.5 4.2 38.3
Completed-data 0.3 5.5 5.3 4.6 1.5 1.4 5.3 47.8

Number of patients enrolled
Proposed∗1 49.55 45.60 46.60 46.80 48.95 49.20 46.50 24.85
Proposed∗2 49.55 45.40 46.15 46.55 48.80 49.20 46.30 23.10
Proposed∗3 49.55 45.30 46.20 46.25 48.90 48.95 46.15 23.05
Completer-only 49.75 46.75 47.85 47.70 49.20 49.25 47.90 31.35
Completed-data 49.85 47.25 47.35 47.70 49.25 49.30 47.35 26.10

Trial duration (weeks) of phase II
Proposed∗1 91.4 86.6 88.2 88.2 90.7 91.0 88.0 65.5
Proposed∗2 91.4 86.4 87.6 87.9 90.6 91.0 88.0 64.3
Proposed∗3 91.4 86.3 87.7 87.8 90.7 90.9 87.9 64.2
Completer-only 91.7 88.1 89.6 89.6 91.2 91.2 89.5 74.3
Completed-data 199.5 192.0 193.3 193.5 197.9 197.7 192.9 138.3

*n/a: not applicable.
*1: constant hazard of efficacy, *2: when decreasing hazard of efficacy, *3: when increasing hazard of efficacy.
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have a joint probability distribution of toxicity and efficacy to take the
relationship between toxicity and efficacy into consideration, as well as
to investigate methods for discovering more clinically suitable dose
combinations from the perspective of both efficacy and toxicity.

In the present study, binary data (experience/no-experience) were
used as endpoints of toxicity and efficacy. However, this data ignored
the information regarding when patients experience toxicity or efficacy.
Yuan and Yin [20] proposed a method for modeling toxicity and effi-
cacy as time-to-event endpoints. At the time of selecting the dose as-
signed to the next cohort, the unobserved data is censored, and the
Clayton copula is used to construct a joint density function of survival
time regarding toxicity and efficacy. The framework of the proposed
approach can be extended to time-to-event endpoints. At the time of
selecting the dose combination to be assigned to the next cohort, the
data for patients for whom the best overall response has not been de-
termined is treated as missing data, and a missing mechanism may be
incorporated in the model, where the gamma process can be used as a
prior process for the baseline hazard function.

To analyze the missing data, we used a gamma process for the cu-
mulative hazard function, as it has been recommended that the cu-
mulative hazard function be modeled using a gamma process for
grouped data [18]. The model proposed in this study can specify the
posterior distribution for the cumulative hazard function, which has the
advantage of being computationally simple to implement. However,
one of the disadvantages of using the gamma process is that the cu-
mulative hazard function is a discrete function with probability 1 [21].
To overcome this disadvantage, an approach using stochastic processes
other than the gamma process should also be considered.

In this study, we proposed a method for shortening the trial dura-
tion for phase I/II oncology trials for drug combinations. The dose
combination allocated to the next cohort is decided using an analysis
that considers a missing data mechanism. The simulation studies show
that the proposed approach can shorten the trial duration, while sup-
pressing the performance deterioration of the trial design, in compar-
ison to the existing approaches. However, it is worth noting that the
conditions of the simulations conducted in this study are limited, and
similar findings may not always be obtained. Validation of the proposed
approach, using the application of the proposed approach to an actual
clinical trial, is a topic for future investigation.
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