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The use of [Pd(NHC)(cinnamyl)CI] precatalysts in the direct arylation of heterocycles has been investigated. Among four different

precatalysts, [Pd(SIPr)(cinnamyl)Cl] proved to be the most efficient promoter of the reaction. The C—H functionalization of sulfur-

or nitrogen-containing heterocycles has been achieved at low catalyst loadings. These catalyst charges range from 0.1 to

0.01 mol % palladium.

Introduction

As a powerful addition to the classic palladium cross-coupling
reactions, C—H bond functionalization has become a growing
field of research over the last few years. The ubiquity of C-H
bonds makes them a convenient and cost-effective anchoring
position within viable substrates, as no derivatisation to form an
organometallic reagent is required. Moreover, among the
plethora of C—H bonds present on a molecule, it is often
possible to target one C—H linkage specifically, taking advan-
tage of directing groups or particular catalyst selectivity [1-5].
Thus, heteroaromatic scaffolds, which are a common feature in
biologically relevant compounds and in materials science [6,7]
can be selectively arylated as the heteroatom can act as an

intrinsic orientating group [8].

Despite the efficiency of well-defined palladium catalysts
bearing NHC (N-heterocyclic carbene) ancillary ligands in clas-
sical cross-coupling reactions, they have rarely been applied to
direct arylation procedures [9-16]. Among the family of
[PA(NHC)] complexes, the [PA(NHC)(cin)Cl] (cin = cinnamyl)
species are known for their ease of activation through the reduc-
tion of the metal centre from Pd(II) to Pd(0) [17]. Therefore, we
have investigated the use of such precatalysts in the direct aryl-
ation of heteroaromatic compounds in order to compare them to
ligand-free or phosphine-bearing catalytic systems, and in the
end to see whether the reactivity and application scope of these
commercially available complexes could be broadened to

include C—-H bond functionalization transformations.
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We now report the activity of the [Pd(NHC)(cin)Cl] complexes
1-4 in the direct arylation of heterocycles with NHC ligands
being SIPr (1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimi-
dazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-
2-ylidene), IPr* (1,3-bis(2,6-bis(diphenylmethyl)-4-
methylphenyl)imidazol-2-ylidene) and IPr*T°! (1,3-bis(2,6-
bis(di-p-tolylmethyl)-4-methylphenyl)imidazol-2-ylidene)
(Figure 1). Complexes 1 and 2 are commercially available and
have proven to be highly efficient in Suzuki-Miyaura coupling
and Buchwald—Hartwig amination reactions [17-20]. We have
also evaluated the recently reported [Pd(IPr*)(cin)Cl] (3), which
has shown potency in Suzuki-Miyaura couplings [21] and
Buchwald—Hartwig N-arylations [22] even with challenging
substrates. To complete this study and to examine the effect of
bulky ligands about the metal centre, we have synthesised a
new complex [PA(IPr*ToY(cin)Cl] (4), which is a IPr* congener.

Results and Discussion

The study begins with the preparation of the palladium com-
plex 4. Following the strategy recently reported by Marké [23],
we were successful in the synthesis of the IPr*T°l-HCI imida-
zolium salt 5 in a 53% overall yield (see Supporting Informa-
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tion File 1). Subsequently, § was treated with KO#-Bu in dry
THF to generate the corresponding free carbene in situ. The
expected [Pd(IPr*TOl)(cin)Cl] was then obtained in an excellent
yield (97%) by a simple fragmentation of the palladium dimer
[{Pd(cin)(n-Cl)},] using the free carbene solution (Scheme 1).

The newly synthesized complex 4 was unequivocally charac-
terised by X-ray diffraction [24] (Figure 2, Supporting Informa-
tion File 2 and Supporting Information File 3) after suitable
crystals were grown from slow diffusion of hexane in
dichloromethane. Based on this crystal structure, the percentage
buried volume (%Vgy,) of the IPr*To! ancillary ligand was
determined by using the “Sambl’ca” web application [25] and
compared to complexes 1-3 (Table 1) [21]. IPr*T°! featured a
%Vpyr in the same range as [Pr* (+0.4% difference). SIPr and
IPr have been reported as less hindered ligands with % Vg, of
37.0 and 36.7, respectively. The length of the Pd—C1 bond in 4
was also examined and is close to the one observed in 3.

With complexes 1-4 in hand, their catalytic activity towards the
direct arylation of heteroaromatic compounds was evaluated.

For this purpose, the arylation of benzothiophene (6) with

p-Tol

p-Tol
-Tolq

I/p -Tol

o

Ph Ph

[Pd(IPr*)(cin)CI] [Pd(IPr*To)(cin)CI]

1 2 3 4
Figure 1: [Pd(NHC)(cin)CI] catalysts examined in direct arylation.
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Scheme 1: Synthesis of [Pd(IPr*T°)(cin)CI] (4).
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Figure 2: Molecular structure of 4. H atoms were omitted for clarity.
Selected bond lengths (A) and angles (°): Pd1-C1 2.034(0), Pd1-Cl1
2.352(5), Pd1-C85 2.132(8), Pd1-C86 2.119(7), Pd1-C87 2.226(6);
C1-Pd1-C85 102.9(5), C85-Pd1-C87 71.2(6), C87—-Pd1-CI1 93.3(8),
Cl1—-Pd1-C1 91.8(6).

Table 1: Comparison of the % Vg, and d(Pd—C1) in the
[PA(NHC)(cin)CI] family.

NHC % Vaur? Pd-C1 (A)
SIPr 37.0 2.025(7)
IPr 36.7 2.041(9)
IPr* 44.6 2.038(6)
|Pr+Tol 45.0 2.034(0)

8% Vg, calculated for a 2.00 A Pd—C1 length.

4-bromotoluene (7) was selected as a benchmark reaction
(Table 2). This C—H functionalization, initially described by
Ohta [26], was then reported by Bhanage and Mori using
2—10 mol % of well-defined palladium catalysts [27,28]
(Figure 3). Alternatively, Fagnou and Kappe proposed a
Pd/phosphine system involving 1-2 mol % of palladium and
2-4 mol % of phosphine [29,30], but no example of this reac-
tion involving a well-defined [Pd(NHC)] complex has been
described. However, it is noteworthy that variously substituted
benzothiophene cores have been extensively studied in the
direct arylation process [4,31-37].

Initial screening of precatalysts 1-4 was performed with a

2 mol % loading, by using KO#-Bu as the base, which is known

Beilstein J. Org. Chem. 2012, 8, 1637-1643.

Table 2: Catalyst screening for the direct arylation of benzothiophene

(6).

Br
©\/\> . [Pd] (2 mol %) O A O
s KOt-Bu, DMA g
140 °C, 16 h
6 7 8a
Catalyst Conversion (%)2
[Pd(SIPr)(cin)CI] (1) 76
[Pd(IPr)(cin)CI] (2) 50
[Pd(IPr*)(cin)Cl] (3) 8
[Pd(IPr*Tol)(cin)CI] (4) 49

aConversion of the starting material into C-H arylated product deter-
mined by GC, [6] = 0.3 M.

7 tBu o_ .0
o) 0 t—BU\P/t-Bu Np O
Pd P (pd )
O/ o ,d (0] . (0]
_Bu—P~t
Bhanage [27] Mori [28] Fagnou [29]

Kappe [30]

Figure 3: Previously reported catalytic systems in the direct arylation
of benzothiophene (6).

to efficiently activate the [Pd(NHC)(cin)Cl] precatalysts [17].
DMA was selected as the solvent and the reaction was
conducted at 140 °C.

This survey showed that 1 is the most efficient precatalyst under
these reaction conditions with 76% conversion of the starting
material. Precatalysts 2 and 4 exhibited closely related activity,
with 50 and 49% conversion, respectively. However, complex 3
gave relatively poor conversion of the benzothiophene (6).

Thus, selecting 1 as the best precatalyst, the use of other
solvents, bases and additives was evaluated to optimize the
reaction (see the Supporting Information File 1). From this opti-
mization study, it was found that 0.1 mol % of 1 with K,COj3 in
DMA as solvent at 140 °C in the presence of a catalytic amount
of pivalic acid (30 mol %) generated the best reaction condi-
tions. Under these optimized parameters, a second precatalyst
screening was performed. As shown in Table 3, better activity
was observed for precatalysts 1 and 2, which have smaller

ligands when compared to the NHCs in 3 and 4. This result
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Table 3: Catalyst screening under optimised conditions.

Br [Pd] (0.025 mol %)

PivOH (30 mol %
pafpltlissTy
Z s KOt-Bu, DMA s

140°C, 16 h
6 7 8a
Catalyst Conversion (%)
[Pd(SIPr)(cin)CI] (1) 80
[PA(IPr)(cin)CI] (2) 75
[Pd(IPr*)(cin)CI] (3) 57
[Pd(IPrToN(cin)CI] (4) 58

aConversion of the starting material into C—H arylated product deter-
mined by GC, [6] = 0.3 M.

Beilstein J. Org. Chem. 2012, 8, 1637-1643.

suggests a strong dependence of the activity on the steric prop-
erties of the NHC ligand. Moreover, the small difference
between 1 and 2 underlines the fact that the difference in the
o-donation properties of the NHC ligands [38-41] is not likely
to play a crucial role in the catalytic activity.

In comparison with the previously mentioned methodologies to
perform this C—H functionalization [27-30], the catalyst loading
can be decreased by at least 10-fold without drastically
affecting the yield (Table 4, entry 1). Using the optimized reac-
tion conditions, we examined the scope and the limitations of
this catalytic system using various aryl bromides and hetero-
cycles (Table 4). It appeared that the sterics of the aryl bromide
had almost no impact on the reaction. Indeed, para-, meta- and
ortho- substituted aryl bromides could be employed to arylate 6
in good yields. (Table 4, entries 1-3, 77-89%). However, ortho-
disubstituted aryl bromide, such as bromomesitylene appeared

Table 4: Palladium-NHC catalysed direct arylation of heterocycles with arylbromides.

[PA(SIPr)(cin)CI]

Entry? Heterocycles Products

10
2C
3C
4°¢
5¢
GC
7¢

PR
S
6
8
! I
10 S
9
i o
S

12

13 1

14

154

169 7NN

174 XN
13

R
PivOH @ X
K,CO3, DMA =

140 °C, 16 h
R YieldP
4-Me, 8a 89%
3-Me, 8b 80%

R 2-Me, 8¢ 77%
4-OMe, 8d 70%

4-Cl, 8e 49%
4-F, 8f 53%
4-CHO, 8g 37%

N\ —x
s \ 7/
8
4-Me, 10a 85%
A — R 2-Me, 10b 83%
s N\ 7/ 4-F, 10c 52%
10
N —\ R 4-Me, 12a 90%
|S \ 4-OMe, 12b 75%
12

4-F, 12¢ 57%

74%

i /\\R 4-Me, 14a 59%

4-OMe, 14b 53%

ZON 4-F, 14c 76%
XN
14

aUnless noted, reactions were performed on 0.6 mmol scale with: Heterocycle (1 equiv), aryl bromide (1 equiv), [Pd(SIPr)(cin)CI] (0.1 mol %), PivOH
(30 mol %), K2CO3 (1.5 equiv), DMA (2 mL), 140 °C. PIsolated yields, average of two independent runs. 6 (1.2 equiv). 9[Pd(SIPr)(cin)Cl]

(0.01 mol %).
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to be too sterically demanding and led to no conversion (data
not shown). Concerning the electronic properties of the aryl
bromide, electron-withdrawing (EWG) and electron-donating
groups (EDG) were tolerated, although the presence of EWGs
resulted in decreased yields (Table 4, entries 4—6, 49—70%). The
substrate 4-bromobenzaldehyde was also successfully involved
in the direct arylation of 6. Despite its electron-withdrawing
nature as well as its high reactivity, the expected biaryl was
obtained in moderate yield (Table 4, entry 7). The limits of the
scope were determined by switching from benzothiophene (6)
to the more sterically demanding 3-methylbenzothiophene (9)
(Table 4, entries 8—10). Closely related reactivity was observed
for 6 and 9, as these were arylated in comparable yields
(Table 4, entry 1 vs 8, 3 vs 9 and 6 vs 10).

A more challenging heterocycle, 2-methylthiophene (11), was
investigated. Simple thiophene rings are known to be less reac-
tive in C—H functionalization reactions [42]; nevertheless, 11
was successfully arylated in moderate to good yields, depending
on the electronic properties of the bromobenzene substituents
(Table 4, entries 11-13, 57-90%). Electron rich 4-methoxy-
bromobenzene reacted more efficiently than the electron poor
4-fluorobromobenzene. An opposite effect of the electronics
was observed by Doucet et al. in their ligandless procedure at
low catalyst loadings [43,44]. This is surely due to the nature of
the catalyst and thus offers complementary direct arylation

methods for thiophene derivatives.

To complete the study, experiments were performed at lower
catalyst loading using imidazopyridine (13). This class of sub-
strate has recently been involved, by Doucet et al. [45], in direct
arylation with a catalytic charge of Pd(OAc), ranging from 0.1
to 0.01 mol %. In our case, comparable yields were obtained
when the catalyst loading was decreased from 0.1 to
0.01 mol %, highlighting the high efficiency of the catalytic
system (Table 4, entries 14 and 15). Following the same trend
as reported by Doucet [45], a better reactivity was observed
with bromobenzenes substituted with EWGs compared to with
EDGs (Table 4, entries 16 and 17).

Conclusion

In summary, we report here the synthesis and characterization
of a new member of the [Pd(NHC)(cin)Cl] family,
[PA(IPr*Tol(cin)Cl]. The catalytic activity of this family of
complexes was surveyed in the direct arylation of heterocycles.
The bulkiness of the NHC ligand appears to play a major role in
the catalytic efficiency, whereas the c-donation properties
(within the small electronic space examined) have little influ-
ence. Among the four complexes, [Pd(SIPr)(cin)Cl] exhibited
the highest catalytic efficiency and was investigated for the

arylation of various benzothiophenes, thiophene and imidazo-

Beilstein J. Org. Chem. 2012, 8, 1637-1643.

pyridine. C—H functionalization of such heterocycles was
performed in moderate to good yields by using only
0.1-0.01 mol % of precatalyst. This study highlights the fact
that [Pd(NHC)(cin)Cl] complexes are multipurpose precata-
lysts as they may be utilised in various cross-coupling and, now,
C—H-bond-functionalization reactions.

Experimental
General procedure for the direct arylation of

heterocycles

In a glovebox, a vial containing a stirring bar was charged with
K,COj3 (124 mg, 0.9 mmol, 1.5 equiv) and pivalic acid
(0.18 mmol, 18 mg, 30 mol %), and sealed with a screw cap
fitted with a septum. The heterocycle (0.6 mmol, 1.0 equiv)
and/or the arylbromide (0.6 mmol, 1.0 equiv) were added at this
point if in solid form, and DMA (1.9 mL) was poured into the
vial. Outside of the glovebox, the heterocycle and/or the aryl
bromide were added at this point if in liquid form. Finally,
[PA(SIPr)(cin)Cl1] (1) was added as a 0.06 M solution in DMA
(0.6—6 pmol, 10-100 pL, 0.01-0.1 mol %), and the vial was
heated to 140 °C for 16 h. The solution was then cooled down
to room temperature, diluted with 40 mL of ethyl acetate, and
washed with water (2 x 20 mL) and brine (20 mL). The organic
layer was dried over MgSOy, filtered and concentrated in
vacuo. The crude residue was finally purified by either tritura-
tion in pentane (if not soluble) or silica-gel column chromatog-

raphy using pentane as the eluent.

Supporting Information

Supporting Information File 1

Synthesis and characterization of complex 4; compound
characterization data for all the direct arylated products and
copies of their 'H and 13C NMR spectra.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-187-S1.pdf]

Supporting Information File 2

CIF-Check for compound 4.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-187-S2.pdf]

Supporting Information File 3

Crystal structure data for compound 4.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-187-S3.cif]
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