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We consider survival data that combine three types of observations: uncensored,
right-censored, and left-censored. Such data arises from screening a medical
condition, in situations where self-detection arises naturally. Our goal is to esti-
mate the failure-time distribution, based on these three observation types. We
propose a novel methodology for distribution estimation using both semipara-
metric and nonparametric techniques. We then evaluate the performance of
these estimators via simulated data. Finally, as a case study, we estimate the
patience of patients who arrive at an emergency department and wait for treat-
ment. Three categories of patients are observed: those who leave the system and
announce it, and thus their patience time is observed; those who get service and
thus their patience time is right-censored by the waiting time; and those who
leave the system without announcing it. For this third category, the patients’
absence is revealed only when they are called to service, which is after they have
already left; formally, their patience time is left-censored. Other applications of
our proposed methodology are discussed.
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1 INTRODUCTION

We study the estimation of failure time distribution where the failure times can be either observed directly, or be
right-censored or left-censored. This type of survival data arises, for example, in estimation of time to the appearance of
a medical condition where characteristic symptoms may or may not appear when the condition exists. Specific medical
settings include relapse in childhood brain tumors, which may be observed due to clinical symptoms, or right-censored
due to periodic screening with negative result (no tumor), or left-censored due to periodic screening with a positive
result.1 Another medical setting is melanoma cancer, which is observed if self-detected, or is right censored due to a neg-
ative screening (no melanoma), or left-censored if it goes undetected until screening. Additional examples can be found
in Whitehead.2

The motivating example for this work comes from estimating customer patience in service system which is a chal-
lenging problem.3 In our study, we focus on patients who wait for treatment in an emergency department (ED). Three

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Statistics in Medicine. 2022;41:3561–3578. wileyonlinelibrary.com/journal/sim 3561

https://orcid.org/0000-0002-4311-0977
http://creativecommons.org/licenses/by/4.0/


3562 YEFENOF et al.

categories of patients are observed. The first category consists of patients who get service and thus their patience
time is right-censored by the waiting time. The second category comprises those who leave the system and announce
it, and thus their patience time is observed while the waiting time is right-censored. The third category consists of
patients who leave the system without announcing it; their absence is hence revealed only when they are called to
service, which is after they have already left; formally, their patience time is left-censored. Note that the data struc-
ture is a special case of interval-censored data.4 Here, interval-censored data is a general data structure which many
popular survival data settings are special cases of, including both right-censored data and left-censored data.5 The spe-
cific setting that is considered here includes both left-censored and right-censored observations as well as complete
observations.

Estimating the patience time is of importance as the decision of patients to leave the system before getting served
might have a strong effect on their physical well-being. There has been considerable research on the reasons why patients
leave an ED before being served.6-9 However, these and other authors have not proposed a model by which ED patience
time—namely the duration that a potential patient is willing to wait for ED service—can be estimated, and this is our
goal here.

We propose novel semiparametric and nonparametric estimators of the unknown survival function for this 3-type
survival data. We then study their rates of convergence. The semiparametric estimator is based on both full and partial
likelihoods. We provide condition under which the semiparametric estimator is a linear asymptotic normal (LAN) esti-
mator and converges to a normal distribution in a root-n rate. The nonparametric estimator is based on nonparametric
kernel estimators for density functions and on a novel estimator of the cumulative probability function that has some sim-
ilarities to the Nelson-Aalen estimator.10 We show that, under some regularity conditions, the nonparametric estimator
point-wise converges to the normal distribution.

We perform a simulation study and compare the proposed semiparametric and nonparametric estimators. For the
semiparametric model, we study both correct and misspecified models and show the different corresponding results.
We show how the accuracy changes with sample size. We then carry out a case study that is based on data of patients
waiting for treatment in an ED, in the U.S. in 2008. We analyzed separately different severity levels (15 106 obser-
vations in the emergency group, 43 600 in the urgent group, and 26 541 in the semi-urgent group). We conclude
with a comparison of the semiparametric and nonparametric estimators for the three different severity levels of this
dataset.

2 BRIEF LITERATURE REVIEW

Developing screening methods for medical conditions, such as breast and melanoma cancers, has a long history.11,12 In
the classical setting, the medical condition either already exists at the time of screening and is thus left-censored, or
does not exist, and is thus right-censored. The setting in which self-detection is possible, and thus the condition time is
observed, has been surprisingly mostly ignored in the literature. For example, Minn et al1 treat both self-detection times
and screening times as event times, ignoring the censoring. The closest model to the one that we present here appears in
Whitehead.2 It is assumed there that the condition can be detected at screening or before screening due to symptoms. In
both cases, the condition already exists at the time of detection. It is also assumed that screenings take place at a sequence
of fixed time points. Whitehead2 recommends to ignore the extra knowledge gained due to self-reporting and to replace
these times with the time of the next screening. The survival function is then estimated only at the discrete fixed screening
times using standard techniques.13

There has been considerable research effort, dedicated to modeling and analysis of customer (im)patience while wait-
ing for service. Here we describe several papers that, together with references therein, provide what is required for a
historical background and state-of-art perspective. First, we recommend the recent literature review9 (Section 3) in Batt
and Terwiesch, accompanied by Gans et al.14 These survey patience-research from an operational/queuing view point
(mainly section 6.3.3 in the latter), while connecting it to the medical literature on patients who are left without being seen
(LWBS) (mainly Section 3 in the former); see also Aksin et al15 who expand on managerial challenges. Next we mention
Mandelbaum and Zeltyn,16 which is an Explanatory Data Analysis of (im)patience in telephone call centers (that appears
in a special issue that is devoted to models of queues abandonment). Finally, and the most related to the present study,
are the following two studies. Brown et al17 applies, in Section 5, the Kaplan-Meier estimator18 to estimate the survival
functions and consequently hazard rates, of both virtual waiting time and impatience; the data is that of a call center,
in which times of abandonment are all recorded hence the data is right-censored. Then Wiler et al,19 which is also the
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source of our present ED data case study, estimate LWBS rates as a function of ED patient arrival rates, treatment times,
and ED boarding times. There was no attempt in that work to estimate the patience-time distribution.

We conclude this brief survey with the observation that the estimation of customer (im)patience is relevant beyond
screening, call centers, and EDs. For example, Nah20 studies tolerance of Web users (during information retrieval).
Yom-Tov et al21 analyzes chat services, in which customers abandon at any phase during chat-exchanges with a service
center: one expects that such services give rise to the same options as in EDs: some customers receive service, others
abandon without letting anyone know, and the rest announce their abandonment time.

3 THE MODEL

In the standard setting of right-censored data one observes, for each patient, either the failure time or the censoring time.
In terms of our motivating example, failure time is patience time while censoring time is the waiting time. Patience time
is observed when patients leave the ED while informing the system of their departure; waiting time is observed when a
patient is called for service. However, unlike in standard right-censored data and like in current status data, there are also
patients who leave without informing; in this case their absence is observed only when they are called for service, and this
latter time provides an upper bound for their patience time. In other words, the (virtual) waiting time is observed, and
the only information on patience time is that it is less than this observed waiting time. Hence, in this case, the patience
time is left-censored.

More formally, let T be the patient’s failure time, that is, the time until the patient loses patience. Let W be the
censoring time, that is, the waiting time until the patient gets (or could have gotten) service. We assume that T has a
cumulative distribution function (cdf) F and a probability density function (pdf) f , and that W has cdf G and pdf g. Let
Δ be the indicator Δ ≡ 1{T < W}; that is, Δ = 1 if the patient loses patience before being called to service, and Δ = 0
otherwise.

Let Y be the indicator that is 1 for a patient who leaves and informs when leaving, and 0 otherwise. Denote by q(t) the
conditional probability that a patient reports leaving given that the waiting time equals to t. In other words, q(t) = pr(Y =
1 |T = t). The assumption that patience time T and waiting time W are independent is common in survival analysis, for
example, when using the Kaplan-Meier estimator.18 Since T and W may be dependent, one can use strata to overcome
this challenge as was done in the case study in Section 7. The announcement indicator Y depends on the time through
the function q(t). In other words, given the patience time T = t, the decision on announcement does not depend on
actual waiting time W . However, due to censoring, the decision on the announcement is observed only when t < W .
Summarizing, we assume that the pair (Y ,T) is independent of the waiting time W . When this assumption does not hold,
different theoretical tools are needed for a valid estimation.

Let U be the recorded time: U ≡ YT + (1 − Y )W . The observed data consist of the triplets (Ui,Yi,Δi), i = 1, … ,n, and
there are three categories of patients:

 = 1: The patient gets service, hence the waiting time is observed, which serves as a lower bound on the patience time;
thus the patience time is right censored. Formally, Δ = 0, Y = 0, and U = W .

 = 2: The patient leaves without being treated and reports departure. The patience time is thus revealed: Y = 1,Δ = 1,
and U = T.

 = 3: The patient leaves without reporting, hence virtual waiting time (the time that the patient would have waited
had he stayed in the ED) is observed, which provides an upper bound for the patience time, thus the patience
time is left-censored. Formally, Y = 0, Δ = 1, and U = W .

A graphical diagram of these categories appears in Figure 1.

Lemma 1. The following equalities hold:

i) pr(U ≤ t, = 1) = ∫ t
0 g(w)F(w)dw.

ii) pr(U ≤ t, = 2) = ∫ t
0 q(w)f (w)G(w)dw.

iii) pr(U ≤ t, = 3) = ∫ t
0 g(w)∫ w

0 {1 − q(x)} f (x)dxdw.

Here, F(t) = 1 − F(t) and G(t) = 1 − G(t) are the survival functions of the patience time and the waiting time,
respectively.
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F I G U R E 1 The three patient categories. Category 1 includes patients that received service. Category 2 includes patients that left
without being seen and announced before leaving. Category 3 includes patients that left without being seen but did not announce leaving

See the proof in Appendix A.1.
For i = 1, 2, 3, we introduce the following sub-stochastic density functions

hi(t) ∶=
d
dt

pr(U ≤ t, = i). (1)

From Lemma 1 above, we deduce that

h1(t) = g(t)F(t), h2(t) = q(t)f (t)G(t), h3(t) = g(t)
∫

t

0
{1 − q(x)} f (x)dx.

Define

r1(t) ≡
h1(t)

pr(W ≤ T)
, r2(t) ≡

h2(t)
pr(Y = 1,W > T)

, r3(t) ≡
h3(t)

pr(Y = 0,W > T)
. (2)

Then ri is the density function of the observed time U given  = i. Our model assumes that all denominators are positive.
To summarize, what is known and what is to be estimated, there are two unknown distributions in our setting, G and

F, and we aim to estimate them using both semiparametric and nonparametric techniques. For each patient, the waiting
time is either observed or right censored. If the patient reports and then leaves, the waiting time is longer than the observed
patience time. Hence, the waiting time is right-censored. Therefore, semiparametric and nonparametric estimation for
the distribution of waiting time W can be done by standard techniques for right-censored data. However, estimation of
the distribution of patience time T, is more complicated and is discussed in Sections 4 and 5.

4 SEMIPARAMETRIC ESTIMATION

Assume now that the distributions of both the patience time and the waiting time belong to some parametric families.
More formally, let = {f (⋅; 𝜃), 𝜃 ∈ Θ}whereΘ ⊆ Rd, = {g(⋅; 𝛾), 𝛾 ∈ Γ}whereΓ ⊆ Rp. We assume that the density of the
patience time can be written as f (t; 𝜃0) ∈  . We also assume that the density of the waiting time can be written as g(t; 𝛾0) ∈
. Write h1(t; 𝜃, 𝛾) ≡ g(t; 𝛾)F(t; 𝜃), and similarly h2(t; 𝜃, 𝛾) ≡ q(t)f (t; 𝜃)G(t; 𝛾) and h3(t; 𝜃, 𝛾) ≡ g(t; 𝛾)∫ t

0 {1 − q(x)} f (x; 𝜃)dx.
The likelihood of the observed data D = {(Ui,Yi,Δi), i = 1, … ,n} can be written in terms of the functions h1, h2, and

h3, as follows:

L(D; 𝜃, 𝛾) =
n∏

i=1
{h1(Ui; 𝜃, 𝛾)}1−Δi {h2(Ui; 𝜃, 𝛾)} ΔiYi {h3(Ui; 𝜃, 𝛾)} Δi(1−Yi).
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Using the explicit representations of h1, h2, h3, we obtain that L(D; 𝜃, 𝛾) is given by

n∏

i=1

({

g(Ui; 𝛾)F(Ui; 𝜃)
}

1−Δi

{

q(Ui)f (Ui; 𝜃)G(Ui; 𝛾)
}
ΔiYi

×
[

g(Ui; 𝛾)
∫

Ui

0
{1 − q(s)} f (s; 𝜃)ds

]Δi(1−Yi)
)

.

The value of 𝛾 that maximizes this likelihood is independent of 𝜃. Therefore, a maximum likelihood estimator (MLE) �̂�n
to 𝛾0 can be constructed from this likelihood.

Maximizing the likelihood with respect to 𝜃 is difficult. Even if 𝛾0 is given or estimated, the maximizer of 𝜃
depends on the unknown function q(t). To address this challenge, we propose using a partial likelihood approach22

which avoids the need to estimate q(t). The partial likelihood that we use here is the likelihood calculated only for
a specific category while ignoring the data for the other categories. In Theorem 1 below we show that, under stan-
dard regularity conditions, the maximizer of the partial likelihood is a consistent and asymptotically normal estimator
for 𝜃0.

We consider the partial likelihood Lpartial(D; 𝜃; 𝛾) of category  = 1,

n∏

i=1

{
g(Ui; 𝛾)F(Ui; 𝜃)
∫
∞

0 g(s; 𝛾)F(s; 𝜃)ds

}1−Δi

.

The value of 𝜃 that maximizes this partial likelihood depends on 𝛾 . We plug the MLE �̂�n into this partial likelihood.
Clearly, the resulting estimator for 𝜃 does not depend on the function q(t) and thus no estimation of q(t) is needed. Finding
an estimator for the announcement probability function q(t) is an interesting and challenging research question that is
beyond the scope of this article.

We need the following assumptions:

(A1) The derivative 𝜕

𝜕𝜃
f (t; 𝜃) is continuous in t for each 𝜃 ∈ Θ, 𝜕

𝜕𝛾
g(t; 𝛾) is continuous in t for each 𝛾 ∈ Γ.

(A2) For all 𝜃 ∈ Θ, arg max𝛾∈Γ L(D; 𝜃, 𝛾) is unique, hence denote
�̂�(𝜃) ≡ arg max𝛾∈Γ L(D; 𝜃, 𝛾). It is assumed as well that for each 𝜃 ∈ Θ, 𝜕

𝜕𝛾
L
{

D; 𝜃, �̂�(𝜃)
}
= 0.

(A3) For all 𝛾 ∈ Γ, arg max𝜃∈Θ Lpartial(D; 𝜃, 𝛾) is unique, hence denote
𝜃(𝛾) ≡ arg max𝜃∈Θ Lpartial(D; 𝜃, 𝛾). It is assumed as well that for each 𝛾 ∈ Γ, 𝜕

𝜕𝜃
Lpartial

{

D; 𝜃(𝛾), 𝛾
}

= 0.

Theorem 1. Let �̂�n be the maximizer of L(D; 𝜃; 𝛾) and let 𝜃n be the maximizer of Lpartial(D; 𝜃; �̂�n). Then, as n → ∞,

i) �̂�n → 𝛾0 in probability.
ii)

√
n
(
�̂�n − 𝛾0

)
→ N

(
0,V𝛾0

)
in distribution.

iii) 𝜃n → 𝜃0 in probability.
iv)

√
n
(

𝜃n − 𝜃0

)

→ N
(
0, S𝜃0,𝛾0

)
in distribution.

Here V𝛾0 , S𝜃0 , 𝛾0 are covariance matrices as defined in Appendix A.1.
The proof appears in Appendix A.1.

Example 1. Assume that T follows an exponential distribution with rate 𝜃 and W follows an exponential distribution
with rate 𝛾 . Then

�̂�n =
n − Σn

i=1ΔiYi

Σn
i=1Ui

𝜃n =
Σn

i=1(1 − Δi)
Σn

i=1Ui(1 − Δi)
− �̂�n =

Σn
i=1(1 − Δi)

Σn
i=1Ui(1 − Δi)

−
n − Σn

i=1ΔiYi

Σn
i=1Ui

.

The details of the computation appears in Appendix A.5.
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5 NONPARAMETRIC ESTIMATION

In this section we propose nonparametric estimators for the survival function of the patience time F and study its theo-
retical properties. For simplicity, we restrict the estimation to an interval [0, 𝜏] for some 𝜏 > 0, such that the probability of
W and T being larger than 𝜏 is positive. This is a standard condition in survival estimation23 (chapter 4.2). Note that for
observations of Categories 1 and 3, the waiting-time is observed. For Category 2, only a lower bound of the waiting time
is observed. Hence, the waiting time is either observed or right-censored. Therefore, estimating the waiting time distribu-
tion can be done by using standard survival analysis estimators such as the Kaplan-Meyer estimator. On the other hand,
estimating the distribution of the patience time is more challenging since we cannot distinguish between the density
function f and the unknown function q. Our goal is thus to estimate the distribution of the patience time F.

Assume that over all positive numbers, the waiting time density function g is strictly positive. Recall that h1(t) =
g(t)F(t), h3(t) = g(t)∫ t

0 {1 − q(s)} f (s)ds, where the functions h1, h3 are defined as in (1). Therefore,

h1(t)
h3(t)

= F(t)
F(t) − ∫ t

0 q(s)f (s)ds
. (3)

which is well defined as g(t) > 0. Reordering the terms in (3), we get that

{

F(t) −
∫

t

0
q(s)f (s)ds

}
h1(t)
h3(t)

= 1 − F(t).

Hence,

F(t) =
h3(t) + h1(t)∫

t
0 q(s)f (s)ds

h3(t) + h1(t)
.

From the definitions in (2), it follows that

F(t) =
pr(Y = 0,T < W)r3(t) + pr(W ≤ T)r1(t)∫

t
0 q(s)f (s)ds

pr(Y = 0,T < W)r3(t) + pr(W ≤ T)r1(t)
. (4)

Therefore, we propose to estimate F(t) by estimating the following terms:

(i) pr(W ≤ T) and pr(Y = 0,T < W),
(ii) r1(t) and r3(t),

(iii) A(t) ≡ ∫ t
0 q(s)f (s)ds.

Estimating the expression in (i) can be done by the empirical estimators: p̂r(T ≤ W) = n−1Σn
i=1(1 − Δi), p̂r(Y = 0,

W < T) = n−1Σn
i=1Δi(1 − Yi). These estimators converge, by the central limit theorem (CLT), to pr(W ≤ T) and pr(Y = 0,

T < W), respectively, at the rate of n1∕2.
Since r1 and r3 are density functions, they can be estimated using a kernel estimator24 (chapter 1.2). Let r̂1 and r̂3 be

kernel estimators of r1 and r3, respectively. Assume that both r1 and r3 belong to a Sobolev function class of order 𝛽. Then
for each t > 0, both r̂1(t) and r̂3(t) converge at a rate of n𝛽∕(2𝛽+1). Here, the parameter 𝛽 ≥ 1 is an integer that represents
the smoothness of a function. Specifically, if 𝛽 > k for some integer k, then the function is at least k-time differentiable.24

We now turn to estimate the term A(t) = ∫ t
0 q(s)f (s)ds. A nonparametric estimator that we created for this term is

defined and proven to be consistent in the following lemma.

Lemma 2. Let

N̂n(t) ≡
1
n

n∑

i=1
YiΔi1{Ui ≤ t}, Ŷn(t) ≡

1
n

n∑

i=1
1{Ui ≥ t}.

Define D̂n(t) ≡ ∫
t

0
dN̂n(s)
Ŷn(s)

. Then Â(t) ≡ 1 − exp
{

−D̂n(t)
}

converges pointwise to A(t), at a rate of n1∕2, for every t ∈ [0, 𝜏].
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The proof is given in Appendix A.3.
By plugging in the estimators

p̂r(Y = 0,W < T), p̂r(T ≤ W), r̂3(t), r̂1(t), Â(t),

to the equation in (4), we get that

F̂n(t) =
p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)Â(t)

p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)
, (5)

is an estimator of F(t).

Theorem 2. The estimator F̂n(t) converges pointwise to F(t) at a rate of n𝛽∕(2𝛽+1), for every t ∈ [0, 𝜏].

The proof appears in Appendix A.4. Since that F̂n is based on density estimation, it is not necessarily monotonic, we
therefore replace it with a monotonic approximation. The monotonic approximation is by taking the cumulative sup.

6 SIMULATIONS

We study the performance of both the semiparametric and nonparametric estimators that were proposed in Sections 4
and 5, respectively. Based on the setting of the case study discussed in Section 7, we consider two simulation settings.
In the case study, both the exponential and Weibull distributions seem to fit well the waiting time and patience time
distributions, respectively. Thus, we chose parameters based on the fit for the urgent level, which is the middle severity
level.

Specifically, the two simulation settings consist of samples from exponential and Weibull distributions in which the
waiting time has a smaller mean then the patience time mean, as was observed in the case study. In the first setting,
following the data from the case study, a sample was taken from the model in which the patience time T follows an expo-
nential distribution with expectation of 16 h, and the waiting time W follows an exponential distribution with expectation
of 2 h. In the second setting a sample was taken from a model in which the patience time T follows a Weibull distribu-
tion with scale 16 and shape 1.5, which closely related to the observed data; and where the waiting time W follows an
exponential distribution with expectation of 2 h as before. In both settings, the unknown probability of announcement
is q(t) = exp(−t). Taking the probability of announcement to be the increasing function q(t) = 1 − exp(−t) or the con-
stant function q(t) = 0.5 yields similar results which are omitted. Moreover, we experimented with additional numerical
values. The behavior and conclusions, as reported here, remain consistent across these experiments.

In each setting, we calculated the semiparametric estimator for the scale of T for five different sample sizes (N =
100,200, 500, 1000, 2000). For each sample size, we repeated the simulation 100 times. When using the semiparametric
method, it was assumed that both T and W follow an exponential distribution with unknown parameters. Note that this
assumption holds for the first setting but does not hold for the second one. In other words, the second setting is carried
out under a misspecified model. The results are shown in Figure 2.

We compare ̂Fn, the estimator of the survival function of T, to the true survival function F0. For the semiparametric
estimation, ̂Fn(t) = exp(−�̂�t), while for the nonparametric estimator ̂Fn(t) is given by (A.4). The comparison is done using
mean square error (MSE), which is defined by

MSE( ̂Fn,F0) ≡
∫

∞

−∞

{
̂Fn(t) − F0(t)

}2
f0(t)dt ,

where f0 is the density of T. The semiparametric and nonparametric survival function estimators are demonstrated in
Figures 3 and 4. Figure 3 represents the results of the first setting in which T follows an exponential distribution with
scale 13 and W follows an exponential distribution with scale 2. Figure 4 represents the results of the second setting in
which T follows a Weibull distribution with scale 13 and shape 1.5, and W follows an exponential distribution with scale
2. Summaries of the MSE are given in Table 1. Not surprisingly, for Setting 1, since the semiparametric model is correct,
the MSE is smaller for the semiparametric estimator. Similarly, since in Setting 2 the semiparametric model is incorrect,
the MSE is smaller for the nonparametric estimator.
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F I G U R E 2 The difference between the semiparametric estimator of 𝜃0 and 𝜃0. Setting 1: The patience time T follows an exponential
distribution with expectation of 16 h and the waiting time W follows and exponential distribution with expectation of 2 h. Setting 2: The
patience time T follows a Weibull distribution with scale 16 and shape 1.5 while the waiting time W follows an exponential distribution with
expectation of 2 h

F I G U R E 3 Setting 1. The blue, red, and black curves represent the nonparametric, semiparametric, and true survival functions,
respectively, for N = 100,200, 500, and 1000

7 CASE STUDY

As leaving without being seen by a physician may have a strong effect on patient well-being and satisfaction, estimating
the time that patients are willing to wait in the ED is an important and challenging question.19,25 While there has been
considerable research in this field,6-9 due to the special structure of the data, the duration that a potential patient is willing
to wait for ED service has not been thoroughly investigated.

We analyze data from all patient presentations to triage at an urban, academic, adult-only ED with visits in calendar
year 2008. This data was used for the analysis in Wiler et al.19 The data consist of the waiting time of patients arriving
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F I G U R E 4 Second setting. The blue, red, and black curves represent the nonparametric, semiparametric, and true survival functions,
respectively

T A B L E 1 MSE for Settings 1 and 2

Setting 1: Exponential Setting 2: Weibull

Semiparametric Nonparametric Semiparametric Nonparametric

N Mean Median Std Mean Median Std Mean Median Std Mean Median Std

100 1.014 0.432 1.44 1.428 0.804 1.812 0.474 0.228 0.618 0.216 0.114 0.264

200 0.51 0.21 0.828 1.062 0.672 1.11 0.414 0.252 0.492 0.072 0.036 0.12

500 0.162 0.084 0.198 0.462 0.288 0.474 0.378 0.294 0.288 0.03 0.018 0.03

1000 0.078 0.042 0.102 0.246 0.186 0.186 0.342 0.312 0.204 0.018 0.012 0.018

2000 0.054 0.03 0.066 0.168 0.132 0.12 0.348 0.318 0.132 0.012 0.0006 0.012

Note: The table summarizes the MSE that was calculated (100 times) for each of the sample sizes. For Setting 1, the patience time T follows an exponential
distribution with expectation of 16 h and the waiting time W follows an exponential distribution with expectation of 2 h. In Setting 2 the patience time T
follows a Weibull distribution with scale 16 and shape 1.5, while the waiting time W follows an exponential distribution with expectation of 2 h. The estimates
are given in minutes. As can be seen the nonparametric estimator responded with a lower MSE.

at the emergency room stratified by acuity levels. We focused on the three main levels of acuity: emergency, urgent, and
semi-urgent. For each acuity level, we categorized each visit into one of the three categories: received service, left without
being seen and announced, and left without being seen and did not announce. We considered only patients that were not
served upon arrival, or left without waiting at all. The characteristics of the dataset appear in Table 2. As can be seen, they
are considerably fewer emergency visits and only 1.2% of these left without being seen. In comparison, in the urgent and
semi-urgent acuity levels, about 10% left without being seen. The distribution of the observed times for each acuity levels,
stratified by the patient’s category, appears in Figure 5. Overall, the distribution of the three categories is similar in each
acuity level.

We analyzed the data using the semiparametric and nonparametric estimators for the distribution of the patience
time proposed in Sections 4 and 5. Since our model assumes that all patients follow the same distribution, we calculated
the estimators for each level of acuity separately. The data consist of the triple variables (Ui,Δi,Yi) described in Section 3
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T A B L E 2 The characteristics of the different visits stratified by acuity level

Emergency Urgent Semi-urgent

n 8579 36 249 26 036

Category (%)

Service 8478 (98.8%) 32 607 (90.0%) 23 788 (91.4%)

LWBS & announcement 69 (0.8%) 1908 (5.3%) 1019 (3.9%)

LWBS & no announcement 32 (0.4%) 1734 (4.8%) 1229 (4.7)%

Mean observed time (SD) 25.11 (24.26) 111.73 (108.21) 82.18 (72.92)

F I G U R E 5 The distribution of the observed time stratified by acuity levels and category

F I G U R E 6 Compression of the nonparametric and semiparametric estimators for the survival of the patience time by different levels
of acuity



YEFENOF et al. 3571

F I G U R E 7 Compression of the estimator for the survival function of the patience time at the three different levels of severity

such that each observation is categorized to one of the three possible categories. The results of these estimators are given
in Figures 6 and 7. As can be seen from Figure 6, the results of the semiparametric and nonparametric estimators agree,
which suggests that modeling the patience time using the exponential distribution is reasonable. Figure 7 shows that the
patience times are stochastically ordered by levels of acuity. In other words, patients at the severe acuity level are less
probable to lose patience than patients at the urgent level, who in turn are less prone to lose patience than patients at the
semi-urgent level, as expected.

8 DISCUSSION

In this article, we consider survival data that combine observed, right-censored, and left-censored data. The setting we
analyzed was that of patients who wait for treatment in an ED, where some patients may leave without being seen. We
proposed both semiparametric and nonparametric estimators for the distribution of the patience time.

Using simulation, we showed that when the semiparametric model holds, the semiparametric estimator estimates
the patience time well. However, when the model is misspecified, the nonparametric estimator behaves better. While in
our case study, both estimators behave similarly, it is of importance to further investigate when each of these estimators
is preferable. So far, no baseline covariates were given. Novel semiparametric and nonparametric estimators are needed
for addressing settings that include baseline covariates.
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APPENDIX . PROOFS

A.1 Proof of Lemma 1

pr(U ≤ t, = 1) = pr(U ≤ t,W ≤ T)
= pr(W ≤ t,W ≤ T)

=
∫

t

0
pr(W ≤ T|W = s)g(s)ds

=
∫

t

0
pr(s ≤ T)g(s)ds

=
∫

t

0
g(s)F(s)ds,

where in the fourth equality we use the independence between W and (Y ,T).
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This establishes (i). For (ii), we have

pr(U ≤ t, = 2) = pr(U ≤ t,Y = 1,T < W)
= pr(T ≤ t,Y = 1,T < W)

=
∫

t

0
pr(s < W |Y = 1,T = s)q(s)f (s)ds

=
∫

t

0
pr(s < W)q(s)f (s)ds

=
∫

t

0
q(s)f (s)G(s)ds,

where in the fourth equality we use the independence between W and (Y ,T).
Finally, for (iii),

P(U ≤ t, = 3) = pr(U ≤ t,Y = 0,T < W)
= pr(W ≤ t,Y = 0,T < W)

=
∫

t

0
pr(Y = 0,T < s|W = s)g(s)ds

=
∫

t

0
g(s)pr(Y = 0,T < s)ds

=
∫

t

0
g(s)
∫

s

0
pr(Y = 0 |T = x)f (x)dxds

=
∫

t

0
g(s)
∫

s

0
{1 − q(x)} f (x)dxds,

where in the fourth equality we use the independence between W and (Y ,T).

A.2 Proof of Theorem 1
The log of the full likelihood is

ł(D; 𝜃, 𝛾) =
n∑

i=1

[

(1 − Δi)
(

log g(Ui; 𝛾) + log F(Ui; 𝜃)
)

+ ΔiYi

(

log q(Ui) + log f (Ui; 𝜃) + log G(Ui; 𝛾)
)

+Δi(1 − Yi)
{

log g(Ui; 𝛾) + log
∫

Ui

0
(1 − q(s))f (s; 𝜃)ds

}]

.

Given the data D,

1
n

l(D; 𝜃, 𝛾) = Pn
{

m𝛾 (U,Δ,Y ) + c(U,Δ,Y ; 𝜃)
}
≡

1
n

n∑

i=1

{
m𝛾 (Ui,Δi,Yi) + c(Ui,Δi,Yi; 𝜃)

}
, (A1)

where m𝛾 ∶ R+ × {0, 1}2 → R is defined by

m𝛾 (u, 𝛿, y) ≡ (1 − 𝛿) log g(u; 𝛾) + Δy log G(u; 𝛾) + 𝛿(1 − y) log g(u; 𝛾),

and

c(u, 𝛿, y; 𝜃) ≡ (1 − 𝛿) log F(u; 𝜃)

+ 𝛿y
(
log q(u) + log f (u; 𝜃)

)
+ 𝛿(1 − y) log

∫

u

0
{1 − q(s)} f (s; 𝜃)ds.
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From Assumption A1 we obtain that, for each 𝜃 ∈ Θ, arg max𝛾∈Γ l(D; 𝛾, 𝜃) = arg max𝛾∈Γ Pn(m𝛾 ). The 𝛾 that maximizes
L(D; 𝜃, 𝛾) does not depend on the value of 𝜃 or the function p. Define Mn(𝛾) ≡ Pnm𝛾 and M(𝛾) ≡ Pm𝛾 . If, for a general
function h, Ph ≡ ∫ h(x)dP(x) and Pnh ≡ n−1∑n

i=1h(Xi) then by Assumptions A1–A3, theorem 5.7 in van der Vaart26 can
be applied. Therefore �̂�n → 𝛾0, in probability, which concludes the proof of (i).

Given the data D, the term 𝜕l(D;𝜃,𝛾)
𝜕𝛾

is a function of 𝛾 and does not depend on the unknown function p. We also have

1
n
𝜕l(D; 𝜃, 𝛾)

𝜕𝛾

= Pn𝜓𝛾 (U,Δ,Y ) ≡
1
n

n∑

i=1
𝜓𝛾 (Ui,Δi,Yi),

where 𝜓𝛾 ∶ R+ × {0, 1}2 → R is defined as

𝜓𝛾 (u, 𝛿, y) ≡ (1 − 𝛿)
𝜕

𝜕𝛾
g(u; 𝛾)

g(u; 𝛾)
− 𝛿y

𝜕

𝜕𝛾
G(u; 𝛾)

G(u; 𝛾)
+ 𝛿(1 − y)

𝜕

𝜕𝛾
g(u; 𝛾)

g(u; 𝛾)
.

By Assumptions A1–A3, 𝜓𝛾 satisfies the conditions of theorem 5.41 in van der Vaart26 and, therefore,

√
n(�̂�n − 𝛾0) = −(P�̇�𝛾0

)−1 1
√

n

n∑

i=1
𝜓𝛾0(Ui,Δi,Yi) + op(1),

where �̇�
𝛾
(x) = 𝜕

𝜕𝛾
𝜓𝛾 (x). Hence �̂�n is a linear asymptotically normal (LAN) estimator with influence function 𝜑 ≡

−(P�̇�
𝛾0
)−1
𝜓𝛾0 . From all of the above we get that (ii) is proved with V𝛾0 = (P�̇�𝛾0

)−1P𝜓𝛾0𝜓
t
𝛾0
(P�̇�

𝛾0
)−1.

To prove (iii), note that due to the term log ∫ Ui
0 (1 − q(s))f (s; 𝜃)ds that appears in l(D; 𝜃, 𝛾), the term 𝜕l(D;𝜃,𝛾)

𝜕𝜃
depends

on the unknown function p. We therefore consider a partial likelihood function such that its derivative with respect to 𝜃
does not depend on p. The partial likelihood that satisfies this request is the partial likelihood of  = 1:

n∏

i=1

{
g(Ui; 𝛾)F(Ui; 𝜃)
∫
∞

0 g(s; 𝛾)F(s; 𝜃)ds

}

1−Δi .

The log of the partial likelihood is

łpartial(D; 𝜃, 𝛾) =
n∑

i=1
(1 − Δi)

{

log g(Ui; 𝛾) + log F(Ui; 𝜃) − log
∫

∞

0
g(s; 𝛾)F(s; 𝜃)ds

}

.

Given the data D, the term lpartial(D; 𝜃, 𝛾) is a function only of the parameters 𝜃 and 𝛾 . We also have

1
n

lpartial(D; 𝜃, 𝛾) = Pnr𝜃,𝛾 (U,Δ,Y ) ≡
1
n

n∑

i=1
r𝜃,𝛾 (Ui,Δi,Yi),

where r𝜃,𝛾 ∶ R+ × {0, 1}2 → R is given by

r𝜃,𝛾 (U,Δ,Y ) ≡ (1 − Δ)
{

log g(U; 𝛾) + log F(U; 𝜃) − log
∫

∞

0
g(s; 𝛾)F(s; 𝜃)ds

}

.

Define Mn(𝜃, 𝛾) ≡ Pnr𝜃,𝛾 , and M(𝜃, 𝛾) ≡ Pr𝜃,𝛾 . Then, theorem 5.7 in van der Vaart26 can be applied. Therefore
(

𝜃n, �̂�n

)

→

(𝜃0, 𝛾0) in probability, and in particular 𝜃n → 𝜃0 in probability, and (iii) is proven.
In order to prove (iv), note that

1
n
𝜕lpartial(D; 𝜃, 𝛾)

𝜕𝛾

= Pn𝜙𝜃,𝛾 (U,Δ,Y ) ≡
1
n

n∑

i=1
𝜙𝜃,𝛾 (Ui,Δi,Yi),
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where 𝜙𝜃,𝛾 ∶ R+ × {0, 1}2 → R is defined as

𝜙𝜃,𝛾 (u, 𝛿, y) ≡ (1 − 𝛿)

{
𝜕

𝜕𝜃
F(u; 𝜃)

F(u; 𝜃)
−

𝜕

𝜕𝜃
∫
∞

0 g(s; 𝛾)F(s; 𝜃)ds

∫
∞

0 g(s; 𝛾)F(s; 𝜃)ds

}

.

Using Assumptions A1–A3, together from theorem 5.41 in van der Vaart,26 we obtain that

√
n(�̂�n − 𝛾0) =

1
√

n

n∑

i=1

{
−(P�̇�

𝛾0
)−1
𝜓𝛾0(Ui,Δi,Yi)

}
+ op(1).

Define Φn(𝜃, 𝛾) ≡ Pn𝜙𝜃,𝛾 and note that Φ(𝜃0, 𝛾0) ≡ P𝜙𝜃0,𝛾0 = 0 (since under the true parameters P𝜙𝜃0,𝛾0 =
𝜕

𝜕𝜃
∫ dh0

= 𝜕

𝜕𝜃
1 = 0, where dh0 is the true distribution of category 1).

By Taylor’s theorem,

0 = Φn(𝜃n, �̂�n) = Φn(𝜃0, 𝛾0) +
{
𝜕

𝜕𝜃

Φn(𝜃0, 𝛾0)
}T
(𝜃n − 𝜃0) +

{
𝜕

𝜕𝜙

Φn(𝜃0, 𝛾0)
}T

(�̂�n − 𝛾0) + op
(

n−1∕2)

⇒0 =
√

nΦn(𝜃0, 𝛾0) +
{
𝜕

𝜕𝜃

Φn(𝜃0, 𝛾0)
}T√

n
(

𝜃n − 𝜃0

)

+
{
𝜕

𝜕𝛾

Φn(𝜃0, 𝛾0)
}T√

n
{
�̂�n − 𝛾0

}
+ op(1).

=
√

nΦn(𝜃0, 𝛾0) +
{
𝜕

𝜕𝜃

Φn(𝜃0, 𝛾0)
}T√

n
(

𝜃n − 𝜃0

)

−
{
𝜕

𝜕𝛾

Φn(𝜃0, 𝛾0)
}T

(P�̇�
𝛾0
)−1 1

√
n

n∑

i=1
𝜓𝛾0(Ui,Δi,Yi) + op(1)

= 1
√

n

n∑

i=1

[

𝜙𝜃0,𝛾0(Ui,Δi,Yi) −
{
𝜕

𝜕𝛾

Φn(𝜃0, 𝛾0)
}T

(P�̇�
𝛾0
)−1
𝜓𝛾0(Ui,Δi,Yi)

]

+
{
𝜕

𝜕𝜃

Φn(𝜃0, 𝛾0)
}T√

n(𝜃n − 𝜃0) + op(1).

Elementary arithmetic leads to

√
n
(

𝜃n − 𝜃0

)

= −
(

EET)−1 1
√

n

n∑

i=1

{
𝜙𝜃0,𝛾0 (Ui,Δi,Yi) − BT(P�̇�

𝛾0
)−1
𝜓𝛾0(Ui,Δi,Yi)

}
+ op(1),

where B ≡ 𝜕

𝜕𝛾
Φ(𝜃0, 𝛾0), and E ≡ 𝜕

𝜕𝜃
Φ(𝜃0, 𝛾0). Hence, 𝜃n is a LAN estimator with the influence function

𝜑 = −
(

EET)−1 1
√

n

{
𝜙𝜃0,𝛾0 − BT(P�̇�

𝛾0
)−1
𝜓𝛾0

}
.

Summarizing,
√

n(𝜃n − 𝜃0) → N(0, S𝜃0,𝛾0) in distribution, where S𝜃0,𝛾0 = P𝜑𝜑T , hence, (iv) is proven.

A.3 Proof of Lemma 2
Proof. We use similar arguments to those in the proof of the convergence of the Nelson-Aalen estimator to a cumulative
hazard function, see Kosorok,23 page 240. Hence we have that

√
n

{
N̂n(t) − N(t)
Ŷn(t) − Y (t)

}

= Op(1),

where N(t) = pr(Y = 1,T ≤ W ,T ≤ t) and Y (t) = pr(U ≥ t).
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Since, by Section 3,

{U > t} = {Y = 0,W > t} ∪ {Y = 1,W > t,T > t}.

Hence,

pr(U > t) = pr(Y = 0,W > t) + pr(Y = 1,W > t,T > t)
= pr(W > t) {pr(Y = 0) + pr(Y = 1,T > t)}
= pr(W > t) (pr(Y = 0) + pr(Y = 1) − pr(Y = 1,T ≤ t))
= pr(W > t) {1 − pr(Y = 1,T ≤ t)}

= G(t)
{

1 −
∫

t

0
q(s)f (s)ds

}

,

where in the second equality we use the independence between W and (Y ,T).
By Lemma 1

pr(Y = 1,T ≤ W ,T ≤ t) =
∫

t

0
q(s)f (s)G(s)ds.

Using the continuity of the derivative operator and of the integral operator, we get that

D̂n(t) →
∫

t

0

q(s)f (s)G(s)

G(s)
{

1 − ∫ s
0 q(x)f (x)ds

}ds,

in probability.
Note that

∫

t

0

G(s)q(s)f (s)

G(s)
{

1 − ∫ s
0 q(x)f (x)dx

}ds =
∫

t

0

q(s)f (s)
{

1 − ∫ s
0 q(x)f (x)dx

}ds

= −
∫

t

0

𝜕

𝜕s
log

{

1 −
∫

s

0
q(x)f (x)dx

}

ds = − log
{

1 −
∫

t

0
q(s)f (s)ds

}

.

Hence, by the delta method, see Kosorok23 chapter 12.2.2.2, we get that

D̂n(t) → − log
{

1 −
∫

t

0
q(s)f (s)ds

}

,

in probability, with convergence at rate n1∕2.
Since y = − log(1 − x) ⇔ x = 1 − exp(−y) and by the continuous mapping theorem, see theorem 7.7 of Kosorok,23 we

get that Â(t) = 1 − exp(−D̂n(t)) is an estimator of ∫ t
0 q(s)f (s)ds, at the rate of n1∕2 as desired. ▪

A.4 Proof of Theorem 2
For the proof of Theorem 2, we need the following lemma, which is elementary hence stated without proof.
Lemma 3. Let (an)∞n=1, (bn)∞n=1 be positive sequences. If Xn − X = Op(an) and

Yn − Y = Op(bn), as well as P(|X| > l) = 1 for some l > 0. Then we have:

1. Xn + Yn − (X + Y ) = Op(an ∨ bn),
2. XnYn − XY = Op(an ∨ bn),
3. 1

Xn
− 1

X
= Op(an).

Proof of Theorem 2. Recall that

F̂n(t) =
p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)Â(t)

p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)
,

is an estimator of F(t).
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For all t > 0,

p̂r(Y = 0,W < T) − pr(Y = 0,W < T) = Op(n−1∕2) ,

and

p̂r(T ≤ W) − pr(T ≤ W) = Op(n−1∕2) ,

as both are empirical distribution estimators. By chapter 1.7 of Tsybakov,24 for all t > 0, r̂j(t) − rj(t) = Op(n−𝛽∕(2𝛽+1)), for
j = 1, 3. By Lemma 2, Â(t) − A(t) = Op(n−1∕2).

By Lemma 3.ii

p̂r(Y = 0,W < T)̂r3(t) − pr(Y = 0,W < T)̂r3(t) = Op(n−𝛽∕(2𝛽+1)) ,

and

p̂r(T ≤ W )̂r1(t)Â(t) − pr(T ≤ W )̂r1(t)A(t) = Op(n−𝛽∕(2𝛽+1)) .

Therefore, by Lemma 3.i,

p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)Â(t) − pr(Y = 0,W < T)r3(t) − pr(T ≤ W)r1(t)A(t)
= Op(n−𝛽∕(2𝛽+1)) .

Similarly,

p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t) − pr(Y = 0,W < T)r3(t) − pr(T ≤ W)r1(t)
= Op(n−𝛽∕(2𝛽+1)).

By Lemma 3.iii,

1
p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)

− 1
pr(Y = 0,W < T)r3(t) + pr(T ≤ W)r1(t)

= Op(n−𝛽∕(2𝛽+1)).

By Lemma 3.i again,

p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)Â(t)
p̂r(Y = 0,W < T)̂r3(t) + p̂r(T ≤ W )̂r1(t)

−
pr(Y = 0,W < T)r3(t) + pr(T ≤ W)r1(t)A(t)

pr(Y = 0,W < T)r3(t) + pr(T ≤ W)r1(t)
= Op(n−𝛽∕(2𝛽+1)).

In other words, F̂n(t) − F(t) = Op(n−𝛽∕(2𝛽+1)), which complete the proof of Theorem 2. ▪

A.5 Details on Example 1
Assuming that T follows an exponential distribution with rate 𝜃 and W follows an exponential distribution with rate
gamma then the likelihood L(D; 𝜃, 𝛾) is

n∏

i=1

(

{𝛾 exp(−𝛾Ui) exp(−𝜃Ui)} 1−Δi {q(Ui)𝜃 exp(−𝜃Ui) exp(−𝛾Ui)} ΔiYi

×
[

𝛾 exp(−𝛾Ui)
∫

Ui

0
{1 − q(s)} 𝜃 exp(−𝜃s)

]Δi(1−Yi))

.
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Hence,

log L(D; 𝜃, 𝛾)

=
n∑

i=1
(1 − Δi)(log 𝛾 − 𝛾Ui) +

n∑

i=1
ΔiYi(−𝛾Ui) +

n∑

i=1
Δi(1 − Yi)(log 𝛾 − 𝛾Ui) + C(U1,U2, ...,Un; 𝜃)

=

(

n −
n∑

i=1
ΔiYi

)

log 𝛾 − 𝛾
n∑

i=1
Ui + C(U1,U2, ...,Un; 𝜃).

Therefore,

𝜕 log L(D; 𝜃, 𝛾)
𝜕𝛾

=
n −

∑n
i=1ΔiYi

𝛾

−
n∑

i=1
Ui,

and hence, the value of 𝛾 which maximize L(D; 𝜃, 𝛾) is �̂�n =
n−

∑n
i=1ΔiYi

∑n
i=1Ui

.
The partial likelihood Lpartial(D; 𝜃; 𝛾) of category  = 1,

n∏

i=1

{
g(Ui; 𝛾)F(Ui; 𝜃)
∫
∞

0 g(s; 𝛾)F(s; 𝜃)ds

}1−Δi

=
n∏

i=1

{
𝛾 exp(−𝛾Ui) exp(−𝜃Ui)
∫
∞

0 𝛾 exp(−𝛾s) exp(−𝜃s)ds

}1−Δi

=
n∏

i=1

{
𝛾 exp (−Ui(𝛾 + 𝜃))

∫
∞

0 𝛾 exp (−s(𝛾 + 𝜃)) ds

}1−Δi

=
n∏

i=1

{
𝛾 exp (−Ui(𝛾 + 𝜃))

𝛾

𝛾+𝜃

}1−Δi

=
n∏

i=1
[(𝛾 + 𝜃) exp (−Ui(𝛾 + 𝜃))]1−Δi .

Hence,

log Lpartial(D; 𝜃; 𝛾) =
n∑

i=1
(1 − Δi)

(
log(𝛾 + 𝜃) − Ui(𝛾 + 𝜃)

)
.

Therefore,

𝜕 log Lpartial(D; 𝜃, 𝛾)
𝜕𝜃

=
n∑

i=1
(1 − Δi)

(
1

𝛾 + 𝜃
− Ui

)

.

The semiparametric estimator for 𝜃 is the maximizer of Lpartial(D; 𝜃, �̂�n) by 𝜃 which is

𝜃n =
∑n

i=1(1 − Δi)
∑n

i=1Ui(1 − Δi)
− �̂�n =

∑n
i=1(1 − Δi)

∑n
i=1Ui(1 − Δi)

−
n −

∑n
i=1ΔiYi

∑n
i=1Ui

.
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