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Simple Summary: In the pathogenesis of multiple myeloma (MM), some exosomes act on different
cells in the bone marrow microenvironment, which can create an environment conducive to the
survival and growth of MM cells. In addition, due to the abnormal expression of cargos in the
exosomes of MM patients, exosomes may help with the diagnosis and prognosis of MM. In contrast
to traditional nanomaterials, exosomes exhibit very good safety, biocompatibility, stability and
biodegradability, which shows their potential for delivering anti-cancer drugs and cancer vaccines.
Given the research in recent decades, exosomes are becoming increasingly relevant to MM. Although
exosomes have not been applied in the clinic for help with diagnosing, prognosticating or providing
therapy for MM, they are very promising for clinical applications concerning MM, which will possibly
materialize in the near future. Therefore, this review is worth reading for further understanding of
the important roles of exosomes in MM..

Abstract: Multiple myeloma (MM) is a hematological malignancy that is still incurable. The bone
marrow microenvironment (BMM), with cellular and non-cellular components, can create a favorable
environment for the survival, proliferation and migration of MM cells, which is the main reason for
the failure of MM therapies. Many studies have demonstrated that exosomes play an important
role in the tumor-supportive BMM. Exosomes are nanoscale vesicles that can be released by various
cells. Some exosomes contribute to the pathogenesis and progression of MM. MM-derived exosomes
act on different cells in the BMM, thereby creating an environment conducive to the survival and
growth of MM cells. Owing to the important roles of exosomes in the BMM, targeting the secretion of
exosomes may become an effective therapeutic strategy for MM. In addition, the abnormal expression
of “cargos” in the exosomes of MM patients may be used to diagnose MM or used as part of a screen
for the early prognoses of MM patients. Exosomes also have good biological properties, including
safety, biocompatibility, stability and biodegradability. Therefore, the encapsulation of anti-cancer
drugs in exosomes, along with surface modifications of exosomes with targeting molecules, are very
promising strategies for cancer therapies—particularly for MM. In addition, DC-derived exosomes
(DC-EXs) can express MHC-I, MHC-II and T cell costimulatory molecules. Therefore, DC-EXs may be
used as a nanocarrier to deliver cancer vaccines in MM. This review summarizes the recent progress of
exosome research regarding the pathogenesis of, diagnosis of, prognosis of and therapeutic strategies
for MM.
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1. Introduction

Multiple myeloma (MM) is a hematological malignancy characterized by the accu-
mulation of clonal malignant plasma cells in the bone marrow (BM). MM accounts for
about 10% of hematological malignancies. The incidence in men is higher than that in
women. The median age of MM patients is about 65 years, and fewer than 3% of patients
are under 40 years old [1]. The main clinical manifestations of MM are anemia, bone pain
and pathological fractures, repeated infections, hypercalcemia and renal failure. Despite
the significantly improved therapeutic strategies for MM, such as proteasome inhibitors,
immunomodulatory drugs (IMiDs), autologous stem cell transplantation (ASCT) and cellu-
lar immunotherapy, the disease remains incurable, owing to drug resistance and frequent
relapses. Therefore, investigations of the pathogenesis of, diagnosis of, prognosis of and
therapeutic strategies for MM are still only on the way to making it a curable disease. In
recent years, the roles of exosomes have emerged in relation to the pathogenesis, diagnosis,
prognosis and therapy of MM; they show promising potential for clinical strategies against
this malignancy.

2. Overview of Exosomes

It is known that cells are able to secrete various types of extracellular vesicles (EVs).
According to the sizes, contents and formation mechanisms of EVs, they can be divided
into different subgroups [2,3], including exosomes, microvesicles and apoptotic bodies.
The diameters of apoptotic bodies (800–5000 nm) and microvesicles (200–1000 nm) are
larger than those of exosomes (30–150 nm) [4]. Therefore, exosomes are small vesicles with
a membrane structure at the nano level [5]. They carry physiological and pathological
information, and efficiently transfer information between cells. With their advantages
in size, biocompatibility and safety, exosomes, in some of the current research projects,
perform better than liposomes in hydrophilic and hydrophobic drug delivery, although
liposomes are currently the most promising nanocarriers for drug delivery with successful
applications in the clinic.

2.1. Biogenesis of Exosomes

Exosomes are EVs of endocytic origin that can be released by various types of cells.
To be specific, the biogenesis of exosomes can be divided into three stages (Figure 1):
(1) Endocytic vesicles are formed by the plasma membrane. The fusion of endocytic vesicles
leads to the formation of early endosomes, which then mature into late endosomes. (2) The
inward budding of the late endosome membranes leads to the formation of intraluminal
vesicles (ILVs). The accumulations of ILVs in the late endosomes are termed multivesicular
bodies (MVBs). (3) The fusion of MVBs with the plasma membrane results in the release
of ILVs, known as exosomes. [6,7]. MVBs may fuse with lysosomes for degradation, or
they may fuse with the plasma membrane, releasing ILVs to the extracellular space [8].
Rab27A and Rab27B, members of the Rab family, play an important role in the release of
exosomes. They can induce the transfer of the MVBs to the cellular periphery, which finally
results in the fusion of MVBs with the plasma membrane [9]. At present, there are two
known pathways for the formation of MVBs. The most detailed description of the process
is the endosomal sorting complexes required for transport (ESCRT) pathway, which is
induced by ESCRT complexes composed of four soluble multi-protein complexes (ESCRT-0,
ESCRT-I, ESCRT-II and ESCRT-III) [10]. The ESCRT pathway can be figuratively seen as
a “cargo” identification and membrane deformation machine. ESCRT complexes firstly
recognize and classify the ubiquitinated cargo. Then, ESCRT complexes combine with the
ubiquitinated cargo at the endosomes, causing the budding of the endosomal-restricted
membrane to form MVBs. In addition, they can also mediate the transport of MVBs to
the plasma membrane or lysosome [11]. Another pathway is ESCRT independent, the
molecules involved in which include lipids, tetraphosphates and heat shock proteins [12].
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Figure 1. Biogenesis of exosomes. Exosomes are extracellular vesicles of endocytic origin. Early endosomes are formed
by the fusion of endocytic vesicles. Then, the inward budding of late endosome membranes leads to the formation of
intraluminal vesicles (ILVs). The accumulations of ILVs in the late endosomes are termed multivesicular bodies (MVBs). On
the one hand, MVBs may fuse with lysosomes for degradation. On the other hand, with the help of Rab27A and Rab27B,
MVBs can transfer to the cellular periphery and fuse with the plasma membrane, releasing ILVs known as exosomes
into extracellular space. ER, endoplasmic reticulum; ESCRT, endosomal sorting complexes required for transport; ILVs,
intraluminal vesicles; MVBs, multivesicular bodies.

2.2. The Composition of Exosomes

The structure of the exosome is similar to that of the liposome, consisting of a lipid
bilayer membrane. Exosomes, with a diameter of 30–150 nm, seem to be smaller than
liposomes. A large number of studies have shown that there are various proteins, lipids
and RNAs on the surfaces of or inside exosomes (Figure 2). Proteins on the surfaces of
exosomes include membrane fusion proteins (Rab5,7, Rap1B and annexins I, II, IV, V and
VI), antigen presenting proteins (MHC-I and MHC-II), costimulatory molecules (CD86),
MVB formation proteins (Gag, Tsg10 and Alix), integrins (α4β1), immunoglobulin-family
members (ICAM1) and transmembrane molecules (CD13). Tetraspanins (CD9, CD63, CD81
and CD82) are also abundant on the surfaces of exosomes, and are regarded as special
markers of exosomes. Heat shock proteins (Hsc70 and Hsp90), cytoskeleton proteins (Cap1,
radixin and advillian) and enzymes (ATPase, glucose 6 and pyruvate kinase) are abundant
inside exosomes [13,14]. The lipids include ceramide (sometimes used as a marker to
distinguish exosomes from lysosomes), cholesterol, sphingolipids, glycerophosphate, etc.,
which are generally on the surfaces of exosomes [6]. In addition, the RNAs carried in the
exosomes include messenger RNAs (mRNAs), microRNAs (miRNAs) and other non-coding
RNAs [15]. Exosomes play an important role in cell–cell communication by transferring
proteins, RNAs and lipids on their surfaces or inside themselves to target cells.

2.3. The Isolation of Exosomes

In order to be brought into clinical settings, exosomes need to be effectively isolated
from various cell fragments and interfering components. In the past, exosomes were
often isolated by a method based on ultracentrifugation, which is the most common.
However, exosomes produced by ultracentrifugation usually contain microbubbles or
other impurities of cell debris. In addition, a high centrifugal force and centrifugal duration
may cause damage to exosomes [16]. Therefore, alternative isolation methods based on
size, immunoaffinity capture and exosome precipitation have been developed [16–18]
(Table 1). Microfluidic acoustic, electrophoretic and electromagnetic techniques have been
used in recent years to isolate exosomes. The advantages of these methods include great
reductions in the required sample capacity, reagent consumption and isolation time [17,18].
However, obtaining large amounts of highly purified exosomes is still a challenge. This
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may be due to the complexity of the biological fluids from which exosomes are isolated
and the similarities in physicochemical properties among exosomes and other EVs [19,20].
Therefore, it is crucial to continuously explore new isolation methods that can obtain more
purified exosomes for clinical use.
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Figure 2. Different components of exosomes. There are various proteins on the surfaces of or inside exosomes, such as
membrane fusion proteins, cytoskeleton proteins, tetraspanins, integrins, transmembrane molecules, antigen presenting
proteins, costimulatory molecules, MVB formation proteins, enzymes and heat shock proteins. Lipids and RNAs are also
enriched on the surfaces of or inside exosomes. These components can mark exosomes or participate in the transport of
exosomes for cell–cell communication.

Table 1. Comparison of the existing isolation methods for exosomes.

Isolation Techniques Isolation Methods Advantages Disadvantages Ref

Ultracentrifugation
Techniques

Differential
Ultracentrifugation

No sample pretreatment
required;

Suitable for large sample
capacity;

Wide application.

Time-consuming;
Low purity;

High-speed centrifugation
may damage exosomes.

[21]

Density Gradient
Centrifugation

Effective separation of exosomes
from protein aggregates.

Low production;
High equipment cost;

Cumbersome.
[15]

Size-Based Techniques Ultrafiltration

Fast;
Low cost;

No requirement for special
equipment;

This method may directly extract
RNAs from exosomes.

Some of the exosomes may
be left on the filter

membrane;
Exosomes may be lysed due

to shear force. [22–24]



Cancers 2021, 13, 1635 5 of 19

Table 1. Cont.

Isolation Techniques Isolation Methods Advantages Disadvantages Ref

Exosome Isolation Kit The operation process is simple.
Some of the exosomes may

remain on and block the
filter membrane.

Sequential Filtration

Automatable;
The integrity and biological

activity of exosomes are
not affected.

Some of the exosomes may
remain on and block the

filter membrane.

Size-Exclusion
Chromatography

Highly purified exosomes;
The integrity and biological

activity of exosomes are
not affected.

Time-consuming.

Flow Field-Flow
Fractionation

Novel technique
developed recently;

Superior reproducibility;
Gentle and fast.

Not mentioned.

Immunoaffinity
Capture-Based

Techniques
ELISA

Highly purified exosomes;
This method is excellent for the
isolation of specific exosomes.

Sample pretreatment is
required

Low production.
[25]

Magneto-
Immunoprecipitation

Highly purified exosomes;
Low cost on equipment;
Suitable for large sample

capacity;
High efficiency.

High reagent cost,
The antigenic epitope may

be blocked.

[15]
[26]

Exosome Precipitation Polyethylene Glycol
(PEG) Precipitation

Fast;
The operation technique

is simple.

Exosomes, extracellular
proteins and other EVs may

be precipitated together.
[27]

Lectin-Induced
Agglutination

Simple;
Highly purified exosomes.

Sample pretreatment
is required. [28]

Microfluidic-Based
Isolation Techniques

Acoustic Nanofilter Less starting volume of sample;
Fast and simple. Lack of method validation. [18]

Immuno-Based
Microfluidic Isolation

Less starting volume of sample;
The highest cost efficiency while

the smallest amount of time.
Lack of method validation. [29]

3. The Roles of Exosomes in the Pathogenesis and Progression of Multiple Myeloma
3.1. The Promotion of Angiogenesis

Angiogenesis is a hallmark in the progression of MM. It has been shown that the
degree of angiogenesis is related to the disease progression and prognosis [30]. Wang [31]
et al. demonstrated that MM-derived exosomes directly stimulate the growth, proliferation
and invasion of endothelial cells by modulating multiple pathways, including signal
transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK), protein
kinase B (Akt), p38 and p53-mediated pathways. In addition, they found that many
angiogenesis-related proteins are increased in MM-derived exosomes, such as vascular
endothelial growth factor (VEGF), basic fibroblast growth factor (BFGF), serpin E1 and
angiogenin, which can promote angiogenesis [31,32]. The BM, a highly vascularized
tissue, is the main site for exosomes at which to promote angiogenesis. BM is naturally
hypoxic compared to other tissues [33]. However, the excessive proliferation of malignant
plasma cells makes the BM even more hypoxic, resulting in a situation where MM cells
can produce more exosomes. It has been shown that miR-135b is significantly upregulated
in the exosomes secreted by hypoxic MM cells. Exosomal miR-135b can promote the
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formation of endothelial tubes and angiogenesis via the factor-inhibiting hypoxia inducible
factor 1 (FIH-1) signaling pathway [34,35].

3.2. Immunosuppressive Effects

On the one hand, it is well known that activated myeloid-derived suppressor cells
(MDSCs) can exert immunosuppressive effects and promote the growth of cancer cells by
suppressing the activation of T lymphocytes [36]. Xiang [37] et al. demonstrated that tumor-
derived exosomes can promote the activation of MDSCs, thereby promoting the growth of
a tumor. In one study, Wang [31] et al. showed that MM-derived exosomes were able to
enhance the expression of the immunosuppressive phenotype of MDSCs by activating the
STAT3 pathway, finally inducing suppressive effects on T cells by upregulating nitric oxide
synthase (NOS) in the activated MDSCs. On the other hand, it has been shown that natural
killer (NK) cells play an important role in the progression of MM. NK cells can be activated
at the initial stage of MM and exert a cytotoxic effect, killing MM cells [38]. However, NK
cells exposed to the myeloma-derived exosomes show a dose-dependent decrease in their
capacity for the specific lysis of MM cells [39].

3.3. Promotion of Osteolysis

One of the clinical symptoms of MM is osteolysis, which is induced by an imbalance
of bone resorption and formation; specifically, osteoclastic bone resorption is increased,
while osteoblastic bone formation is decreased [40,41]. It has been shown that most MM
patients manifest osteolytic lesions during the progression of the disease. Osteolytic lesions
can induce severe pain and decrease the quality of life for MM patients. On the one hand,
there is much evidence showing that exosomes impair bone formation through small
non-coding RNAs. Li [42] et al. demonstrated that MM-derived exosomes are enriched in
the bioactive lncRNA RUNX2-AS1, which is a product of the RUNX2 antisense strand. The
lncRNA RUNX2-AS1 can be transferred to mesenchymal stem cells (MSCs), where it can
inhibit the osteogenic activity of MSCs via the exosomal lncRUNX2-AS1/RUNX2 pathway.
Moreover, after the exosome secretion inhibitor GW4869 was given to MM model mice,
bone loss was reduced and bone formation was maintained. On the other hand, it has
also been shown that MM-derived exosomes can induce osteolytic lesions by promoting
the differentiation and survival of osteoclasts (OCs). For example, Raimondo [43] et al.
demonstrated that MM-derived exosomes are enriched in amphiregulin (AREG), which
can increase OC differentiation by activating the epidermal growth factor receptor (EGFR)
pathway. Another study demonstrated that MM-derived exosomes are able to promote the
migration and growth of pre-osteoclasts by increasing the expression of cysteine X cysteine
receptor 4 (CXCR4) and osteoclast markers such as matrix metalloproteinases 9 (MMP9)
on pre-osteoclasts [44]. According to research by Faict et al. [45], 5TGM1 cell-derived
exosomes can not only promote the differentiation of RAW 264.7 into OCs but also increase
the capacity for OC absorption. Meanwhile, they can not only induce the apoptosis of
pre-osteoblasts but also inhibit the differentiation capacity of osteoblasts (OBs) in vitro.
This is partly due to the transfer of Dickkopf-1 (DKK-1) from exosomes to OBs. After the
exosome secretion inhibitor GW4869 was given to MM model mice, Faict et al. found that
the inhibition of the secretion of exosomes could reduce osteolytic lesions and furthermore
exert an obvious anti-tumor effect when combined with bortezomib [45].

3.4. The Roles of Exosomes in Drug Resistance and Survival of Multiple Myeloma Cells

Besides the traditional chemotherapeutic regimen, the novel agents developed for the
therapy of MM have significantly improved the therapeutic efficacy in the past few decades,
which include IMiDs such as thalidomide and lenalidomide, proteasome inhibitors such
as bortezomib and carfilzomib, and monoclonal antibodies such as elotuzumab and dara-
tumumab. IMiDs exert their therapeutic efficacy by inhibiting angiogenesis in MM pa-
tients [46]. Bortezomib and carfilzomib target the β5 subunit of the 26S proteasome to treat
MM. Elotuzumab and daratumumab exert their therapy efficacy by targeting the signaling
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lymphocyte activation molecules F7 (SLAMF7) and CD38 on MM cells, respectively [47]. In
the past fifteen years, although the survival rate of MM patients has significantly increased
due to the application of these effective agents [48], MM is still incurable owing to the
rapid development of drug resistance. A widely accepted view is that the drug resistance
of MM is induced by complex interactions between the bone marrow microenvironment
(BMM) and MM cells [32]. One study has shown that MM-derived exosomes are enriched
in miRNA-146a, which can be transferred into MSCs, causing the increased secretion of
cytokines and chemokines, including chemokine (C-X-C motif) ligand 1 protein (CXCL1),
IL-6, IL-8, MCP-1 and CC chemokine ligand 5 (CCL-5). These cytokines and chemokines
enhance the viability of MM cells and promote the migration of MM cells [49]. In a study by
Wang et al., exosomes released by bone marrow stromal cells (BMSCs) were demonstrated
to significantly improve the viability of MM cells in both the 5T33 murine MM model
and human MM cells. BMSC-derived exosomes can also inhibit the effect of bortezomib
on repressing the expression of apoptosis-related protein Bcl-2. These both demonstrate
that BMSC-derived exosomes play an important role in the drug resistance of MM [50].
Furthermore, Faict et al. [45] also demonstrated that 5TGM1 cell-derived exosomes can
increase the viability and survival of MM cells by activating several pathways, including
JNK, AKT, p53 and p38. After GW4869 was used to inhibit the secretion of exosomes, they
found that the sensitivity of murine MM cells to bortezomib was increased. Another study
found that anti-myeloma drugs such as melphalan and bortezomib can induce MM cells to
produce large numbers of exosomes, which are called chemoexosomes. The surface of a
chemoexosome is enriched with heparanase. When these chemoexosomes are exposed to
other MM cells, heparanase can be transferred to other MM cells. This causes the activation
of the ERK pathway, the production of TNF-α and the degradation of the extracellular
matrix, which may, together, contribute to the development of chemoresistance in MM
patients [51,52] (Figure 3).
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3.5. The Roles of Exosomes in the Proliferation, Homing and Dissemination of Multiple Myeloma Cells

It is well established that BMSCs can promote the growth of MM cells, resulting in MM
progression [53,54]. Now, much evidence has shown that MM BMSC-derived exosomes
may promote the growth of MM cells and homing to the BM. Roccaro et al. assessed
the effect of MM BMSC-derived exosomes on the growth of MM cells both in vitro and
in vivo, finding that MM BMSC-derived exosomes can promote the growth of MM cells
both in vivo and in vitro. They further investigated whether MM BMSC-derived exosomes
could induce cell dissemination and homing to distant BM. Tissue-engineered bones (TEBs)
were loaded with MM cells in the presence of MM BMSC-derived exosomes. They were
able to visualize the BM vasculature and the presence of MM cells by using in vivo confocal
imaging. A higher tumor burden was shown in the mice with TEB implants loaded with
MM cells exposed to MM BMSC-derived exosomes than in the mice with implants only
loaded with MM cells [55]. In another study, Wang et al. [50] demonstrated that BMSC-
derived exosomes of MM patients can promote the proliferation of MM cells, as described
in Section 3.4.

4. Exosomes as A Diagnostic and Prognostic Tool for Multiple Myeloma

It is known that the disease stage and the probable prognosis of MM patients are very
important for choosing the proper therapeutic strategy. Therefore, it is urgent to develop a
new non-invasive method that can efficiently monitor the progression of MM [56]. Much
evidence shows that exosomes isolated from the peripheral blood of MM patients have the
potential to be used as biomarkers for predicting MM progression, as exosomal proteins or
miRNAs vary significantly in patients with different prognostic outcomes [57–59].

A large amount of evidence has shown that some MM patients have innate resistance
or acquire resistance to bortezomib over the course of treatment; drug resistance is why
MM remains an incurable malignancy. Therefore, researchers are interested in the early pre-
diction of drug resistance in MM patients. In a study by Zhang et al. [57], 10 miRNAs with
the largest changes were overlapped with miRNAs based on literature. These 10 miRNAs
were deemed to have the potential to be used as predictive panels for the drug resistance
of MM patients. In detail, the upregulation of miR-513a-5p, miR-20b-3p and let-7d-3p,
and the downregulation of miR-16-5p, miR-15a-5p, miR-20a-5p, miR-17-5p, miR-125b-5p,
miR-19a-3p and miR-21-5p, are involved in the bortezomib resistance of MM patients. Such
predictive panels are helpful and important for choosing the most suitable therapeutic
regimens for patients.

It has also been demonstrated that the level of circulating exosomal miRNAs is rel-
evant to the prognostic outcomes of MM. In one study, exosomal miRNAs were isolated
from the serum samples of 156 MM patients. The qRT-PCR analysis of 22 biologically
relevant miRNAs in the samples showed let-7b and miR-18a to be closely correlated with
poor outcomes regarding progression-free survival (PFS) and overall survival (OS). Thus,
circulating exosomal miRNAs have the potential to be used for predicting the PFS and OS
of newly diagnosed MM patients [58].

Furthermore, exosomes may become potential biomarkers for predicting the risk of
graft-versus-host disease (GVHD) after ASCT for MM patients. Lia G et al. [59] used flow
cytometry to characterize the surface antigens of exosomes in 41 MM patients, thereby
finding that the expression of three exosomal surface antigens is related to the onset of
acute GVHD. The reduced expression of CD140-α (platelet-derived growth factor receptor)
and CD31 (platelet endothelial cell adhesion molecule) is related to a decreased risk of acute
GVHD, while the enhanced expression of CD146 (melanoma cell adhesion molecule-1)
is correlated with an increased risk of acute GVHD. All the above findings show that
exosomes may be used as a prognostic tool for MM in the clinic (Figure 4).
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Figure 4. The potential of exosomes in the diagnosis and prognosis of MM. Exosomes may be used
as a prognostic tool in MM due to their potential for the early prediction of drug resistance, the
outcomes regarding PFS and OS and the risk of GVHD after ASCT. In addition, exosomes may be
used as a diagnostic tool for MM owing to the abnormal expression of “cargos” in exosomes. CD146,
melanoma cell adhesion molecule 1; CD140-α, platelet-derived growth factor receptor; CD31, platelet
endothelial cell adhesion molecule; PFS, progression-free survival; OS, overall survival; GVHD,
graft-versus-host disease; ASCT, allogeneic stem cell transplantation.

Although, currently, exosomes are mainly promising for MM prognosis, they also
show certain potential for the diagnosis of MM (Figure 4). In a study by Sedlarikova et al. [60],
84 types of lncRNAs in exosomes were extracted from the peripheral blood of newly di-
agnosed MM patients (n = 56) and healthy donors (n = 36). Firstly, they found that the
expression of exosomal lncRNA PRINS was statistically significantly different (p = 0.042)
between MM patients (n = 6) and healthy donors (n = 6). Furthermore, they validated this
lncRNA PRINS by qPCR in 50 MM patients and 30 healthy donors. The results show that
exosomal lncRNA PRINS is able to distinguish MM patients from healthy donors with
high sensitivity (80.77%) and specificity (76.92%).

5. Therapies Targeting the Secretion of Exosomes

As mentioned before, exosomes play an important role in the BMM that supports
the growth and survival of MM cells. Therefore, targeting the secretion of exosomes may
become an effective therapeutic strategy for MM (Table 2). It has been demonstrated that
the exosome secretion inhibitor GW4869 can not only reduce the osteolytic lesions in MM,
but also enhance the sensitivity of murine MM cells to bortezomib, leading to the reversal of
drug resistance [42,45]. In addition, it is well established that exosomes are heterogeneous.
On the one hand, some exosomes can exert immunosuppressive effects; on the other
hand, some can also exert immunomodulatory effects. For example, Vulpis et al. [61]
demonstrated that MM-derived exosomes can induce the production of interferon gamma
(IFN-γ) in NK cells by activating the NF-κB pathway in a TLR2- and HSP70-dependent
manner. Moreover, the genotoxic agent melphalan, at a sublethal dose, can significantly
increase the secretion of exosomes from MM cells. Similarly, Borrelli et al. demonstrated
that MM-derived exosomes carry the IL-15/IL-15RA complex, which is involved in the
proliferation and activation of NK cells. After a sublethal dose of doxorubicin or sublethal
dose of melphalan was administered to MM cells, Borrelli et al. found that the drugs
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could not only cause MM cells to secrete more exosomes but also enhance the expression
of the IL-15/IL-15RA complex on the surfaces of MM cells and exosomes via inducing
senescence [62]. Therefore, we can conclude that, despite the tumor-supportive and
immunosuppressive effects of the exosomes mentioned in the pathogenesis of MM, the
immunomodulatory effects of MM-derived exosomes may contribute to improving the
NK cell response, which acts at the initial stage of the anti-myeloma response, particularly
following intervention with chemotherapy.

Table 2. Therapies targeting the secretion of exosomes.

Intervention Targeting
Exosome Secretion Exosome Secretion Outcomes after Targeting the Secretion of Exosomes Ref

Treatment with exosome
secretion inhibitor GW4869
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6. Exosomes as Biological Nanocarriers for Drug Delivery

With the rapid development of drug-delivery technology, nanotechnology is being
widely used to deliver drugs. Unfortunately, in spite of the extensive and in-depth investi-
gations on nanocarriers, there has been limited success in clinical applications due to the
low safety and low targeting efficiency. Nanomaterials may be cytotoxic. In addition, they
can be cleared quickly by the mononuclear phagocyte system (MPS) [63]. Although the
PEG modification of nanomaterials can prolong their circulation times in vivo, PEGylation
may block the interaction between the nanodelivery system and the target cell, thereby
reducing the distribution of the drug in the target cell [64,65]. Inspiringly, exosomes, as
trendy biological nanocarriers, have brought new hope to nano drug-delivery systems.
As mentioned before, the membranes of exosomes are typical phospholipid bilayers. The
membranes of exosomes may directly fuse with the plasma membranes of the target cells,
so contained drugs can be directly delivered to the recipient cells. In addition, the mem-
branes of exosomes can well protect the drugs from rapid clearance by the MPS, thereby
prolonging the circulation time. Moreover, since exosomes are endogenous biological
nanocarriers, they exhibit good safety, biocompatibility and biodistribution compared
to liposomes. Owing to these structural characteristics, exosomes may become an ideal
biological nanocarrier for drug delivery [66–68].

Most chemotherapeutic drugs, such as doxorubicin, have problems with solubility,
targeting efficiency and severe adverse effects, which remain their limitations in clinical
applications. It has been shown that exosomes modified by targeting ligands can be used
therapeutically for the delivery of chemotherapeutic drugs, such as doxorubicin, to tumors,
thereby having great potential value for clinical applications. In a study by Tian et al. [69],
the tumor targeting ability of exosomes was achieved by engineering immature DCs to
express exosomal membrane Lamp2b (lysosome associated membrane glycoprotein 2b)
fused with iRGD peptide (CRGDKGPDC). The iRGD peptide specifically combines with
αV integrin expressed on breast cancer cells. Then, they obtained purified iRGD exosomes
from cell supernatants and loaded doxorubicin into the iRGD exosomes by electroporation.
The targeting efficiency and antitumor efficacy of the iRGD-exosomes-doxorubicin were
evaluated both in vitro and in vivo. An in vitro experiment showed that iRGD-exosomes-
doxorubicin can specifically target the human breast cancer cell line MDA-MB-231, further
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inhibiting the proliferation of cancer cells. An in vivo experiment showed that iRGD-
exosomes-doxorubicin can specifically target the tumor tissue in a nude mouse model of
breast cancer, further inhibiting the growth of tumor tissue, without obvious toxicity.

There are still difficulties in the isolation of exosomes and the production yield of
exosomes. Therefore, scientists are looking for exosome mimetics (EMs), which are vesicles
synthetically isolated from cells. The size and structure of EMs are similar to those of
exosomes. In a study by Jiang et al. [70], monocytes (the human U937 monocytic cell
line) and macrophages (the mouse Raw264.7 macrophage cell line) were harvested and
sequentially extruded through polycarbonate mmbranes (10, 5 and 1 µm) in the presence
of doxorubicin, forming doxorubicin-loaded EMs (DOX-EMs). They found that DOX-EMs
could target tumor tissue and reduce the growth of tumors in mice bearing subcutaneously
transplanted CT26 cells (a mouse colon cancer cell line). In addition, they compared the
antitumor activity of DOX-EMs and doxorubicin-loaded exosomes in mice, finding that the
DOX-EMs had similar anti-tumor activity to doxorubicin-loaded exosomes. Doxorubicin
is a basic drug in the chemotherapy regimen for MM. The main molecules targeting MM
cells developed to date are monoclonal antibodies (mAb), including anti-CD38 mAb [71],
anti-CD138 mAb [72], anti-BCMA mAb [73] and anti-SLAMF7 mAb [74], which have been
used in actual targeted therapy for MM. Based on these developments, the encapsulation
of doxorubicin in exosomes or EMs, and the surface modification of exosomes or EMs
with targeting molecules (such as anti-myeloma mAbs), may be efficient and promising
strategies for the therapy of MM. There are many methods for loading therapeutic agents
into exosomes or EMs. These methods are mainly divided into two categories: passive
encapsulation and active encapsulation. Passive encapsulations include incubations of
exosomes and free drugs [75,76] and incubations of donor cells with free drugs [66]. Active
encapsulations include electroporation [77], sonication [78], freeze and thaw cycles [79],
click chemistry [80], extrusion [81] and incubation with saponin [82] (Table 3). Notably,
these methods result in different encapsulation rates and stability of drugs in exosomes
or EMs.

Table 3. Comparison of different methods for loading therapeutic agents into exosomes or exosome mimetics.

Loading
Categories

Method
Classification Loading Process Advantages Disadvantages Ref.

Passive loading
Incubation of
exosomes and free
drugs

Exosomes are incubated
with drugs, and then, the
drugs can interact with
the lipid layer of the
vesicle membrane and
diffuse into the exosomes.

Simple for preparation;
The structural integrity
of exosomes is
not affected.

Low drug-
loading efficiency. [75,76]

Incubation of
donor cells with
free drugs

Donor cells are incubated
with drugs, and then,
donor cells secrete
exosomes that encapsulate
the drugs.

Simple for preparation;
The structural integrity
of exosomes is
not affected.

Low drug-loading
efficiency;
The proliferation
capacity of donor
cells may
be affected.

[66]

Active loading Electroporation

Electrical field creates
small pores in the
exosome membrane, and
then, drugs or nucleotides
can subsequently diffuse
into the interior of the
exosomes via the pores.

This method can load
large molecules.

This method may
cause the
aggregation of
RNA;
Low drug-
loading efficiency.

[77]
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Table 3. Cont.

Loading
Categories

Method
Classification Loading Process Advantages Disadvantages Ref.

Sonication

The mechanical shear
force from the ultrasonic
probe compromises the
membrane integrity of the
exosomes, and then, drugs
diffuse into the exosomes.

The content of
membrane-bound
proteins or lipids in
exosomes is not
changed;
High drug-
loading efficiency.

Some drugs may
attach to the outer
layer of
the membrane.

[78]

Freeze and thaw
cycles

Drugs are incubated with
exosomes at room
temperature for some time.
Then, they are quickly
frozen at −80 ◦C or in
liquid nitrogen and
thawed at room
temperature. This process
is repeated at least 3 times.

The drug-loading
efficiency is higher
than that in
passive incubation.

The dilution ratio
of lipid may
be affected.

[79]

Click chemistry

Drugs can be directly
attached to the surface of
the exosome through
covalent bonds.

Fast and efficient;
This is an ideal
method for the
attachment of small
molecules and
macromolecules to the
surface of exosomes.

Not mentioned. [80]

Extrusion

The membrane of
exosomes is extruded and
compromised by a
syringe-based lipid
extruder. Then, drugs
diffuse into exosomes.

High drug-
loading efficiency.

The membrane
integrity of
exosomes may
be damaged.

[81]

Incubation
with saponin

Saponin can form
complexes with
cholesterol in cell
membranes, thus
generating the pores.
Then, drugs diffuse
into exosomes.

Saponin does not
degrade the catalase
in exosomes.

Saponin may cause
hemolysis in vivo. [82]

There has been no investigation reporting the application of exosomes in the therapy of
MM. However, based on the relevant investigations described above, the encapsulation of
anti-myeloma drugs (such as doxorubicin) in exosomes as well as the surface modification
of exosomes with targeting molecules (such as anti-CD38 mAb, anti-CD138 mAb and
anti-SLAMF7 mAb) are very promising strategies for the therapy of MM. These strategies
have the potential to efficiently increase the targeting efficiency of anti-myeloma drugs,
reducing their adverse effects and improving their therapeutic efficacy for MM.

7. The Roles of Exosomes in Cancer Vaccines

It is well established that immune escape and immunosuppression are essential in
cancer pathogenesis. Therefore, immunotherapy has become a potential strategy for cancer
therapy, which has shown significant therapeutic efficacy in many clinical trials [83]. The
goal of cancer immunotherapy is to stimulate the immune system to recognize and eradicate
cancer cells. DCs are important antigen-presenting cells (APCs) that can recognize tumor
antigens and present them to T cells, thereby activating specific T cells for an anti-tumor
response. Thus, DCs play an important role in cancer immunotherapy. However, DC-based
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immunotherapy strategies still have some difficulties regarding clinical applications. For
example, it is difficult to maintain the efficacy of DCs during long-term storage in vitro.
Moreover, when DCs are used in a large number of patients in a clinic, the quality of
the DC preparation and the method of DC administration in patients are difficult to
standardize [84]. In recent years, DC-derived exosomes (DC-EXs) have been able to
overcome these limitations and bring new hope for cancer immunotherapy. It has been
observed that DC-EXs can efficiently stimulate an immune response, comparably to the
immuno-stimulating ability of the parental DCs [16]. The interactions of exosomes, DCs
and other immune cells can regulate the immune responses [85]. Zitvogel et al. [86] showed
that DC-EXs can express the MHC-I, MHC-II and T cell costimulatory molecules, which
are required for presenting antigens to and activating T cells. In their study, acid-eluted
tumor peptide (AEP-P815 or AEP-TS/A)-pulsed DC-EXs were administered to the murine
tumor models that were developed by intradermally injecting P815 (an immunogenic but
very aggressive mastocytoma) and TS/A (a spontaneous mammary carcinoma) cells into
mice. They found that these tumor peptide-pulsed DC-EXs could induce a tumor-specific
cytotoxic T lymphocyte (CTL) response in vivo; meanwhile, the growth of the tumor
was inhibited in a T cell-dependent manner. Zhen et al. developed ectopic, orthotopic
and diethylnitrosamine (DENA)-induced autochthonous hepatocellular carcinoma (HCC)
mouse models. They found that α-fetoprotein (AFP)-expressing DC-derived exosomes (DC-
EXAFP) could induce a specific antitumor response and inhibit the growth of tumors in three
HCC mouse models [87]. Escudier et al. loaded MAGE3 antigen into DC-EXs to form a
vaccine; then, 15 patients with stage III/IV melanoma who met the inclusion and exclusion
criteria were vaccinated four times. No obvious toxicity (>grade II) was observed after
vaccination, suggesting that this DC-EX-based vaccine is relatively safe, and it is in a phase
I trial for melanoma patients [88]. Similarly, Morse et al. loaded the MAGE tumor antigen
into DC-EXs to form a vaccine, which was then administered to 13 patients (nine of them
finished this vaccine regimen) with advanced non-small cell lung cancer (NSCLC). The
result of a phase I trial showed that this DC-EX vaccine is safe and feasible. Furthermore,
the DC-EX vaccine can induce a specific T cell response in some NSCLC patients and
prolong the stable period of disease [89]. From the studies with animal models and clinical
trials described above, it is apparent that DC-EXs show the potential to be nanocarriers for
delivering specific antigens for cancer therapies. Furthermore, DC-EXs themselves can be
used as cell-free anti-cancer vaccines to be applied in cancer immunotherapy.

At present, the main specific antigens of MM that show potential in the targeting
therapy of MM include BCMA [90], HM1.24 [91], MUC-1 [92], MAGE-C1 [93], B7-H1 [94]
and HSP [95]. To date, there has been no investigation reporting the application of DC-EXs
in an anti-myeloma vaccine. However, based on the above studies, the encapsulation of
MM-specific antigens (such as BCMA, HM1.24 and MUC) in exosomes or DC-EXs with
myeloma-specific antigens as cell-free vaccines are promising, and need to be further
investigated in the hope of improving the efficacy of therapeutic vaccines for MM. In short,
the application of DC-EXs in anti-myeloma vaccines may exert stronger immune responses,
accompanied by better safety, biocompatibility [7], stability [96] and biodegradability [97]
in vivo (Figure 5).
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Figure 5. DC-EX-based vaccines induce an anti-cancer immune response in vivo. Cancer-specific antigens are loaded into
DC-EXs to form an anti-cancer vaccine. DC-EXs can express MHC-I, MHC-II and T cell costimulatory molecules. Therefore,
they can present antigens to CD8+ and CD4+ T cells, and induce the activation of specific T cells and a strong CTL response.
Then, CTLs release granzyme B, perforin and TNF-α to efficiently kill cancer cells. DC-EXs, DC-derived exosomes; MHC-I,
major histocompatibility complex class I; MHC-II, major histocompatibility complex class II.

8. Conclusions and Perspective

Although proteasome inhibitors such as bortezomib and carfilzomib, IMIDs such as
lenalidomide and pomalidomide, and ASCT have significantly improved the efficacy of
MM therapy in recent years, MM is still an incurable hematologic malignancy. It is well
established that the tumor-supportive effect of the BMM is the main reason for drug resis-
tance and therapy failure in MM. Exosomes play an important role in the tumor-supportive
BMM network; therefore, targeting the secretion of exosomes may become a promising
therapeutic strategy for MM. In addition, the abnormal expression of “cargo” (such as miR-
NAs) in exosomes may be used to help with the diagnosis and prognosis of MM. Therefore,
exosomes may become a possible diagnostic and prognostic tool for MM. Additionally, due
to the unique nano-level structure of the membranes, along with the safety, biocompatibil-
ity, stability and biodegradability of exosomes, the encapsulation of anti-myeloma drugs
in exosomes and surface modifications of exosomes with targeting molecules are very
promising strategies for the therapy of MM. In addition, MM is characterized by severe
immunodeficiency, including a reduction in anti-myeloma immune response, which results
in the immune escape and the survival of MM cells. Excitingly, DC-EXs have the potential
to be developed into anti-myeloma vaccines to induce stronger immune responses and
thus, may eliminate the minimal residual disease (MRD) in MM patients. In fact, there may
be a high demand for exosomes in the clinic; however, there is usually only a small number
of exosomes separated from cell supernatants. The isolation and purification methods for
exosomes are relatively time-consuming and expensive. These factors have brought great
challenges to the application of exosomes to cancer therapy. Therefore, the most important
problem to solve is developing new methods for producing large amounts of exosomes
cheaply. Moreover, exosomes derived from different cells are heterogeneous—some of
them can enhance immune responses, while some exert immunosuppressive effects. There-
fore, it is necessary to conduct further research on exosomes to ensure their safety and
efficacy in clinical applications.
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