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Abstract: Background: Conium maculatum is known as highly toxic plant, due to piperidine alkaloids
present in the aerial parts. In a first attempt, in various tap root samples, however, alkaloids could
not be detected. The present study describes active compounds in the tap roots from 16 populations
harvested at maturity. The compounds were extracted with dichloromethane from root pieces of
single plants and analyzed by gas chromatography—mass spectrometry. Ten bioactive compounds
were evaluated: five furocoumarins, two prenylated coumarins, two aliphatic Cy7-polyacetylenes
and the phenylpropanoid elemicin. A high variability could be observed, the highest concentrations
were measured for falcarindiol, xanthotoxin and isopimpinellin, the lowest for elemicin. In sum
C. maculatum roots contained comparable amounts of compounds that are characteristic for Apiaceae,
and also occur in vegetables as carrots, parsnip, parsley or celeriac.

Keywords: Conium maculatum; tap root; furocoumarins; xanthotoxin; isopimpinellin; falcarinol;
falcarindiol

1. Introduction

Conium maculatum L., poison hemlock, (Apiaceae) is a poisonous plant well known since antiquity,
with high toxicity for animals and humans [1-3]. The plant grows preferentially on uncultivated
land on loamy and nitrogen rich soils and is sparsely distributed widely throughout Europe and the
Mediterranean region. In the aerial parts piperidine alkaloids as coniine and y-coniceine are the toxic
compounds. A further novel alkaloid, named conmaculin, has been described by Radulovic et al. [4].
Alkaloid content showed geographical variation and was influenced by herbivory [5].

Aerial parts may also contain some volatiles with the 3-ocimene isomers and germacrene D
being the main compounds [6]. Masoudi et al. mentioned germacrene D, 3-caryophyllene and
E,E-a-farnesene in the essential oil from the above ground parts in C. maculatum [7]. The synthesis
of furocoumarins was induced in leaves and seedlings stressed with the heavy metal Cu [8]. Callus
cultures obtained from leaf stalks produced furocoumarins when they are treated with various elicitors
as alginic acid, cellulase, chitosan, ethylene, methyl jasmonate, salicylic acid, copper (II) sulphate and
silver nitrate [9]. These compounds act as protectants against phytopathogens.

The plant produces thick tap roots, however, only little is known about the phytochemistry of
these underground plant parts. A report from Serbia presents steroids from C. maculatum roots [10].
Therefore, the aim of the present work was to study which characteristic compounds typical for
Apiaceae occur in C. maculatum roots, and to assess their variability in plants of different origin.
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2. Results

The bioactive compounds of C. maculatum have been analyzed in roots dichloromethane
extracts by GC-MS. The samples came from single plants of 16 accessions grown on an
experimental field. Ten compounds could be evaluated. There were five furocoumarins xanthotoxin
(8-methoxy- psoralen), isopimpinellin (5,8-dimethoxy-psoralen), bergapten (5-methoxy-psoralen),
psoralen and marmesin, two prenylated coumarins as osthol and trans-suberenol, the aliphatic
Cyy-polyines (polyacetylenes) falcarinol ((Z)-Heptadeca-1,9-diene-4,6-diin-3-o0l) and falcarindiol
((Z)-Heptadeca-1,9-diene-4,6-diin-3,8-diol) and, finally, the phenylpropanoid elemicin. The mass
spectra of falcarinol (55 (100), 91 (66), 43 (64), 115 (43), 117, (35), 77 (30), 129 (27), 131 (26), 78 (23), 193
(23), 81 (22), 29 (22)) and falcarindiol (55 (100), 129 (72), 41 (66), 91 (62), 43 (58), 128 (54), 77 (54), 115
(44), 79 (32), 105 (25), 157 (25), 57 (22)) were in good accordance with the published literature [11-13].
Additionally, the furanocoumarin columbiatenin and a suberenol isomer were only found in few
samples and therefore not further considered.

Table 1 presents an overview over all 152 analyzed samples and shows that over all samples a
broad variability as manifested by high standard deviations occurred for all compounds. Falcarindiol
was recorded in highest concentrations, followed by xanthotoxin and isopimpinellin. For marmesin,
suberenol and elemicin usually low contents were measured. All compound showed a positive
skewness, indicating that there were more low values than high values. The positive kurtosis values
indicate a higher and narrower curve than normal distribution [14].

Table 1. Selected statistical characteristics for 152 samples from 16 accessions.

Accession XANT IPIM BER PSO MAR OST SUBE FALC FALD ELE

Mean 254.4 168.9 79.1 68.1 12.5 52.7 11.0 9.0 328.8 9.6
Median 76.9 89.3 48.3 9.5 0.0 36.6 0.0 1.4 253.1 0.0
SD 391.6 197.3 84.1 141.1 25.6 58.1 23.0 26.2 315.4 28.1
Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 2297.4 940.7 450.1 979.8 145.5 407.6 1114 248.8 1570.2 227.0
Skewness 2.8 1.8 2.0 3.7 3.2 2.6 2.7 7.0 15 5.1
Kurtosis 10.3 3.0 4.3 17.3 114 9.7 7.0 56.9 25 31.7

Mean, median, min and max in mg/kg dry matter; Min. 0.0: lower than limit of detection; XANT: xanthotoxin,
IPIM: isopimpinellin, BER: bergapten, PSO: psoralen, MAR: marmesin, OST: osthol, SUBE: trans-suberenol, FALC:
falcarinol, FALD: falcarindiol, ELE: elemicin.

A more detailed view of the repartition of the compounds for the individual accessions is given in
Table 2. Additionally, within the accessions, a great variability was present for all compounds, visible
in high standard deviations. Accessions A9, A5 and A10 had the highest falcarindiol means, A7, A14
and A16 being the lowest. Accessions A9, A4, A3, A18, A5 and A4 were rather high in xanthotoxin,
the remaining low. Trans-suberenol was absent in accessions A2, A3, A4, A8, A9, A1l and A12, while
elemicin could not be found in A8 and A12.
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Table 2. Active compounds in 16 Conium maculatum accessions (mg/kg).

Accession XANT IPIM BER PSO MAR OST SUBE FALC FALD ELE
A2 Median 12.9 65.2 452 0.0 0.0 23.8 0.0 1.9 483.8 1.7
N=9 Mean * 16.1 72.6 43.5 0.9 0.8 14.7 0.0 0.7 155.0 1.2
SD * 41 2.4 2.1 10.0 9.6 6.3 7.6 7.7 8.9

A3 Median 418.5 177.0 101.4 114.3 9.2 8.8 0.0 18.9 215.5 0.0
N =10 Mean * 218.6 1152 72.9 83.8 4.5 7.3 0.0 17.5 246.5 0.2
SD * 3.5 2.3 24 44 8.8 2.0 3.5 1.9 2.4

A4 Median 4744 3633 100.4 72.0 30.7 43.3 0.0 3.3 308.4 0.0
N =10 Mean * 4843 3174 82.0 77.9 8.6 40.2 0.0 0.9 299.8 1.3
SD * 2.2 2.0 3.2 2.6 13.5 1.9 10.6 2.7 18.3

A5 Median 201.7 91.1 50.1 54.7 0.0 59.4 0.0 1.0 465.6 0.0
N =10 Mean * 89.4 64.3 36.7 115 0.6 55.8 0.3 0.7 443.7 0.6
SD * 8.4 4.0 3.0 19.5 8.8 2.0 3.2 4.8 1.9 6.8

A7 Median 39.8 3.3 11.6 6.8 0.0 5.6 45 0.0 0.0 0.0
N=7 Mean * 34.4 2.7 7.6 9.7 0.0 2.3 2.9 0.0 0.2 0.3
SD * 2.5 3.8 54 3.8 5.6 7.46 4.6 3.1

A8 Median 37.6 67.0 37.9 9.7 0.0 48.4 0.0 0.0 32.0 0.0
N=6 Mean * 34.0 79.1 42.0 8.2 0,4 27.7 0.0 0.2 55 0.4
SD * 2.9 7.3 2.5 3.1 4.0 7.1 9.8 87.7 8.9

A9 Median 767.8  252.8 1715 2155 23.2 81.2 0.0 1.4 509.6 0.0
N =10 Mean * 643.7 2440 1440 2292 20.1 81.9 0.0 0.9 552.1 1.3
SD * 2.2 2.1 2.1 2.4 6.2 1.9 7.6 1.6 16.8

A10 Median 386.3 160.3 144.0 75.1 0.0 36.9 0.0 0.0 243.3 0.0
N =10 Mean * 420.9 162.7 1472 46.5 1.0 37.1 0.7 0.3 52.9 0.3
SD * 2.1 3.0 1.9 8.2 7.5 41 7.0 9.6 27.4 5.6

All Median 56.0 27.3 37.2 6.1 0.0 27.5 0.0 7.2 50.3 6.8
N =10 Mean * 47.6 33.9 41.0 3.3 0.7 19.9 0.2 2.6 69.0 57
SD * 6.5 4.0 2.3 13.4 9.6 6.0 1.5 10.3 74 9.5

A12 Median 0.6 49.8 22.4 0.0 0.0 67.4 0.0 0.0 342.6 0.0
N =10 Mean * 2.8 24.6 23.2 0.7 0.3 49.2 0.0 0.1 299.7 0.0

SD * 20.6 11.5 3.9 10.7 3.9 2.3 2.9 2.0

A13 Median 1.6 20.3 6.1 0.0 0.0 31.8 1.3 7.2 347.4 0.0
N =10 Mean * 2.0 18.8 8.5 0.3 0.0 28.2 1.0 10.5 335.4 0.5
SD * 10.5 5.4 5.6 1.7 1.9 55 3.8 14 6.4

Al4 Median 98.0 110.6 52.2 16.5 0.0 31.7 54.3 8.2 185.1 0.0
N =10 Mean * 96.2 121.0 60.5 11.8 0.4 33.3 21.4 9.7 206.1 0.3
SD * 45 2.5 3.0 9.9 52 1.9 8.9 2.7 1.6 59

Al5 Median 421 110.0 33.4 0.5 0.0 449 26.1 13.8 158.6 1.9
N =10 Mean * 45.8 117.5 45.6 1.7 0.7 47.9 11.5 55 166.5 2.3
SD * 3.3 2.1 2.0 115 49 1.6 4.5 9.1 21 18.1

Alé Median 18.9 49.3 33.8 0.0 0.0 52.2 3.6 1.2 211.7 0.0
N =10 Mean * 15.7 50.9 21.2 0.4 0.7 33.5 1.5 0.7 205.7 0.4
SD * 3.0 2.0 1.6 41 6.9 4.8 8.1 9.1 1.6 6.8

Al17 Median 54.5 139.8 60.9 8.6 114 61.3 20.6 0.0 195.0 42
N =10 Mean * 55.2 143.0 62.8 52 3.0 35.0 31.3 0.2 140.2 1.6
SD * 2.3 2.5 2.3 5.8 10.1 8.5 2.1 55 49 7.8

Al8 Median 313.7 190.7 47.9 11.2 28.8 16.5 22.2 0.0 67.1 0.0
N =10 Mean * 241.5 137.5 57.9 9.6 16.8 11.8 7.5 0.3 57.2 0.6
SD * 4.0 2.3 2.2 8.9 6.6 5.1 13.1 8.9 8.1 10.6

* Calculated from logarithmic values and then back transformed according to [15]. XANT: xanthotoxin, IPIM:
isopimpinellin, BER: bergapten, PSO: psoralen, MAR: marmesin, OST: osthol, SUBE: trans-suberenol, FALC:
falcarinol, FALD: falcarindiol, ELE: elemicin. 0.0: below limit of detection.

In order to obtain a possible classification of the accessions, a hierarchical cluster analysis (HCA)
was performed. Figure 1 represents the corresponding dendrogram, and the boxplots of Figure 2 gives

the variability of the compound classes for the 16 accessions.
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Figure 1. Dendrogram showing similarities between accessions of Conium roots according to the mean
values of 10 analyzed compounds.

The dendrogram suggests a classification in four groups. The first group on the upper part
comprising accessions A3, A4, A9 and A10 had higher furocoumarin contents. The second group
gathering A14, A15, A17 and A18 had medium contents of furocoumarins and higher contents of
prenylated coumarins, especially trans-suberenol. The third group with A2, A5, A8, A11, A12, A13 and
A16 appeared rather low in furocoumarins. The last group at the bottom is represented by accession
A7 alone. This accession was generally low in all compounds. No correlation could be found with
geographic origins of the samples.
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Figure 2. Boxplots presenting the variability of compound classed in 16 accessions (pg/g). * and o

mark outliers. Order of accessions according to hierarchical cluster analysis (HCA) analysis in Figure 1.

(A): furocoumarins; (B): polyines; (C): prenylated coumarins; (D): elemicin.
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Computing a principal component analysis (PCA) gave an additional view on the complex
variability between and within the accessions. In this analysis, the 10 compounds as variables have
been reduced to four components, with eigenvalues greater than one accounting for 86.4% of the

variability. The first two components accounted for 64.4% of the variability. Corresponding biplots are
presented in Figure 3.
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Figure 3. Loading plots of the compounds (A) and scoring plots of the accession means (B) of the
first two components in principal component analysis (PCA). BERG: bergapten, ELE: elemicin, FALC:
falcarinol, FALCDI: falcarindiol, IPIMP: isopimpinellin, MAR: marmesin, OST: osthol, PSO: psoralen,
SUBER: suberenol, XANT: xanthotoxin.
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On the loading plot of the first two components, all compounds but suberenol had a positive
component 1 loading, and the highest loadings were recorded for the furocoumarins. Falcarindiol had
a high component 2 loading. The compounds falcarinol, trans-suberenol and elemicin, which occurred
rather in low concentrations in the sample, had lower loadings on both components. On the scoring
plot comparing the accessions, a grouping partially similar to those suggested by HCA could be found.
Accession A7 having lowest contents of active compounds was isolated on the lower left quadrant.
The third group in HCA (A2, A5, A8, All, A12, A13 and A16) with a high ratio of falcarindiol to
furocoumarins appeared mainly in PCA on the upper left quadrant, while the remaining accessions
had all positive factor 1 values. In this plotting, the highest factor 1 value was assigned to A9, which
was the accession with the highest total active compound content (Table 2).

Finally, to visualize the relation between individual samples of the accessions a canonical
discriminant analysis (CDA) was performed. In this multivariate analysis, samples had to be assigned
to the accessions as predefined groups. Figure 4 plots the values of the first two discriminant functions
for the samples and the corresponding accessions. Some accessions were well separated as, for instance,
A3, A12 and A17, but there were also many overlaps. This can be attributed to the high variability
within the accessions. Altogether, 63.8% of the samples were correctly classified to their accessions.

Accession
02 —2
5 O3 —3
O 4 —a
Os —5
7 7
—_ Os —38
X 3 9 9
g O 10 —10
11 11
s O 12 —12
N g 13 13
c 14 14
.g 15 15
O O 16 —16
g 17 17
L -3 O s —18
s Group
Centroid
-5

Function 1 (32.2%)

Figure 4. Discriminant scores of the two first functions grouping the samples to the accessions.
3. Discussion

A discussion of bioactive compounds in Conium maculatum should at first concern the well
documented toxic alkaloids. However, in alkaline lipophilic extracts of various root samples, we failed
to prove the presence of alkaloids. In root tips from seedlings histochemical tests showed the presence of
alkaloids [16]. However, another study also pointed out that Conium roots were devoid of alkaloids [4].

All compounds showed high variability between and within the accessions. High variability
of secondary compounds within a plant species seems not to be uncommon. For instance, in fresh
celeriac and parsnip root collected from the Czech market total furocoumarin content varied from 1 to
50 mg/kg and 1 to 140 mg/kg, respectively [17]. Within a wild growing population of Silaum silaus
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myristicin, the main volatile in the fruits from single plants, ranged from 131 to 12550 pug/g, a nearly
100-fold difference between lowest and highest contents [18].

The highest levels of falcarindiol were recorded in the roots, while falcarinol appeared relatively
low. For C. maculatum, small amounts of falcarinol (0.4%) were reported in the inflorescence essential oil
in plants from Serbia [6]. Falcarinol and related polyacetylenes are widely distributed in the Apiaceae
family [19]. Commercially available vegetables as Apium graveolens, Daucus carota and Pastinaca sativa
contained on a dry weight basis 230 to 1620 mg/kg falcarinol and 240 to 5770 mg/kg falcarindiol [20].
In carrots, falcarinol and falcarindiol contributed to the bitter taste off which occurred in cold stored
carrots and carrot puree [12]. Falcarinol ranged from 8.1 to 27.5 mg/kg and falcarindiol from 21.7
to 84.3 mg/kg in fresh carrots, and was dependent from the carrot cultivars [13]. Another report
mentioned on dry weight basis 315 mg/kg falcarindiol and 82.2 mg/kg falcarinol in the carrot variety
Blanche [11]. Furthermore, parsley roots contained 403 mg/kg falcarindiol and 629 mg/kg falcarinol,
and Pastinaca sativa 240 and 165 mg/kg of these two compounds, respectively, all on dry weight
basis [11]. So, the present C. maculatum roots appear to contain comparable amounts of falcarindiol and
less falcarinol than common Apiaceae root vegetables. Aliphatic C;7-polyacetylenes of the falcarinol
type display a variety of interesting biological activities, including antibacterial, antimycobacterial
and antifungal effects as well as anti-inflammatory and anti-platelet-aggregatory properties [19].
Additionally, neuritogenic and neuroprotective effects of falcarinol have been reported [19]. Falcarindiol
exerts a potent modulatory action on GABA s-receptors [21]. Finally, anticancer activity has been
demonstrated for falcarindiol and falcarinol. These compounds were able to reduce the number of
neoplastic lesions, as well as the growth rate of the polyps in rat gut, suggesting a preventive effect on
the development of colorectal cancer [22].

The Apiaceae species represent a major plant family able to produce furocoumarins. For a long
time, it has been known that these compounds, once applied onto the skin and exposed to light, induce
burns and lesions of the skin. Psoralene-type linear furocoumarins, like xanthotoxin and bergapten,
show strong such photosensitizing effects, in contrast to angular furocoumarins. This toxicity is
dependent on their ability to form DNA adducts under the influence of UV-A, leading to cross-links in
DNA and, ultimately, resulting in a potent cytotoxicity and acute inflammation [23,24]. The treatments
of psoriasis and vitiligo are pharmaceutical applications of furocoumarins. Further noticeable effects of
furocoumarins have been observed. Xanthotoxin proved acetylcholinesterase inhibitory activity [25].
In the mouse maximal electroshock-induced seizure test, xanthotoxin had clear-cut anticonvulsant
activity [26]. Antiproliferative activities on cancer cell lines have been demonstrated for a flower extract
from the umbelliferous Magydaris tomentosa, which was rich in xanthotoxin, xanthotoxol, isopimpinellin
and bergapten [27].

In an ecological context, furocoumarins are defense chemicals against insect herbivores and
microbial attacks. The synthesis of the compounds might be induced by the attack. The ability of
C. maculatum to produce furocoumarins has been demonstrated by the induction of their synthesis
through various elicitors in callus cultures. Isopimpinellin, bergapten, xanthotoxin and psoralen
were the main elicited compounds [9]. The present study deals with these same four compounds.
Additionally, the callus cultures produced low amounts of oroselone, coloumbiatenin and marmesin [9].
Actually, low amounts of marmesin were found in low levels in most of the accessions, while
columbiatenin occurred only in very few root samples (data not shown). Recently, a study reported
anticancer activity of marmesin in human leukemia cells [28].

To evaluate the levels of furocoumarins in the present C. maculatum roots a comparison with other
Apiaceae species can be attempted. These compounds occur in a range of umbelliferous vegetables
and herbs. In fresh celeriac and parsnip roots from the Czech Republic, the average furocoumarin
content was 17 and 26 mg/kg, respectively [17]. Calculated on a dry weight basis, these values can
be considered as 4-6 times higher. Carrots usually have low levels of furocoumarins as for instance
0.068 mg/kg fresh weight [29], or less than 0.05 mg/kg [30].
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Leaves of various parsley varieties had, in their leaves, 1.6-9.6 mg/kg xanthotoxin, 1.9-52.7 mg/kg
psoralene and 19.9-479 mg/kg bergapten in the dry matter [31]. The outer, older celery leaves
(Apium graveolens) contained up to 44.9 mg/kg fresh weight linear furocoumarins, levels that were high
enough to threaten human health. The roots of these plants having 0.9 mg/kg of these compounds were
considered as safe [32]. During storage of parsnip roots the levels of furocoumarins usually increase in
dependence of the storage conditions [17,33]. Taken together, the present C. maculatum roots contained
comparable levels of furocoumarins as parsnip, but higher levels than carrots.

For prenylated coumarins also some remarkable activities have been reported. Suberosin and
suberenol isolated from Ferulago carduchorum showed anticoagulant properties, but no acute or
subchronic toxicity when administered to rats as they prolonged the prothrombin time [34]. Research
on osthol demonstrated various effects as anti-asthmatic, antidiabetes, antiseizure and improving
mental disorders. Therefore osthol might be useful in treating epilepsy [35].

The phenylpropanoid elemicin as alkenyl-benzene has a terminal double bound on the side chain.
Compounds having this structure display a genotoxic and carcinogenic potency. Elemicin occurs also
in plants like nutmeg or parsley, which are used as flavorings and spices. Risk assessment for food
products containing such plants have been attempted [36,37].

In sum, C. maculatum roots contain a complex bouquet of active compounds in comparable
amounts as in other Apiaceae species. Interactions between individual compounds are to be expected
and need further research.

4. Materials and Methods

4.1. Plant Material

Sixteen accessions of poison hemlock were grown in field plots at the Leibniz Institute of Plant
Genetics and Crop Plant Research (IPK) in Gatersleben, Germany (Table 3). The plots were established
in 2014, and the harvest of the roots took place in August 2015, at maturity of the plants when the fruits
of the terminal umbels were fully developed. From each accession, 10 root samples were taken from
single plants. From accessions 2, 7 and 8 only 9, 7 and 6, plants could be harvested so that altogether
152 samples were analyzed. The roots were kept at —80 °C until further analysis.

Table 3. List of Conium maculatum accessions from the Leibniz Institute of Plant Genetics and Crop

Plant Research (IPK).
Nr Accession Species Date  Country of Origin  Acquisition from
A2 CONI 2 Conium maculatum 1952 unknown BG Bucharest
A3 CONI 3 Conium maculatum 1953 unknown BG Krakow
Ad CONI 4 Conium maculatum 1975 France BG Frankfurt
A5 CONI 5 Conium maculatum 1990 Georgia Georg. SSR
A7 CONI7 Conium maculatum 2002 Germany BAZ
A8 CONI 8 Conium maculatum 2002 Germany BAZ
A9 CONI 9 Conium maculatum 2002 Germany BAZ
A10 CONI 10 Conium maculatum 2000 Russia BG Halle/Saale
All CONI 11 Conium maculatum 2002 Germany BAZ
Al12 CONI 12 Conium maculatum 2002 Germany BAZ
Al3 CONI 13 Conium maculatum 2002 Germany BAZ
Al4 CONI 14 Conium maculatum 2002 Germany BAZ
Al5 CONI 15 Conium maculatum 2002 Germany BAZ
Ale6 CONI 16 Conium maculatum 2002 Germany BAZ
Al17 CONI 17 Conium maculatum 2002 Italy BAZ
Al18 CONI 18 Conium maculatum 2002 Germany BAZ

For further details see [38]. Date refers to year of acquisition of the respective accession. (BG: Botanical Garden;
BAZ: Braunschweig Genetic Resources Centre).
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4.2. Extraction of the Active Compounds

Pieces 2-3 g of the roots from single plants were dried overnight at 35 °C and ground to a fine
powder using a laboratory mill. Then a portion of 0.5-1 g was extracted with 6 mL dichloromethane
for 120 min in an ultrasonic bath. The solvent dichloromethane contained hexadecane at a rate of
0.05 mg/mL as internal standard. After centrifugation, 3 mL of the resulting extract were gently
reduced to dryness and finally taken up in 300 uL dichloromethane.

4.3. Gas Chromatography/Mass Spectrometry (GC/MS)

The analyses were carried out on an Agilent Technologies 7890A gas chromatograph equipped
with a 5975 C quadrupole mass selective detector, (Agilent Technologies, Santa Clara, CA, USA).
The separation was done on a 60 m X 0.25 mm fused silica column coated with 0.25 um HP5-MS.
Helium was the carrier gas at a velocity of 1.2 mL/min in the constant flow mode. One uL was injected
in the injection port heated at 270 °C and a split ratio of 15:1. The oven temperature was programmed at
a rate of 12 °C/min from 60 °C to 210 °C, and then at a rate of 5 °C/min from 210 °C to 280 °C. The final
temperature hold time at 280 °C lasted 12 min. The transfer line to the mass selective detector was
heated at 280 °C and the scan range was m/z 40-450, with 1.86 scans/s. Mass spectra were used for the
identification of the compounds, by comparison with the entries of spectra libraries NIST08 and Wiley
275 and the further literature [11-13,39]. Additionally, retention indices were calculated in comparison
to the n-alkanes Cg—C3y and compared with the literature data [39]. Quantitative calculations were
based on the response of the internal standard hexadecane and an estimation of response factors for
the individual compounds (Table S1).

For the quantitative evaluation, the total ion current (TIC) was used, and it was assumed that all
compounds gave the same response as the internal standard hexadecane. By this method, based on
the signal to noise ratio, in the dried root, limit of detection (LOD) and limit of quantification (LOQ)
were between 0.3 and 0.7 mg/kg and 1.0 and 2.7 mg/kg, respectively (Table S1). Inter and intraday
repeatability varied between 15-20% for the various compounds.

4.4. Statistical Analysis

The statistical analyses were done with the package IBM SPSS for Windows, version 26.0 (IBM
Corporation, Armonk, NY, USA). In the data matrix, values below LOD were assumed as 1/3 LOD and
values between LOD and LOQ as 1/3 LOQ. Many samples had low contents and high variance of the
various compounds occurred so that skewed distributions were observed. Therefore, the values were
transformed according to: y = Log(x), with y transformed and x original value. Means and standard
deviations for the individual accessions were first calculated with the logarithmic values and then
back-transformed [15].

The complex interplay of the compounds was further analyzed by multivariate methods.
A hierarchical cluster analysis (HCA), using the squared Euclidian distance with linkage between
groups, was calculated to visualize similarities between the accessions where the logarithmic population
means were taken as cases. A principal component analysis (PCA) was calculated similarly. Finally,
to visualize the variability within the populations, a plotting of a canonical discriminant analysis (CDA)
was performed.

5. Conclusions

Ten major active compounds could be evaluated in the roots of a range of C. maculatum accessions.
A remarkably high variability between and within the accessions could be observed, which could be the
basis for studying biological activity of the compounds. This stresses also the need for a comprehensive
characterization of a plant material when it is used to study biological effects. A further aspect might
be investigating a possible differentiated response to environmental conditions [40].
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The compounds were typical for Apiaceae, including furocoumarins, prenylated coumarins,
aliphatic Cy7-polyacetylenes and phenylpropanoids, and showed a wide variability. The calculated
concentrations were in the same order of magnitude as reported for other Apiaceae roots, including
edible vegetables. Nevertheless, the compounds may display pronounced bioactivity, as the literature
suggests. However, as the roots did not contain alkaloids, no or only a low toxicity can be assumed for
these plant parts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/8/939/s1,
Table S1: Characteristics of secondary metabolite analysis.
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