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Abstract: Murine papillomavirus, MmuPV1, causes natural infections in laboratory mice that can
progress to squamous cell carcinoma (SCC) making it a useful preclinical model to study the role
of papillomaviruses in cancer. Papillomavirus can infect cells within hair follicles, which contain
multiple epithelial progenitor cell populations, including Lgr5+ progenitors, and transgenic mice
expressing human papillomavirus oncogenes develop tumors derived from Lgr5 progenitors. We
therefore tested the hypothesis that Lgr5+ progenitors contribute to neoplastic lesions arising in
skins infected with MmuPV1 by performing lineage tracing experiments. Ears of 6–8-week-old
Lgr5-eGFP-IRES-CreERT2/Rosa26LSLtdTomato mice were treated topically with 4-OH Tamoxifen to
label Lgr5+ progenitor cells and their progeny with tdTomato and, 72 h later, infected with MmuPV1.
Four months post-infection, tissue at the infection site was harvested for histopathological analysis
and immunofluorescence to determine the percentage of tdTomato+ cells within the epithelial lesions
caused by MmuPV1. Squamous cell dysplasia showed a low percentage of tdTomato+ cells (7%),
indicating that it arises primarily from non-Lgr5 progenitor cells. In contrast, cutaneous SCC (cSCC)
was substantially more positive for tdTomato+ cells (42%), indicating that cSCCs preferentially arise
from Lgr5+ progenitors. Biomarker analyses of dysplasia vs. cSCC revealed further differences
consistent with cSCC arising from LGR5+ progenitor cells.

Keywords: Lgr5; mouse papillomavirus; cell of origin

1. Introduction

The first discovered papillomavirus, cottontail rabbit papillomavirus (CRPV, originally
called Shope papillomavirus, recently renamed as a kappapapillomavirus), was discovered
by Dr. Richard Shope in 1933 in rabbits, where it caused keratinous carcinomas [1]. CRPV
became the first animal virus for studying the papillomavirus’ natural life cycle. Decades
later, Dr. Stefania Jabłońska proposed the etiological association of human papillomavirus
(HPV) with skin cancer, and, a few years later, Dr. Harald zur Hausen postulated that HPV,
rather than the herpes virus, was responsible for cervical cancer [2–5]. This eventually led
to his laboratory’s discovery of HPV16 and 18, the two strains most associated with cervical
cancer. Today, approximately 5% of all human cancers are recognized to be etiologically
attributable to HPV.

Despite significant advances in our understanding of the role of HPV in cancer, the
study of the natural viral life cycle of papillomaviruses in vivo has been limited to lab-
oratory animal species, for which there are identified papillomaviruses. This is because
papillomaviruses are species-specific [6]. Therefore, one cannot study HPVs in vivo. Histor-
ically, studies on papillomaviruses have been performed in rabbits and cows, while for most
species, papillomaviruses only cause disease within the stratified squamous epithelium,
bovine papillomaviruses are classified as fibropapillomaviruses because they also cause
the hyperplasia of the underlying dermal fibroblasts.
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Most papillomaviruses cause disease only within stratified squamous epithelium.
In cutaneous tissue, the stratified squamous epithelium is subclassified into different
compartments, such as the interfollicular epidermis, sebaceous glands, and hair follicles [7].
Papillomavirus research has focused on the bulge region of the hair follicle because it
contains epithelial progenitor cells that can form colonies in tissue culture with high
efficiency compared to cells from other areas of the hair follicle and have the capacity for
high rates of proliferation [8–11]. Specifically, in vivo, there is a burst of cell proliferation
within the bulge region during the early anagen phase of the hair follicle cycle wherein bulge
stem cells divide to generate transiently amplifying cells that contribute to the generation
of the hair shaft [9]. In cottontail rabbits, the bulge region was shown to harbor CRPV
transcripts, raising the possibility that papillomaviruses infect epithelial progenitor cells
within this region of the hair follicle [12]. This discovery formed the basis for future studies
on the effects that papillomaviruses have on hair follicle cells. A significant discovery
utilizing lineage tracing demonstrated that, in HPV16 transgenic mice, neoplastic lesions
consisted of Lgr5+ progeny [13]. Since Lgr5 serves as a marker for bulge-residing epithelial
progenitor cells; this finding suggested that Lgr5+ cells likely play a role in HPV-associated
pathogenesis [14,15]. Another study found an increase in K15-positive cells, a marker for
Lgr5+ progeny, in the skin of transgenic mice expressing the HPV16 E7 oncogene [16]. In
addition, papillomavirus can upregulate several other markers associated with increased
stemness [16–21].

We utilized Lgr5-eGFP-IRES-CreERT2/Rosa26LSLtdTomato (hereafter referred to as
Lgr5 reporter) mice to perform lineage tracing in the context of natural cutaneous in-
fection by the recently discovered mouse papillomavirus, MmuPV1 [22]. We used this
virus to discern the contributions made by Lgr5+ cells in the development of squamous
dysplasia/papillomas and associated squamous cell carcinomas (SCCs) in mouse skin.

2. Materials and Methods
2.1. Animals

Lgr5-eGFP-IRES-CreERT2 mice were acquired from Jax labs (strain number: 008875)
and generated by Dr. Hans Clevers’ lab (Hubrecht Institute, Utrecht, The Netherlands) [23].
Rosa26LSLtdTomato mice were acquired from Jax labs (strain number: 007905) [24].
Ros26LSLtdTomato mice were backcrossed onto the FVB (Taconic) background for 10 gener-
ations. Lgr5-eGFP-IRES-CreERT2 mice were crossed onto the FVB background for 7 genera-
tions. Sires heterozygous for Lgr5-eGFP-IRES-CreERT2 were bred with dames homozygous
for Rosa26LSLtdTomato to generate experimental mice.

2.2. Virus and Infection

Crude viral extracts of MmuPV1 were isolated from papillomas on nude mice and
quantified to determine the viral genome equivalents (VGE) per µL, as previously de-
scribed [25]. Master stocks at 3 × 109 VGE/µL were stored frozen at −80 ◦C and were
less than a year old at the time of experimental use. Stocks were diluted in PBS to achieve
a working concentration of 1 × 109 VGE/µL. All mice were infected on the same day
with freshly thawed aliquots from the same master stock. Anesthetized mice were lightly
scarified on their ears with a 27-gauge needle, and 2 µL of virus stock was applied to the
scarified area. Mock-infected mice received 2 µL of PBS instead and were housed separately
from infected animals.

2.3. 4-OH Tamoxifen

Acetone was placed in 37 ◦C water bath and used to dissolve 4-OH tamoxifen at a
concentration of 15 mg/mL (Sigma-Aldrich, Saint Louis, MO, USA, Cat. No. T176-50MG).
This aliquot was protected from light using foil. Then, 20 µL was applied topically to
each mouse ear and anesthetized mice were held for an additional 20–30 s until no visible
remnants of acetone could be seen. Mice were then released back into their cages.
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2.4. RNA In Situ Hybridization

Three representative slides were selected from three different animals based on patho-
logical scoring in addition to two slides from mock-infected animals. In situ hybridization
was conducted using the RNAscope 2.5 HD assay-brown kit (Advanced Cell Diagnostic,
Newark, CA, USA) as previously described [26]. MusPV-E6-E7 probes were used to detect
viral genetic material (Advanced Cell Diagnostic Newark, CA, USA, Cat No. 409771).

2.5. Immunofluorescence

Representative slides were selected based on pathological scoring. At least three slides,
each from three different animals, were examined to select representative images for pS6,
Sox9, and tdTomato images. Briefly, slides were deparaffinized in xylene, rehydrated in
ethanol. Next, 3% H2O2 in methanol was applied to slides for 10 min. The slides were
then boiled in 10 mM citrate buffer for 20 min (pH 6.0). Slides were then blocked with
blocking buffer (Cat. No. FP1012, PerkinElmer, Boston, MA, USA) at room temperature
(RT) in a humidified chamber for one hour. Slides were then incubated overnight in
primary antibody at 4 ◦C in a humidified chamber, overnight. The next day, goat anti-
rabbit-HRP secondary antibody was applied to slides (1:500). Biotin-tyramide (10 µg/mL)
was then applied. AlexaFluor 488 goat anti-rabbit (Invitrogen) or Streptavidin-Alexa Fluor-
594 (ThermoFisher Scientific, Waltham, MA, USA, Cat. No. S-32356) were applied as
secondary antibody (at 1:1000). DAPI was also applied to slides. Slides were mounted
in a prolonged diamond antifade mountant (Invitrogen Cat. No. P36970). Anti-pS6 (Cell
Signaling Cat. No. 4858) was used at 1:100 dilutions. Anti-Sox9 (Abcam, Cambridge,
UK, Cat No. Ab185966) was diluted at 1:400, and Tris-EDTA buffer at pH 6 was used
for antigen retrieval instead of citrate buffer. Sox9 and pS6 were detected using tyramide
signal amplification (TSA) [27]. Anti-K14 (Biolegend, San Diego, CA, USA, Cat No. 905301)
was used at 1:1000. Anti-dsRed (Takara Cat. No. 632496) was used at 1:200 and used
in conjunction with anti-K14 (ThermoFisher, Waltham, MA, USA, Cat. No. MA5-11599)
at 1:500 to detect tdTomato without TSA. The same steps were followed as stated above
except no treatment with H2O2, 5% goat serum in 5% milk was used for blocking instead of
PerkinElmer blocking buffer, goat anti-rabbit-HRP secondary antibody was not applied,
and nor was Biotin-tyramide used.

2.6. tdTomatoRed Quantification

Each lesion was quantified with three images per slide across five slides within the
lesion. Images were taken at 400× total magnification and K14+ and tdTomato+ cells were
manually counted.

2.7. Statistical Analysis

A Wilcoxon rank sum test was performed to calculate the significance of results
using MSTAT statistical software, version 7.0.1 (available online via https://oncology.
wisc.edu/mstat/, accessed on 6 July 2022). This software was written by Dr. Norman
Drinkwater, Department of Oncology, McArdle Laboratory for Cancer Research, University
of Wisconsin, Madison WI 53705, USA.

3. Results
3.1. Squamous Cell Carcinomas Contain many Lgr5 Progeny Cells

Experiments were performed on 8–10-week-old Lgr5 reporter mice, as schematically
illustrated in Figure 1 and described in detail in the Materials and Methods section. Briefly,
their ears were treated topically with 20 µL of 15 mg/mL 4-OH tamoxifen to activate Cre,
which is selectively expressed in the LGR5+ epithelial progenitor cells, thereby turning on
the expression of tdTomato in the same Lgr5+ epithelial progenitor cells as well as all of
their descendants. Then, 3 days later, we infected the ears with MmuPV1 as previously
described [28]. This involves lightly scarifying the epidermis to allow for infection by

https://oncology.wisc.edu/mstat/
https://oncology.wisc.edu/mstat/
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the virus. At 16 weeks post-infection, mouse tissue was harvested for routine histologic
analysis and immunofluorescence.
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* WNL: within normal limits. 

Figure 1. Graphical representation of experimental methods for lineage tracing using Lgr5-eGFP-
IRES-CreERT2/Rosa26LSLtdTomato (Lgr5 reporter) mice. A representation of a cutaneous hair follicle
with approximate location of Lgr5+ progenitor cells is shown. Mice were treated with 4-OH tamoxifen
to induce constitutive expression of tdTomato in Lgr5+ progenitor cells and their descendants. Mice
were scarified and infected with virus 72 h later, and tissue was harvested 4 months later. The
hypothesis being tested is that LGR5+ epithelial progenitor cells preferentially give rise to MmuPV1-
induced neoplastic disease. If the hypothesis is correct, then the neoplasia will be tdTomato+.

Formalin-fixed, paraffin-embedded sections were stained with hematoxylin and eosin
and evaluated by a pathologist (D.B.). MmuPV1-infected sites showed a spectrum of
squamous dysplasia/squamous cell carcinoma in situ, which could be flat or exophytic
(squamous papilloma), in addition to other infected sites with well-differentiated cutaneous
squamous cell carcinoma (cSCC) (Table 1 and Figure 2).

The disease sites contained evidence for the MmuPV1 E6/E7-specific nucleic acids as
detected via RNAscope (Figure 2). To look for whether Lgr5+ progenitor cells had been
infected and contributed to the lesions, we performed immunofluorescence for tdTomato.
There were a few tdTomato+ cells within the inter-follicular epidermis of the mock-infected
skin (Figure 2), which is expected as the infection process requires mechanical injury of the
epidermis. The migration of Lgr5 progeny outside of the bulge region is well-documented
in skin injury [29–31]. Based upon the studies cited above, which provided evidence for
CRPV infecting the bulge region in rabbits and HPV oncogenes giving rise to lesions
consisting of Lgr5 progeny, we predicted that squamous dysplastic lesions/papillomas
caused by MmuPV1 would preferentially arise from Lgr5+ epithelial progenitor cells, but
this is not what we found. Squamous dysplasia were found to contain only low numbers
of tdTomato+ cells (Figure 2). In contrast, cutaneous squamous cell carcinomas (cSCC)
appeared to have preferentially arisen from the infection of Lgr5+ epithelial progenitor
cells because they had higher percentages of tdTomato+ cells (Figure 2). We quantified the
abundance of tdTomato+ cells in five representative lesions scored by the pathologist as
dysplasia or cSCC (Figure 3). The percent of tdTomato+ cells was quantified relative to
keratin 14 (K14+) cells, a marker abundantly expressed in MmuPV1-infected squamous
epithelium. Dysplastic tissue harbored on average 7% tdTomato+ cells while regions
histologically representing cSCC harbored on average 42% tdTomato+ cells. This difference
was highly significant (p = 0.008, two-sided Wilcoxon rank sum test).
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Table 1. Disease incidence in experimental mice.

Treatment WNL * Dysplasia cSCC

4-OH + Mock 12 0 0
4-OH + MmuPV1 14 14 6

* WNL: within normal limits.
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Figure 2. tdTomato+ cells are found abundantly in cSCC. Representative images show that MmuPV1
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cells within mock-infected and dysplastic skin (red boxed areas are zoomed digitally for easier view-
ing). In contrast, large portions of cSCC were composed of tdTomato+ cells. For each sample, serial
or near serial slides were used for the different stainings. Images are taken at 200× magnification.
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Figure 3. Quantification of tdTomato+ cells at high magnification reveals substantially more td-
Tomato+ cells in cSCC compared to dysplasia (* p = 0.008, two-sided Wilcoxon rank sum test). Images
were taken at 400× magnification. Arrow points to examples of rare tdTomato+ cells in dysplasia.
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3.2. Sox9 Is Upregulated in MmuPV1 Infected Sites

Sox9, is a marker for hair follicle bulge resident epithelial progenitor cells and is
normally found expressed in the bulge region and surrounding areas [32,33]. Consistent
with this, Sox9 staining was limited to the hair follicles within the mock-infected tissue
(Figure 4, see boxed areas). In dysplasia, strong Sox9 staining was again seen in the hair
follicles associated with dysplasia (Figure 4, see boxed areas); however, light Sox9 staining
was also seen throughout the dysplasia as well (Figure 4). Stronger staining for Sox9
was evident throughout the SCCs (Figure 4) and was consistent amongst multiple SCCs
stained. These findings are comparable to a previous report indicating that K15+ cells are
upregulated in HPV E6/E7-expressing mouse tissue [16]. K15- and Sox9-positive cells were
highly overlapping.
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Figure 4. Strong Sox9 staining was restricted to hair follicles in mock-infected skin and dysplasia
(see red boxes), with a low level of Sox9 staining found throughout the dysplasia. Higher level Sox9
staining was evident throughout cSCC. Tyramide signal amplification (TSA) was used to detect Sox9.
K14 staining intensity was variable amongst SCC. Images were taken at 400× magnification.

3.3. Phospho-S6 Is Upregulated in MmuPV1 Infected Sites

Phospho-S6 (pS6), a marker for the mTOR signaling pathway, is upregulated in
HPV-associated cancers and has been extensively used as a biomarker for characterizing
progressive neoplastic disease in multiple HPV transgenic mouse models [34,35]. It also was
previously reported to be upregulated in oral tissue infected by MmuPV1 [36]. Therefore,
we monitored pS6 levels in the different types of tissues from our MmuPV1 infection
experiment. In MmuPV1-infected ears, we found that pS6 was substantially upregulated in
cSCCs compared to either dysplasia or mock-infected skin (Figure 5).
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used to detect pS6. Note the increased expression of pS6 in cSCC lesions. Images were taken at
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4. Discussion

There is growing evidence indicating that papillomavirus-associated disease arises
from an epithelial progenitor cell. With lineage tracing only being possible in mice, this
evidence has been restricted to studying disease in HPV-transgenic mice to date [13]. With
the discovery of MmuPV1, we were able to observe, in the context of a natural infection
model for papillomavirus-induced pathogenesis, that Lgr5+ progenitor cells, which reside
in the bulge of the hair follicle, contribute substantially to PV-associated SCCs in mouse
skin. We used genetically engineered LGR5 reporter mice to test the hypothesis that
LGR5+ epithelial progenitor cells preferentially give rise to MmuPV1-induced neoplastic
disease (schematically illustrated in Figure 1). Our results indicate that this hypothesis
is correct for squamous cell carcinomas (SCC) arising from MmuPV1 infection but not
correct for the precancerous dysplasias. The dysplasias were composed of a minority of
tdTomato+ cells indicating that MmuPV1 infects not just LGR5+ epithelial progenitor cells
but also other epithelial cells that contribute to long lasting dysplastic lesions (at least
4 months based upon our experiments). Yet, the SCCs arising from these dysplastic lesions
were preferentially tdTomato+. We interpret these finding to indicate that the LGR5+
epithelial progenitor cells possess intrinsic properties that support neoplastic progression
by MmuPV1, and by inference, non-LGR5+ epithelial progenitor cells are missing intrinsic
properties that support neoplastic progression.

Our results are consistent with those arising from the study of HPV transgenic mice
that HPV oncogene-induced neoplastic lesions were composed of Lgr5+ progeny cells [13].
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In another HPV transgenic model study that there was an expansion of K15-positive cells,
which are frequently the progeny of Lgr5+ epithelial progenitor cells [14–16,37]. We utilized
Sox9, a marker with a highly similar expression pattern to that of K15, to provide further
evidence in support of an expansion of the Lgr5+ progeny population and upregulation of
stem-like cells within the cSCCs that we observed. This expansion of the Sox9 population of
cells indicates a disruption of the balance of stem cell renewal and differentiation. Sox9 has
been observed to be both up and downregulated in various cervical cancer cell lines and
may either promote or suppress tumor growth [19,38,39]. Sox9 may also bind to the LCR
of HPV16 variants [40] and Sox9 and K15 transcripts were found to be downregulated in
HPV16 E6 transgenic mouse skin [41]. Thus, it remains unclear what effect HPV oncogenes
have on Sox9 expression.

The use of a stem cell or stem-cell-like population to harbor a virus may be advanta-
geous to the virus. These cells are less subject to immune detection and capable of more
self-renewal than non-stem cells [37,42]. Furthermore, E7 from cutaneous HPVs 5 and 8 can
cause the upregulation of EpCAM and CD44, surface proteins associated with increased
stemness [43]. MmuPV1 E6 is capable of binding to MAML1, which inhibits NOTCH
signaling, thus inhibiting differentiation [44]. A similar function and mechanism is found
in cutaneous HPV types as well [45,46].

Lgr5+ cells have been found within mucosal tissues [47–49]. When Lgr5 is overex-
pressed in cervical cancer cells, there are increases in the tumorigenicity of the cells when
grafted onto mice [50]. The knockdown of Lgr5 results in the reduced expression of stem
cell-associated factors, notably KLF4 and Oct4 [50]. Lgr5 expression also increases with
disease severity in human oral squamous cell carcinoma, although the data were not
stratified based on HPV status of the lesions [48,51]. Although Lgr5 has been detected in
both the oral mucosa and mucosal epithelium lining the female reproductive tract [47,49],
the characterization of stem cells via lineage tracing within these sites is currently not
well-known. Thus, Lgr5’s status as a multipotent stem cell population within these tissues
in not yet known.

It is important to consider that LRIG1+ epithelial progenitor cells may serve as another
population of interest. LRIG1 is found to be upregulated in a variety of HPV-associated
cancers [18,52–54]. For this reason, we posit that other populations of epithelial progen-
itor cells may exist that can give rise to cancer associated with those sites, specifically
LRIG1+ epithelial progenitor cells. LRIG1+ populations of cells have been found to be
increased in HPV8 transgenic disease models [18]. The upregulation of LRIG1+ cells is
correlated to HPV+ oropharyngeal and cervical cancers as well [52,53]. This study also
found no upregulation of the Lgr5+ progenitor cell population, but ultimately, lineage
tracing is needed to conclude the origins of disease in any site [18]. Similar to the Lgr5
population of cells, LRIG1’s status as a multipotent stem cell population within cervical
and oropharyngeal tissues is not yet known.

Over the course of time, it may be found that our study is an indication of the impor-
tance of Lgr5-positive cells in their cellular contribution to SCCs caused by papillomavirus.
Although it has not been found to be upregulated to the same extent, LRIG1 is also found
in HPV-associated SCCs, expression. However, this alone does not indicate the origin of
disease [52,53]. That being said, it is entirely possible that the upregulation of LRIG1+ cells
is reflective of the origin of disease within these tissue sites. Further research is needed to
establish if LRIG1, Lgr5, or both contribute to the development of SCCs associated with
papillomavirus infection.
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