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Abstract

Identifying the historical processes that drive microhabitat transitions across deep time is of

great interest to evolutionary biologists. Morphological variation can often reveal such mech-

anisms, but in clades with high microhabitat diversity and no concomitant morphological

specialization, the factors influencing animal transitions across microhabitats are more diffi-

cult to identify. Lungless salamanders (family: Plethodontidae) have transitioned into and

out of the arboreal microhabitat many times throughout their evolutionary history without

substantial morphological specialization. In this study, we explore the relationship between

microhabitat use and broad-scale climatic patterns across species’ ranges to test the role of

climate in determining the availability of the arboreal microhabitat. Using phylogenetic com-

parative methods, we reveal that arboreal species live in warmer, lower elevation regions

than terrestrial species. We also employ ecological niche modeling as a complementary

approach, quantifying species-level pairwise comparisons of niche overlap. The results of

this approach demonstrate that arboreal species on average display more niche overlap

with other arboreal species than with terrestrial species after accounting for non-indepen-

dence of niche model pairs caused by geographic and phylogenetic distances. Our results

suggest that occupation of the arboreal microhabitat by salamanders may only be possible

in sufficiently warm, low elevation conditions. More broadly, this study indicates that the

impact of micro-environmental conditions on temporary microhabitat use, as demonstrated

by small-scale ecological studies, may scale up dramatically to shape macroevolutionary

patterns.

Introduction

How and why organisms transition to, and then occupy previously uninhabited microhabitats

is of major interest to biologists. A variety of ecological and evolutionary patterns have been

identified as mechanisms that promote or support transitions across microhabitats. For exam-

ple, the Caribbean Anolis lizards repeatedly colonizing specific arboreal microhabitats has

been attributed to interspecific competition [1]. Fossil evidence of post-cranial skeletal
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adaptations in early tetrapods demonstrate the importance of morphological adaptation in

promoting the vertebrate transition to life on land [2], and genome duplication has allowed

many plant lineages to colonize mountain tops and other previously uninhabited regions

[3]. Arboreal salamanders represent a similarly intriguing habitat transition; salamanders’

strong dependence on water for nearly all aspects of life makes tree-tops an unlikely habitat

for these creatures. Despite this, salamanders have transitioned to arboreal life several times

across the history of the order [4], yet the mechanisms behind these transitions remain largely

unexplained.

Across salamanders’ (order: Caudata) evolutionary history, arboreality has evolved at least

five times and has been subsequently lost nearly 60 times [4]. Baken and Adams [4] also found

a dramatic difference in transition rates between terrestrial and arboreal life, such that species

abandon arboreal microhabitats 23 times more readily than they colonize them. These discov-

eries suggest that some strong force is limiting the availability of the arboreal microhabitat on

a macroevolutionary scale, yet an explanation for the macroevolutionary dynamics and the

present state of salamander arboreality remains elusive. For salamanders, arboreal life does not

require morphological specialization of body or foot shape [4, 5], indicating that the occupa-

tion of arboreal microhabitats is not constrained by locomotive challenges. It is also unlikely

that arboreality is maintained primarily by competition among species, as arboreal salaman-

ders are found both in sympatry and allopatry with terrestrial salamanders [6]. One remaining,

and as of yet unexplored, possible explanation is that climatic conditions dictate whether the

arboreal microhabitat is suitable for salamanders.

For this study, we suggest that abiotic conditions may act as a determinant of primary

microhabitat use in lungless salamanders for several reasons. First, it is well-established that

local environmental conditions influence plethodontid landscape movement and short-term

microhabitat selection [7–12]. Second, Baken and colleagues [13] revealed a strong correlation

between broad climatic patterns and plethodontid surface area to volume ratio (SA:V) evolu-

tion, demonstrating the power of climate to influence macroevolutionary patterns within this

family. Finally, SA:V, the trait shown to be tied to climatic variation, is directly related to two

physiological demands that are amplified by arboreal life: moisture conservation and oxygen

acquisition. Arboreal microhabitats inherently impose a higher risk of desiccation than do

nearby terrestrial microhabitats, as they lack the cover objects (e.g., leaf litter, fallen logs),

humidity, and protective boundary layer of the forest floor (although arboreal refugia exist,

such as pools of rainwater caught by arboreal bromeliads [14]). Lizards also use greater ener-

getic resources when climbing around the complex, three-dimensional environment of a tree

[15, 16], and we propose this energetic cost might also be present for salamanders (although

the precise costs might depend on body size). Consolidating these lines of evidence, we

hypothesized that the arboreal microhabitat is only available to plethodontids under certain

climatic conditions that promote humidity and efficient cutaneous oxygen exchange. Thus, we

predicted that arboreal species occupy geographic ranges with climates characterized by high

humidity and low elevation (to accommodate an increased demand for oxygen available at

lower elevations), whereas terrestrial species can occupy a wider variety of climates.

To address our hypothesis, we extracted and summarized present-day climatic variables

from new-world plethodontid species’ occurrence data. We then conducted a series of multi-

variate phylogenetic ANOVAs to compare the climatic conditions between species’ use of

arboreal and terrestrial microhabitats. While these methods can appropriately account for phy-

logenetic relatedness, they require that data points across species have the same dimensional-

ity, necessitating the reduction of climate data to summary statistics. Thus, we sought to

complement our main analyses with ecological niche modeling, which does not require such

summarization. For this ecological niche modeling approach, we quantified niche overlap
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across each species pair, and compared intra-microhabitat niche overlap to inter-microhabitat

niche overlap while accounting for geographic and phylogenetic distances. Our results from

both approaches indicate that salamander arboreality is only observed in regions characterized

by warm temperature, high potential evapotranspiration, and low elevation, implicating cli-

mate as an influential factor in determining microhabitat use across Plethodontidae.

Materials and methods

The family of lungless salamanders, Plethodontidae, makes up roughly 65% of all extant sala-

mander species (28 genera, ~478 out of 738 named species [17]), is geographically widespread,

and includes all known extant arboreal salamanders [4]. Although recent physiological work

has demonstrated that salamanders display greater resistance to water loss than previously

considered [see 18, 19], their skin still has relatively less resistance to evaporative water loss as

compared to other vertebrate taxa [20]. Thus they are relatively more prone to desiccation,

and as a consequence most species are often observed utilizing rocks and logs to hide under

for desiccation avoidance [14]. Adult body sizes range from 15 mm to over 100 mm snout-

vent length [4], and species occupy a wide variety of microhabitat types, including terrestrial,

aquatic, and arboreal microhabitats [4, 5, 14]. Most plethodontid species live in North Amer-

ica; however, several species live in South America, Europe, and South Korea [14, 17]. For this

study, we focused on 277 North and South American plethodontids for which appropriate

occurrence, phylogenetic, and microhabitat data were available.

Microhabitat use

We classified species’ primary and, where applicable, secondary adult microhabitat based on

primary literature, species descriptions, field observations, and the IUCN [21] and Amphibia-

Web [17] databases. From these primary and secondary microhabitat categories, we applied

six variable classification schemes following [4]. This allowed us to account for the non-dis-

crete nature of microhabitat use in this family as well as the possible importance of secondary

microhabitats in driving ecological and evolutionary patterns. Briefly, species were assigned a

microhabitat type by translating their primary and secondary microhabitats into a single cate-

gory (terrestrial: T, arboreal: A, cave-dwelling: C, fossorial: F, saxicolous: S, aquatic: W, or

semi-aquatic: SW) according to three considerations: whether a separate category of ‘semi-

aquatic’ (SW) species was included, the data source defining arboreality, and the inclusion of

secondary microhabitats (majority-rule, ‘-M’, or lenient rules, ‘-L’; Table 1).

This resulted in six different classification schemes (6-M, 6-L, 7-M, 7-L, 6-McM, and

6-McL), where the schemes with ‘7-’ as their first designator included semi-aquatic as a sepa-

rate species (semi-aquatic species were classified as either aquatic or another non-aquatic

microhabitat type under the other schemes). Schemes with ‘-Mc-’ utilized an independent

data source for classifying species as arboreal (McEntire’s species classifications of arboreality,

Table 1. Microhabitat classifications schemes.

Scheme Majority Rule or Lenient Possible Microhabitat Categories Alternative Arboreality Data Source

6-M Majority Rule A, C, F, S, T, W NA
6-L Lenient A, C, F, S, T, W NA
7-M Majority Rule A, C, F, S, T, W, SW NA
7-L Lenient A, C, F, S, T, W, SW NA

6-McM Majority Rule A, C, F, S, T, W McEntire 2016

6-McL Lenient A, C, F, S, T, W McEntire 2016

https://doi.org/10.1371/journal.pone.0255393.t001
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which includes vegetation-climbers as arboreal [22]). This last consideration of majority-rule

(‘-M’) versus lenient (‘-L’) schemes differed in that majority-rule schemes simply reflected the

primary microhabitat, whereas the lenient schemes considered a species to be non-terrestrial if

either their primary or secondary microhabitat was non-terrestrial. As most results were con-

sistent across classification schemes, we reported the 6-M results in the main text, indicated

when alternative classification schemes contradicted 6-M results, and results from all classifi-

cation schemes can be found in the Supporting information. Although this study focuses on

arboreal and terrestrial species, other species were included in the analysis to accurately encap-

sulate the full range of statistical climatic variation inhabited by this family.

The ‘Majority Rule or Lenient’ column defines which schemes used species’ secondary

microhabitats to define microhabitat use (applied when primary microhabitat was terres-

trial). In these schemes, species were categorized to describe their more specialized micro-

habitat under the assumption that the terrestrial microhabitat is the more generalized

microhabitat. The column ‘Possible Microhabitat Categories’ distinguishes between schemes

that considered ‘semi-aquatic’ to be a category distinct from ‘terrestrial’ or ‘aquatic’, as has

been done in other related papers. The final column identifies the schemes for which an

alternative data source for defining arboreality was employed. This source [22] only listed

facultative and obligately arboreal species, so for species not mentioned in that manuscript,

classifications matched the other schemes with the corresponding criteria. Detailed descrip-

tion of each classification scheme can be found in [4], and species’ classifications under each

scheme are provided in the S1 Table.

Distribution and environmental data

As described below, environmental patterns were evaluated using two complementary

approaches: ecological niche modeling (based on all locality data), and phylogenetic compara-

tive analyses (based on species-level mean data). For both approaches, we first obtained envi-

ronmental parameters using species occurrence data for 277 North and South American

plethodontid species from the online VertNet (accessed 8/17/2020 [6]) and Global Biodiversity

Information Facility (accessed 10/27/2020, www.gbif.org) databases. These datasets were

pruned such that outliers and erroneous points were excluded, erring on the side of removing

questionable points. Multiple occurrence points within the same climate pixel (described

below) were also excluded to avoid issues of spatial autocorrelation. For the species repre-

sented by at least three occurrence points (after spatial autocorrelation pruning), we then

extracted 12 climate variables from each verified occurrence point, resulting in climate data

from 56,092 localities (3 to 7358 localities per species, mean = 202.5). Climatic variable selec-

tion was limited to those publicly available across the full geographic extent occupied by the

included species and followed previous studies of amphibian niche variation [23–25] and

microhabitat use in plethodontids [11, 26–29] to capture abiotic factors that are known to

influence plethodontid survival and behavior. These variables represent yearly averages and

extremes of climate variation collected over the past 40 years and included nine WorldClim

variables for air temperature, precipitation, and potential evapotranspiration (Annual Mean

Temperature: BIO1, Maximum Temperature of the Warmest Month: BIO5, Minimum Tem-

perature of the Coldest Month: BIO6, Annual Precipitation: BIO12, Precipitation of the Wet-

test Quarter: BIO16, Precipitation of the Driest Quarter: BIO17: [30]; Annual PET: PET.A,

PET of the Wettest Quarter: PET.W, and PET of the Driest Quarter: PET.D: [31]). We also

included elevation (Elev: [31]), yearly climatic moisture (CM: [31]), and yearly average cloud

cover (CC) following Peterson and Nakazawa [32] (IPCC 2001, 0.5 arc minute resolution

resampled to 2.5 arc minute resolution to match the other climate datasets, ~4.5 km at
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equator). Other climate variables, such as Water Vapor Pressure, were excluded due to auto-

correlation with other variables or exclusion in other related investigations. We acknowledge

that climatic data obtained in this fashion are coarse-grained, and that intraspecific variation

in both activity patterns and microhabitat use may obscure the association between microhabi-

tat use and the climatic environment. However, recent work on plethodontid climatic enve-

lopes, obtained at both micro- and macro-scales reveals a close association between the two

[12], implying that the climate variables extracted for this study may serve as a first approxima-

tion for describing the general patterns and boundaries of microenvironments available to

individual salamanders (see Discussion).

Phylogenetic comparative analyses

We used a phylogenetic comparative approach to assess differences in climatic patterns

between microhabitat types. Here, species-specific summary statistics (i.e., multivariate spe-

cies means) were obtained for each climate variable, resulting in five values per climate vari-

able (5th percentile, 25th percentile, mean, 75th percentile, and 95th percentile) per species

(S1 Table). We then performed several phylogenetic ANOVAs of climate and microhabitat,

examining pairwise comparisons of arboreal versus terrestrial species. We assessed signifi-

cance via randomized residual permutation procedures [33, 34] in the package, RRPP [35,

36] using R v.3.6.0 [37] and accounted for multiple comparison error rate inflation via

sequential Bonferroni.

The first phylogenetic ANOVA tested whether the combined dataset of all summary statis-

tics differed significantly between arboreal and terrestrial species. As the raw variables were

represented in incommensurate units, the summary statistics were converted to standard nor-

mal deviates (μ = 0; std = 1) to allow for meaningful multivariate analysis [see 38, 39]. Because

climate variables are often highly correlated, we next performed a principal component analy-

sis (PCA) on the normalized data and extracted the first five PC axes (explaining >87% of the

overall climate variation) to test against microhabitat. Finally, we tested each climate variable

separately (each climate variable was a five-dimensional variable of the non-normalized sum-

mary statistics).

To account for similarity due to evolutionary relatedness, all phylogenetic ANOVAs used

the time-calibrated phylogeny from [40] of 516 Caudata species. This phylogenetic reconstruc-

tion was based on three mitochondrial and four nuclear genes and used Bayesian approaches

under a pure-birth speciation prior on the tree topology and divergence times, an uncorrelated

lognormal molecular clock, and 12 node calibrations from Shen et al. ([41]; for additional

details see [40]). We pruned the maximum clade credibility tree to match the species used in

this study.

To test the robustness of our results, we repeated all analyses across each microhabitat clas-

sification scheme described above and on a reduced dataset of only tropical arboreal and tropi-

cal terrestrial species under each classification scheme (132 species under 6-M). This tropical

robustness consideration addresses the potential bias caused by the unequal representation of

arboreality across temperate and tropical regions (arboreality is more common in tropical

clades). We also calculated uncertainty intervals of all Z statistics by repeating the analyses

across the 1000 pruned posterior chronograms from [40] phylogenic reconstruction to

account for phylogenetic uncertainty.

Ecological niche modeling

Next, we used ecological niche modeling (ENM) to complement our main phylogenetic com-

parative analyses. Specifically, we constructed niche models for each species, based on climatic
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data from all geographic localities, using the maximum entropy algorithm implemented in

MAXENT v3.4.1 [42, 43] using the R package, dismo [44]. This algorithm generally outper-

forms other ENM methods [43, 45, 46] and is less sensitive to sample size [47]. For this analy-

sis, we only included species with 15 or more occurrence points available after pruning (183

species, 15 to 7358 localities per species, mean = 302.5), as MAXENT demonstrates strong pre-

dictive abilities with as few as 15 localities [48]. We then quantified degree of niche overlap

between each species pair using two common metrics, Schoener’s D and Warren’s I [49]

(‘nicheEquivalency’ function in the R package dismo; [44]). These similarity metrics range

from 0 (no niche overlap) to 1 (identical niches) and are calculated by taking the difference

between projected suitability scores across microhabitat models within each map pixel.

We then evaluated the mean value of niche overlap for three types of microhabitat compari-

sons: inter-microhabitat pairs of one arboreal and one terrestrial species (AT pairs), and intra-

microhabitat pairs of either two arboreal species (AA pairs) or two terrestrial species (TT

pairs) as defined by the various microhabitat classification schemes. To account for non-inde-

pendence due to geographic proximity and phylogenetic history between species, we first

regressed the niche overlap values onto both geographic and phylogenetic distances of the spe-

cies pairs. Geographic distance was quantified as the Great Circle (WGS84 ellipsoid) distance

between mean occurrence points for each species using the ‘spDists’ function in the sp pack-

age in R [50, 51], and phylogenetic distance was extracted from the phylogenetic variance-

covariance matrix constructed using the ‘vcv’ function in the ape package in R [52]. We then

extracted the residuals from that regression to test against microhabitat pairing type (AA, TT,

and AT) in an ANOVA framework. Significance was assessed using residual randomization

procedures in a similar manner as the comparative approach described above. These ENM

analyses were repeated across all microhabitat classifications and across the 1000 pruned pos-

terior chronograms as above.

Results

Phylogenetic comparative analyses

The results from all phylogenetic ANOVAs across microhabitat schemes of the full species

dataset were in agreement, thus only results from the 6-M analysis are presented below with

exceptions noted. 6-M was selected here because it represents the most conservative distinc-

tion between arboreal and terrestrial species; it only classifies species as arboreal when they

spend the majority of their lives in trees (in contrast to all ‘-L’ schemes), it does not distinguish

semi-aquatic species from terrestrial species that occasionally occupy aquatic microhabitats (in

contrast to ‘7-‘ schemes), and species that climb tall leafy vegetation, but not explicitly trees,

are not considered arboreal (in contrast to’ -Mc-‘ schemes). Results from all analyses are avail-

able in the Supporting information.

As predicted, the phylogenetic ANOVA assessing all climate variables together revealed sig-

nificant differences in group mean climates across microhabitat types (Z = 2.326, p = 0.011;

Fig 1) and between arboreal and terrestrial species (pairwise comparison: Z = 5.025, p = 0.001;

Table 2). We found similar patterns in the pairwise comparison analyses of the first two PC

axes (ZPC1 = 4.644, pPC1 = 0.001; ZPC2 = 4.198, pPC2 = 0.002; Table 2 and Fig 1), with arboreal

species on average displaying higher PC1 values (Δgls-coefficient = 1.362) and lower PC2 val-

ues (Δgls-coefficient = -1.339) than terrestrial species after accounting for phylogeny. PC1 rep-

resented 32.77% of the overall variation (Table 3) and was most heavily driven by multiple or

all summary statistics for Annual Mean Temperature (BIO1), Min Temperature of the Coldest

Month (BIO6), Annual Precipitation (BIO12), and Precipitation of the Wettest Quarter

(BIO16; all loaded positively; S2 Table), implying high PC1 values represent climates with
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warmer cold seasons, more extreme wet seasons. PC2 represented 19.76% of the overall varia-

tion (Table 3) and was driven by all summary statistics for Max Temperature of the Warmest

Month (BIO5; negative loading) and Elevation (positive loading), along with some summary

statistics for Potential Evapotranspiration of the Wettest Quarter (PET.W, negative loading; S2

Table) such that low values of PC2 represent low elevation, humid regions with hot summers.

PC axes 3–5 did not show significant differences between arboreal and terrestrial species.

These results were consistent across all classification schemes except 6-McL, where despite

a significant difference in overall climate (Z = 2.651, p = 0.010), PC1 was only marginally sig-

nificant (Z = 2.219, p = 0.038, sequential Bonferroni-adjusted α = 0.010), and PC2 was not

significant (Z = 1.280, p = 0.127; S3 Table; see Discussion). Further, in testing phylogenetic

uncertainty using the 1000 posterior chronograms, the lower bound of the confidence interval

around the overall climate Z-score under 6-McL overlaps with the significance cutoff of 1.645

(S1 Fig).

Fig 1. PCA of climate variables. All species are colored by microhabitat type under the 6-M classification scheme. Small, unfilled

points indicate species’ means, and larger solid points indicate microhabitat-wide means. Polygons encapsulating all species within a

microhabitat group are also included. Arboreal species on average display higher PC1 values, which corresponds to warmer

temperatures, more precipitation, and lower elevations (see S2 Table for full loading data). This plot also suggests that although the

means differ between arboreal and terrestrial species, these groups do not occupy fully distinct climate spaces. Rather, arboreal

species appear to occupy a subset of the climates occupied by the terrestrial species.

https://doi.org/10.1371/journal.pone.0255393.g001
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Pairwise comparisons from the individual climatic variable phylogenetic ANOVAs revealed

significant differences between arboreal and terrestrial species for all temperature variables

(BIO1, BIO5, BIO6; Z> 4.365, p< 0.003) and Elevation (ZElev = 7.280, p = 0.001; Table 2 and

Fig 2) such that arboreal species live, on average, in warmer (Δgls-coefficients: BIO1mean =

2.287; BIO5mean = 1.961; BIO6mean = 2.716), lower elevation (Δgls-coefficients: Elevmean =

-444.668) regions than terrestrial species. We also found a marginally significant relationship

Table 2. Pairwise Z scores and p values from all phylogenetic ANOVAs.

Variable Z P Alpha

All 5.025 0.001 0.0500

PC1 4.644 0.001 0.0100

PC2 4.198 0.002 0.0125

PC3 -0.547 0.656 0.0500

PC4 2.550 0.022 0.0167

PC5 1.559 0.088 0.0250

Temperature BIO1 (Annual) 5.941 0.001 0.0042

BIO6 (Cold) 6.311 0.001 0.0045

BIO5 (Warm) 4.365 0.003 0.0056

Precipitation BIO12 (Annual) 1.270 0.116 0.0100

BIO16 (Wet) 1.385 0.103 0.0083

BIO17 (Dry) -0.394 0.588 0.0167

PET.A 3.281 0.010 0.0063

PET.W -0.332 0.564 0.0125

PET.D 1.392 0.102 0.0071

CM -0.509 0.654 0.0250

Elevation 7.280 0.001 0.0050

Cloud -0.749 0.775 0.0500

These results were generated from the full dataset under the 6-M classification scheme. Also displayed are the appropriate sequential-Bonferroni adjusted alpha values

against which p values were compared to indicate significance. All significant variables are shaded in dark gray, with the marginally significant results from Annual

Potential Evapotranspiration (PET.A) shaded in light gray.

https://doi.org/10.1371/journal.pone.0255393.t002

Table 3. Statistics from the principal component analysis and the corresponding phylogenetic ANOVAs of PC1-PC5 on microhabitat use.

Dataset PC1 PC2 PC3 PC4 PC5
All Species Variation 32.77% 19.76% 18.89% 10.70% 5.60%

Overall Z 2.294 2.185 -2.744 0.943 0.109

Overall P 0.005 0.003 0.992 0.179 0.470

Pairwise Z 4.644 4.198 -0.547 2.550 1.559

Pairwise P 0.001 0.002 0.656 0.022 0.088

Alpha 0.010 0.013 0.050 0.017 0.025

Tropical Species Variation 45.23% 24.12% 10.15% 6.80% 3.61%
Overall Z 1.752 0.966 -1.972 -2.935 0.121

Overall P 0.002 0.129 0.956 0.993 0.547

Alpha 0.010 0.013 0.025 0.050 0.017

PC1 and PC2 show significant differences between arboreal and terrestrial climates (bold) using all species and sequential Bonferroni alpha adjustments under 6-M. The

tropical subset analyses (containing only arboreal and terrestrial species) consistently found significant differences between the microhabitat types on PC1. See

Supporting information for all Z scores and p values.

https://doi.org/10.1371/journal.pone.0255393.t003

PLOS ONE The evolution of salamander arboreality may be driven by broad climate patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0255393 August 18, 2021 8 / 17

https://doi.org/10.1371/journal.pone.0255393.t002
https://doi.org/10.1371/journal.pone.0255393.t003
https://doi.org/10.1371/journal.pone.0255393


of Annual Potential Evapotranspiration (PET.A; Z = 3.281, p = 0.010, sequential Bonferroni

adjusted α = 0.0063; S3 Table) such that arboreal species live in regions with higher PET.A

(Δgls-coefficient of PET.Amean = 64.339).

These patterns were consistent across microhabitat schemes with the exception of the

6-McL classification scheme. With the sequential Bonferroni α adjustments, BIO1, BIO6, and

Elevation were only marginally significant for this scheme (pBIO1 = 0.025, αBIO1 = 0.005, pBIO6

= 0.024, αBIO6 = 0.0045, pElev = 0.029, αElev = 0.0056; S3 Table). Interestingly, this 6-McL analy-

sis revealed a significant difference in the variable Precipitation of the Wettest Quarter (BIO16;

Z = 4.173, p = 0.001), although this pattern did not appear elsewhere, even with the tropical

6-McL analysis (S4 Table). Aside from this one exception, we consistently observed arboreal

Fig 2. Climatic variables extracted from terrestrial (black) and arboreal (green) species distributions. Specific climatic variables

include: Min Temperature of Coldest Month (BIO6), Annual Mean Temperature (BIO1), Max Temperature of Warmest Month

(BIO5), Precipitation of Driest Quarter (BIO17), Annual Precipitation (BIO12), Precipitation of Wettest Quarter (BIO16), annual

variation in Potential Evapotranspiration (Driest Quarter, Annual Mean, and Wettest Quarter), Cloud Cover, Elevation, and

Climatic Moisture. White dots indicate pgls coefficients for each group. Asterisks indicate significant relationships across species

means after accounting for phylogeny.

https://doi.org/10.1371/journal.pone.0255393.g002
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species living in warmer, lower elevation regions with less extreme cold seasons than terrestrial

species. Additionally, the 95% confidence intervals of Z scores generated across the 1000 poste-

rior chronograms aligned with these results (S1 Fig), indicating robustness to phylogenetic

uncertainty.

For the tropical subset data only including arboreal or terrestrial microhabitat types, each

classification scheme determined which species were included in the analyses, thus affecting

PC scores. We present the loading schemes from the 6-M tropical analysis, and although the

exact weights of each climate variable were slightly different across the classification schemes,

the overall patterns were consistent across all tropical schemes. These analyses consistently

found differences between arboreal and terrestrial tropical species overall (Z > 2.992,

p< 0.003) and across PC1 (Z> 1.670, p< 0.003, S4 Table). The tropical PC1 axis represented

45.23% of the overall variation and was driven by Annual Mean Temperature (BIO1, positive

loading), Min Temperature of the Coldest Month (BIO6, positive loading), and Elevation

(negative loading; S2 Table).

The tropical analyses of individual climate variables revealed significant differences across

all temperature variables and Elevation, as with the main analyses (Z > 2.394, p< 0.003; S4

Table). In addition, these analyses consistently showed variation across all Potential Evapo-

transpiration variables (PET.A, PET.W, and PET.D) such that tropical arboreal species live in

regions with higher PET. Although some of these relationships were only marginally signifi-

cant under the sequential Bonferroni α adjustment, all PET p-values were less than 0.036 (S4

Table). The 95% confidence intervals generated from the posterior chronograms for the tropi-

cal subset also corroborated the findings described above (S2 Fig).

Ecological niche modeling

Species climate models showed high Area Under the Curve (AUC) values from 0.784 to

0.999 (only one model had an AUC less than 0.876), indicating good model performance.

Geographic distances ranged from 4.728 to 6961.68 km. As predicted, microhabitat

explained variation in the degree of niche overlap for both D and I values (ZD = 3.179, pD =

0.001, ZI = 3.4443, pI = 0.001). Pairwise comparisons revealed that all groupings were signifi-

cantly different from each other, such that AT comparisons on average displayed the least

amount of niche-overlap, and AA comparisons displayed the greatest amount of niche-over-

lap (Z > 3.573 p < 0.005; Fig 3).

Discussion

In many animal clades, microhabitat colonization events are coincident with morphological

specialization, indicating that locomotive constraints determine the availability of an unlikely

microhabitat (e.g., [53, 54]). However, in salamanders that have repeatedly colonized the arbo-

real microhabitat, no such morphological explanation exists [4, 5]. In this study, we tested

whether broad-scale abiotic conditions differ predictably across ranges of arboreal and terres-

trial species to determine whether climate could act as a constraining force in the maintenance

of salamander arboreality. Using phylogenetic comparative methods, we tested for correlations

between climate and microhabitat type while accounting for phylogenetic relatedness, reveal-

ing that arboreal species live in warmer, lower elevation regions than terrestrial species

(Table 2 and Fig 2). To complement and expand upon these main results, we employed eco-

logical niche modeling (ENM) by constructing models for each species and calculating niche-

overlap between each species pair. The results of this approach were consistent with our main

findings, demonstrating that the arboreal and terrestrial species niches are, on average, more

divergent from one another than two arboreal species niches, after accounting for geographic
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and phylogenetic similarity. Terrestrial species pairings were also, on average, more divergent

than the other two groupings, indicating that mean climates either differed more greatly

among terrestrial species or simply that terrestrial species simply occupy broader geographic

ranges. Both possibilities support the PCM findings that terrestrial species are less constrained

by climate than arboreal species. Thus, broad-scale climatic patterns may act as a constraint on

microhabitat use, influencing salamanders’ life history traits more than previously appreciated.

While our results identify patterns of specific climatic envelopes associated with arboreal

species and are generally robust to phylogenetic and microhabitat classification uncertainty,

we recognize several important caveats regarding the types of data used in this study. First, as

climate data are coarse-grained by nature, data extracted from species occurrence points are

likely to capture variation not directly experienced by a salamander. However, while such

intraspecific variation in the climatic envelopes experienced by salamanders is ecologically

important, we suggest that the fact that we detected significant differences between microhabi-

tat types, in spite of the imprecise nature of these data, warrants consideration, and implies

that the patterns are biologically important. Second, our species sampling and location data

were limited to the publicly available phylogenetic, environmental, and occurrence data

sources. Until more complete phylogenies and occurrence datasets for these excluded species

are available, we cannot rectify this uncertainty. We were also unable to include variables

such as soil temperature or humidity at the broad scale of this study, as neither measure was

publicly available at the necessary scale. Due to the nature of this study, we are only able to

report on the correlations observed between microhabitat use and climate. This means that

although certain climate variables correlate with microhabitat use, it is difficult to disentangle

Fig 3. Schoener’s D and Warren’s I values by comparison type. Horizontal lines indicate group means, all of which differ

significantly from one another at an alpha of 0.05. Arboreal species show higher degrees of niche overlap with other arboreal species

than with terrestrial species, indicating that arboreality may be constrained by climatic niche.

https://doi.org/10.1371/journal.pone.0255393.g003
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autocorrelation between certain variables to understand the causal climatic factor in determin-

ing microhabitat availability. In other words, although the arboreal salamanders on average

experienced warmer temperatures and lower elevation, we cannot conclude that both elevation

and temperature are independently necessary for arboreality to evolve or persist. Finally, our

findings were based on fairly recent climatic data (since 1970), and therefore, the climate expe-

rienced by extant species may not represent what species experienced during the earlier transi-

tions towards arboreality [4]. Similarly, the current geographic localities from which climate

data were extracted do not represent the ranges of extinct species that transitioned between

microhabitat types. An investigation into ancestral geographic distributions and historical cli-

mate would be necessary to define how climate was related to deep historical transitions into

and out of the arboreal microhabitat. Overall, the methods used in this study represent the best

available approaches for this type of investigation. The consensus across all robustness analyses

lend confidence to our conclusions and portends promise for future studies that can expand

on this research with improved data resources.

Although our results were largely invariant across phylogenetic and microhabitat classifica-

tion robustness tests, the 6-McL microhabitat classification scheme did not always yield the

same results (loss of signal). These results did show that the arboreal and terrestrial species dif-

fer across climate overall (S3 Table), but they did not show the same significant differences

across PC2 or BIO5, and differences across PC1, BIO1, and BIO6 were only marginally signifi-

cant after applying the sequential Bonferroni α adjustment (S3 Table). The major difference in

how this classification scheme was defined was the inclusion of species that facultatively climb

non-tree vegetation in the arboreal grouping (sensu [22]). Classification schemes 6-L and 7-L

both included facultatively arboreal species in the arboreal grouping whenever this behavior

occurred on trees specifically, but not on other vegetation alone. Thus, the loss of signal with

this 6-McL microhabitat classification scheme is likely driven by species that facultatively

climb on herbaceous vegetation and other non-tree vegetation, and as such, our results suggest

that these species may be able to practice arboreal-like scansorial behavior when micro-cli-

mates allow for it without requiring the macro-climate needed by truly arboreal (i.e., tree-

dwelling) species. These results suggest that broad climate envelopes may only constrain the

use of the arboreal microhabitat, but scansorial behavior utilizing other vegetation may not be

restricted in the same manner. Importantly, this same classification scheme did not produce

divergent results in the tropical subset analyses, instead showing strong relationships in agree-

ment with other microhabitat classification schemes in the tropics. Thus, the exception of

these 6-McL all-species analyses might only apply to temperate species, where we rarely see

true arboreality in salamanders. Investigating how facultative scansorial behavior relates to

more fine scale weather patterns or species-specific physiological tolerance would likely shed

light on this interesting finding.

The tropical analyses were remarkably consistent across microhabitat schemes and corrob-

orated the significant results from the full dataset analyses (S4 Table). We expected that reduc-

tion of the data to the tropical region would result in weaker signal, considering the smaller

geographic scope inevitably narrows the range of possible climates occupied, as well as the sub-

stantial degree of species range overlap between arboreal and terrestrial species in the tropics.

Despite this, we observed consistent climatic signal in the tropical clade in agreement with our

main results. Additionally, these analyses indicated that tropical arboreal species might also

live in regions with higher Potential Evapotranspiration. We found marginally or fully signifi-

cant results across all relevant measures (PET.A, PET.W, and PET.D) with higher PET aver-

ages among arboreal species. Although some of these results were only marginally significant

according to the sequential Bonferroni scheme, the consistently low p values (< 0.036) and

high Z scores (> 1.623) of these results (plus some marginal PET.A relationships found in the

PLOS ONE The evolution of salamander arboreality may be driven by broad climate patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0255393 August 18, 2021 12 / 17

https://doi.org/10.1371/journal.pone.0255393


full-dataset; S3 Table) indicate that this pattern might be a valid discrepancy between arboreal

and terrestrial species. Potential Evapotranspiration (PET) is the amount of moisture that

could be evaporated into the atmosphere, given enough input moisture. Since precipitation

(and therefore input moisture) does not differ across microhabitat types, elevated PET values

are an indication of higher humidity. The intriguing patterns of higher PET in tropical arbo-

real species aligns with our prediction regarding the challenges of osmoregulation in arboreal

microhabitats: more humid regions would make arboreal microhabitats more hospitable for

these animals. However, the PET results presented herein are, at best, interesting relationships

that require further investigation.

The consistent results from these analyses demonstrate that arboreal species on average live

in warmer, lower elevation regions than terrestrial species. As atmospheric oxygen levels are

highest at sea-level and oxygen diffusion rates increases with temperature, results from this

manuscript align with the hypothesis that the energetic demands of climbing trees require cli-

mates with higher oxygen levels. Thus, our results indicate that climate may constrain arbore-

ality on a macroevolutionary scale due to respiratory challenges, but desiccation threat does

not seem to factor into this relationship as we predicted.

This study builds upon the body of work demonstrating how species’ climatic niches have

influenced the evolutionary history of plethodontids. Kozak and Wiens [24] first proposed

that niche conservatism played a role in driving speciation patterns in North American tem-

perate plethodontids, a hypothesis outlined by Wiens [55]. Soon after, Kozak and Wiens [56]

demonstrated that niche conservatism in temperate montane plethodontids promotes specia-

tion as the climate between mountains often creates ecological boundaries between popula-

tions, leading to speciation. This work was subsequently expanded upon, showing how family-

wide diversification rate shifts often follow climatic-niche evolutionary shifts (e.g., [25, 57–59].

Our work adds another dimension to this story, outlining the possibility that broad-scale cli-

matic patterns determine microhabitat use across the evolutionary history of plethodontids.

Somewhat surprisingly, we discovered that even broad-scale climatic patterns correlate

with ecological traits in species with high micro-environment selectivity. A few authors have

asserted that small- and large-scale climatic patterns are only weakly associated regarding sala-

manders [60, but see 12], making the ecological impact of large-scale climate on plethodontids

unlikely. However, our study revealed a pattern that is consistent with an ecological response

to broad climatic differences, even at the broad resolution of 2.5 arc-minute. This study dem-

onstrated the utility of such coarse climatic data for investigations into Plethodontid ecology

and evolution, and we hope these results encourage others to utilize such data despite the

widely held assumption that it is not relevant for this group.

This study revealed that arboreal species live in climates that facilitate efficient oxygen

uptake, as we predicted was necessary to support arboreal life. These results align with the

hypothesis that broad climatic patterns have constrained the availability of the arboreal micro-

habitat, which could explain why many North American clades have not evolved arboreality

despite the abundance of forest habitat. However, the assertion that climate caused deeply

rooted microhabitat transitions remains unanswerable with the data at hand; the inconclusive

nature of historical biogeographic mapping for plethodontids paired with the challenge of con-

fidently identifying the precise evolutionary time and lineage of microhabitat transitions

means that different approaches may be necessary for further investigation into this hypothe-

sis. One such approach could involve monitoring arboreal species in ranges along mountain

sides that are predicted to experience rising temperatures under climate change. If suitable

temperatures for arboreality become available at higher elevation and arboreal species do not

colonize those areas, this could indicate that elevation is constraining arboreality, especially

when compared against allopatric terrestrial species. Thus, we present this paper as the
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groundwork upon which further exploration into the evolutionary relationship between cli-

mate and life history traits in Plethodontidae can be built.

Supporting information

S1 Table. Climate summary statistics, number of observations, and microhabitat classifica-

tions for each species. Climate summaries include the 5th, 25th, 75th and 95th percentiles as

well as species means and only include data from species with observations from 3 or more cli-

mate pixels, as described in the main text. A subset of these species, for which there were 15 or

more climate pixels per species, were used for the Ecological Niche Modeling portion of this

manuscript. Microhabitat classifications are as follows: arboreal (A), cave (C), fossorial (F),

saxicolous (S), terrestrial (T), or aquatic (W).

(XLSX)

S2 Table. PCA loadings for all species and tropical arboreal and terrestrial species as

defined under 6-M. PC1 and PC2 were significantly different across microhabitat type such

that arboreal species displayed higher PC1 values and lower PC2 values for all analyses for

which all species were included. Tropical analyses indicated significant differences along PC1,

such that arboreal species live in warmer, lower elevation ranges with higher PET of the driest

quarter.

(XLSX)

S3 Table. General overview of all phylogenetic ANOVA results using all species. Dark gray

cells indicate significance against the sequential-Bonferroni adjusted alpha values. Light gray

cells indicant significant results at an alpha of 0.05, but only marginal significance against

sequential Bonferroni alpha adjustments. All analyses show significance when analyzing all cli-

mate variables together. With the exception of microhabitat classification 6-McL, all analyses

indicate significant differences across PC1, PC2, all temperature variables (BIO1, BIO5, and

BIO6), and Elevation. Annual Potential Evapotranspiration is also marginally or fully signifi-

cant across all classification schemes except 6-McL. See Discussion for explanation of anoma-

lous 6-McL results.

(XLSX)

S4 Table. General overview of all phylogenetic ANOVA results using only tropical arboreal

and terrestrial species. Dark gray cells indicate significance against the sequential-Bonferroni

adjusted alpha values. Light gray cells indicant significant results at an alpha of 0.05, but only

marginal significance against sequential Bonferroni alpha adjustments. All analyses show sig-

nificance when analyzing all climate variables together, PC1, all temperature variables (BIO1,

BIO5, and BIO6), and Elevation. These results all corroborate similar findings when including

all species (S3 Table). Potential Evapotranspiration, as quantified by all three PET variables

(PET.A, PET.W, and PET.D) are also marginally or fully significant across all classification

schemes.

(XLSX)

S1 Fig. 95% confidence intervals of the full dataset tests generated across the 1000 poste-

rior chronograms from Bonett and Blair (2017). For all significant patterns described in the

main text, the confidence intervals were all above 1.645 (red line), which is the significance cut-

off for empirically generated Z scores. This indicates that our results are robust to phylogenetic

uncertainty. P values generated from our permutation procedures corroborated these findings.

(PDF)
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S2 Fig. 95% confidence intervals of the tropical tests generated across the 1000 posterior

chronograms from Bonett and Blair (2017). For all significant patterns described in the

main text, the confidence intervals were all above 1.645 (red line), which is the significance cut-

off for empirically generated Z scores. This indicates that our results are robust to phylogenetic

uncertainty. P values generated from our permutation procedures corroborated these findings.

(PDF)
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